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Abstract

Achieving robustness to distributional shift is a longstanding and challenging
goal of computer vision. Data augmentation is a commonly used approach for
improving robustness, however robustness gains are typically not uniform across
corruption types. Indeed increasing performance in the presence of random noise is
often met with reduced performance on other corruptions such as contrast change.
Understanding when and why these sorts of trade-offs occur is a crucial step
towards mitigating them. Towards this end, we investigate recently observed trade-
offs caused by Gaussian data augmentation and adversarial training. We find that
both methods improve robustness to corruptions that are concentrated in the high
frequency domain while reducing robustness to corruptions that are concentrated in
the low frequency domain. This suggests that one way to mitigate these trade-offs
via data augmentation is to use a more diverse set of augmentations. Towards this
end we observe that AutoAugment [6], a recently proposed data augmentation
policy optimized for clean accuracy, achieves state-of-the-art robustness on the
CIFAR-10-C [17] benchmark.

1 Introduction
Although many deep learning computer vision models achieve remarkable performance on many
standard i.i.d benchmarks, these models lack the robustness of the human vision system when the train
and test distributions differ [24]. For example, it has been observed that commonly occurring image
corruptions, such as random noise, contrast change, and blurring, can lead to significant performance
degradation [8, 3]. Improving distributional robustness is an important step towards safely deploying
models in complex, real-world settings.

Data augmentation is a natural and sometimes effective approach to learning robust models. Examples
of data augmentation include adversarial training [14], applying image transformations to the training
data, such as flipping, cropping, adding random noise, and even stylized image transformation [11].

However, data augmentation rarely improves robustness across all corruption types. Performance
gains on some corruptions may be met with dramatic reduction on others. As an example, in [10] it
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was observed that Gaussian data augmentation and adversarial training improve robustness to noise
and blurring corruptions on the CIFAR-10-C and ImageNet-C common corruption benchmarks [17],
while significantly degrading performance on the fog and contrast corruptions. This begs a natural
question

What is different about the corruptions for which augmentation strategies improve performance vs.
those which performance is degraded?

Understanding these tensions and why they occur is an important first step towards designing robust
models. Our operating hypothesis is that the frequency information of these different corruptions
offers an explanation of many of these observed trade-offs. Through extensive experiments involving
perturbations in the Fourier domain, we demonstrate that these two augmentation procedures bias
the model towards utilizing low frequency information in the input. This low frequency bias results
in improved robustness to corruptions which are more high frequency in nature while degrading
performance on corruptions which are low frequency.

Our analysis suggests that more diverse data augmentation procedures could be leveraged to mitigate
these observed trade-offs, and indeed this appears to be true. In particular we demonstrate that the
recently proposed AutoAugment data augmentation policy [6] achieves state-of-the-art results on
the CIFAR-10-C benchmark. In addition, a follow-up work has utilized AutoAugment in a way to
achieve state-of-the-art results on ImageNet-C [1].

Some of our observations could be of interest to research on security. For example, we observe
perturbations in the Fourier domain which when applied to images cause model error rates to exceed
90% on ImageNet while preserving the semantics of the image. These qualify as simple, single
query3 black box attacks that satisfy the content preserving threat model [13]. This observation was
also made in concurrent work [26].

Finally, we extend our frequency analysis to obtain a better understanding of worst-case perturbations
of the input. In particular adversarial perturbations of a naturally trained model are more high-
frequency in nature while adversarial training encourages these perturbations to become more
concentrated in the low frequency domain.

2 Preliminaries
We denote the `2 norm of vectors (and in general, tensors) by ‖ · ‖. For a vector x ∈ Rd, we denote
its entries by x[i], i ∈ {0, . . . , d− 1}, and for a matrix X ∈ Rd1×d2 , we denote its entries by X[i, j],
i ∈ {0, . . . , d1 − 1}, j ∈ {0, . . . , d2 − 1}. We omit the dimension of image channels, and denote
them by matrices X ∈ Rd1×d2 . We denote by F : Rd1×d2 → Cd1×d2 the 2D discrete Fourier
transform (DFT) and by F−1 the inverse DFT. When we visualize the Fourier spectrum, we always
shift the low frequency components to the center of the spectrum.

We define high pass filtering with bandwidthB as the operation that sets all the frequency components
outside of a centered square with width B in the Fourier spectrum with highest frequency in the
center to zero, and then applies inverse DFT. The low pass filtering operation is defined similarly
with the difference that the centered square is applied to the Fourier spectrum with low frequency
shifted to the center.

We assume that the pixels take values in range [0, 1]. In all of our experiments with data augmentation
we always clip the pixel values to [0, 1]. We define Gaussian data augmentation with parameter σ
as the following operation: In each iteration, we add i.i.d. Gaussian noise N (0, σ̃2) to every pixel
in all the images in the training batch, where σ̃ is chosen uniformly at random from [0, σ]. For our
experiments on CIFAR-10, we use the Wide ResNet-28-10 architecture [27], and for our experiment
on ImageNet, we use the ResNet-50 architecture [16]. When we use Gaussin data augmentation, we
choose parameter σ = 0.1 for CIFAR-10 and σ = 0.4 for ImageNet. All experiments use flip and
crop during training.

Fourier heat map We will investigate the sensitivity of models to high and low frequency corrup-
tions via a perturbation analysis in the Fourier domain. Let Ui,j ∈ Rd1×d2 be a real-valued matrix
such that ‖Ui,j‖ = 1, and F(Ui,j) only has up to two non-zero elements located at (i, j) and the its
symmetric coordinate with respect to the image center; we call these matrices the 2D Fourier basis
matrices [4].

3In contrast, methods for generating small adversarial perturbations require 1000’s of queries [15].
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Given a model and a validation image X , we can generate a perturbed image with Fourier basis noise.
More specifically, we can compute X̃i,j = X + rvUi,j , where r is chosen uniformly at random from
{−1, 1}, and v > 0 is the norm of the perturbation. For multi-channel images, we perturb every
channel independently. We can then evaluate the models under Fourier basis noise and visualize
how the test error changes as a function of (i, j), and we call these results the Fourier heat map of a
model. We are also interested in understanding how the outputs of the models’ intermediate layers
change when we perturb the images using a specific Fourier basis, and these results are relegated to
the Appendix.

3 The robustness problem

Figure 1: Models can achieve high accuracy using information from the input that would be unrecognizable to
humans. Shown above are models trained and tested with aggressive high and low pass filtering applied to the
inputs. With aggressive low-pass filtering, the model is still above 30% on ImageNet when the images appear to
be simple globs of color. In the case of high-pass (HP) filtering, models can achieve above 50% accuracy using
features in the input that are nearly invisible to humans. As shown on the right hand side, the high pass filtered
images needed be normalized in order to properly visualize the high frequency features (the method that we use
to visualize the high pass filtered images is provided in the appendix).

How is it possible that models achieve such high performance in the standard settings where the
training and test data are i.i.d., while performing so poorly in the presence of even subtle distributional
shift? There has been substantial prior work towards obtaining a better understanding of the robust-
ness problem. While this problem is far from being completely understood, perhaps the simplest
explanation is that models lack robustness to distributional shift simply because there is no reason for
them to be robust [20, 11, 18]. In naturally occurring data there are many correlations between the
input and target that models can utilize to generalize well. However, utilizing such sufficient statistics
will lead to dramatic reduction in model performance should these same statistics become corrupted
at test time.

As a simple example of this principle, consider Figure 8 in [19]. The authors experimented with
training models on a “cheating” variant of MNIST, where the target label is encoded by the location
of a single pixel. Models tested on images with this “cheating” pixel removed would perform poorly.
This is an unfortunate setting where Occam’s razor can fail. The simplest explanation of the data
may generalize well in perfect settings where the training and test data are i.i.d., but fail to generalize
robustly. Although this example is artificial, it is clear that model brittleness is tied to latching onto
non-robust statistics in naturally occurring data.

As a more realistic example, consider the recently proposed texture hypothesis [11]. Models trained
on natural image data can obtain high classification performance relying on local statistics that
are correlated with texture. However, texture-like information can become easily distorted due to
naturally occurring corruptions caused by weather or digital artifacts, leading to poor robustness.

In the image domain, there is a plethora of correlations between the input and target. Simple statistics
such as colors, local textures, shapes, even unintuitive high frequency patterns can all be leveraged
in a way to achieve remarkable i.i.d generalization. To demonstrate, we experimented with training
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and testing of ImageNet models when severe filtering is performed on the input in the frequency
domain. While modest filtering has been used for model compression [9], we experiment with
extreme filtering in order to test the limits of model generalization. The results are shown in Figure 1.
When low-frequency filtering is applied, models can achieve over 30% test accuracy even when the
image appears to be simple globs of color. Even more striking, models achieve 50% accuracy in
the presence of the severe high frequency filtering, using high frequency features which are nearly
invisible to humans. In order to even visualize these high frequency features, we had normalize pixel
statistics to have unit variance. Given that these types features are useful for generalization, it is not
so surprising that models leverage these non-robust statistics.

It seems likely that these invisible high frequency features are related to the experiments of [18], which
show that certain imperceptibly perturbed images contain features which are useful for generalization.
We discuss these connections more in Section 4.4.

4 Trade-off and correlation between corruptions: a Fourier perspective
The previous section demonstrated that both high and low frequency features are useful for classifica-
tion. A natural hypothesis is that data augmentation may bias the model towards utilizing different
kinds of features in classification. What types of features models utilize will ultimately determine the
robustness at test time. Here we adopt a Fourier perspective to study the trade-off and correlation
between corruptions when we apply several data augmentation methods.

4.1 Gaussian data augmentation and adversarial training bias models towards low
frequency information

Ford et al. [10] investigated the robustness of three models on CIFAR-10-C: a naturally trained
model, a model trained by Gaussian data augmentation, and an adversarially trained model. It was
observed that Gaussian data augmentation and adversarial training improve robustness to all noise
and many of the blurring corruptions, while degrading robustness to fog and contrast. For example
adversarial training degrades performance on the most severe contrast corruption from 85.66% to
55.29%. Similar results were reported on ImageNet-C.

clean images

brightness contrast defocus blur elastic fog

Gaussian blur glass blur impulse noise jpeg motion blur

pixelate shot noise snow speckle noise zoom blur

Figure 2: Left: Fourier spectrum of natural images; we estimate E[|F(X)[i, j]|] by averaging all the CIFAR-10
validation images. Right: Fourier spectrum of the corruptions in CIFAR-10-C at severity 3. For each corruption,
we estimate E[|F(C(X)−X)[i, j]|] by averaging over all the validation images. Additive noise has relatively
high concentrations in high frequencies while some corruptions such as fog and contrast are concentrated in low
frequencies.

We hypothesize that some of these trade-offs can be explained by the Fourier statistics of different
corruptions. Denote a (possibly randomized) corruption function by C : Rd1×d2 → Rd1×d2 . In
Figure 2 we visualize the Fourier statistics of natural images as well as the average delta of the
common corruptions. Natural images have higher concentrations in low frequencies, thus when we
refer to a “high” or “low” frequency corruption we will always use this term on a relative scale.
Gaussian noise is uniformly distributed across the Fourier frequencies and thus has much higher
frequency statistics relative to natural images. Many of the blurring corruptions remove or change the
high frequency content of images. As a result C(X)−X will have a higher fraction of high frequency
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Figure 3: Model sensitivity to additive noise aligned with different Fourier basis vectors on CIFAR-10. We
fix the additive noise to have `2 norm 4 and evaluate three models: a naturally trained model, an adversarially
trained model, and a model trained with Gaussian data augmentation. Error rates are averaged over 1000
randomly sampled images from the test set. In the bottom row we show images perturbed with noise along the
corresponding Fourier basis vector. The naturally trained model is highly sensitive to additive noise in all but the
lowest frequencies. Both adversarial training and Gaussian data augmentation dramatically improve robustness
in the higher frequencies while sacrificing the robustness of the naturally trained model in the lowest frequencies
(i.e. in both models, blue area in the middle is smaller compared to that of the naturally trained model).

energy. For corruptions such as contrast and fog, the energy of the corruption is concentrated more
on low frequency components.

The observed differences in the Fourier statistics suggests an explanation for why the two augmenta-
tion methods improve performance in additive noise but not fog and contrast — the two augmentation
methods encourage the model to become invariant to high frequency information while relying more
on low frequency information. We investigate this hypothesis via several perturbation analyses of
the three models in question. First, we test model sensitivity to perturbations along each Fourier
basis vector. Results on CIFAR-10 are shown in Figure 3. The difference between the three models
is striking. The naturally trained model is highly sensitive to additive perturbations in all but the
lowest frequencies, while Gaussian data augmentation and adversarial training both dramatically
improve robustness in the higher frequencies. For the models trained with data augmentation, we
see a subtle but distinct lack of robustness at the lowest frequencies (relative to the naturally trained
model). Figure 4 shows similar results for three different models on ImageNet. Similar to CIFAR-10,
Gaussian data augmentation improves robustness to high frequency perturbations while reducing
performance on low frequency perturbations.

Figure 4: Model sensitivity to additive noise aligned with different Fourier basis vectors on ImageNet validation
images. We fix the basis vectors to have `2 norm 15.7. Error rates are averaged over the entire ImageNet
validation set. We present the 63× 63 square centered at the lowest frequency in the Fourier domain. Again, the
naturally trained model is highly sensitive to additive noise in all but the lowest frequencies. On the other hand,
Gaussian data augmentation improves robustness in the higher frequencies while sacrificing the robustness to
low frequency perturbations. For AutoAugment, we observe that its Fourier heat map has the largest blue/yellow
area around the center, indicating that AutoAugment is relatively robust to low to mid frequency corruptions.
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To test this further, we added noise with fixed `2 norm but different frequency bandwidths centered at
the origin. We consider two settings, one where the origin is centered at the lowest frequency and
one where the origin is centered at the highest frequency. As shown in Figure 5, for a low frequency
centered bandwidth of size 3, the naturally trained model has less than half the error rate of the other
two models. For high frequency bandwidth, the models trained with data augmentation dramatically
outperform the naturally trained model.
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Figure 5: Robustness of models under additive noise with fixed norm and different frequency distribution. For
each channel in each CIFAR-10 test image, we sample i.i.d Gaussian noise, apply a low/high pass filter, and
normalize the filtered noise to have `2 norm 8, before applying to the image. We vary the bandwidth of the
low/high pass filter and generate the two plots. The naturally trained model is more robust to the low frequency
noise with bandwidth 3, while Gaussian data augmentation and adversarial training make the model more robust
to high frequency noise.

This is consistent with the hypothesis that the models trained with the noise augmentation are biased
towards low frequency information. As a final test, we analyzed the performance of models with a
low/high pass filter applied to the input (we call the low/high pass filters the front end of the model).
Consistent with prior experiments we find that applying a low pass front-end degrades performance
on fog and contrast while improving performance on additive noise and blurring. If we instead
further bias the model towards high frequency information we observe the opposite effect. Applying
a high-pass front end degrades performance on all corruptions (as well as clean test error), but
performance degradation is more severe on the high frequency corruptions. These experiments again
confirm our hypothesis about the robustness properties of models with a high (or low) frequency bias.

To better quantify the relationship between frequency and robustness for various models we measure
the ratio of energy in the high and low frequency domain. For each corruption C, we apply high
pass filtering with bandwidth 27 (denote this operation by H(·)) on the delta of the corruption, i.e.,
C(X) − X . We use ‖H(C(X)−X)‖2

‖C(X)−X‖2 as a metric of the fraction of high frequency energy in the
corruption. For each corruption, we average this quantity over all the validation images and all
5 severities. We evaluate 6 models on CIFAR-10-C, each trained differently — natural training,
Gaussian data augmentation, adversarial training, trained with a low pass filter front end (bandwidth
15), trained with a high pass filter front end (bandwidth 31), and trained with AutoAugment (see a
more detailed discussion on AutoAugment in Section 4.3). Results are shown in Figure 6. Models
with a low frequency bias perform better on the high frequency corruptions. The model trained with
a high pass filter has a forced high frequency bias. While this model performs relatively poorly on
even natural data, it is clear that high frequency corruptions degrade performance more than the low
frequency corruptions. Full results, including those on ImageNet, can be found in the appendix.

4.2 Does low frequency data augmentation improve robustness to low frequency
corruptions?

While Figure 6 shows a clear relationship between frequency and robustness gains of several data
augmentation strategies, the Fourier perspective is not predictive in all situations of transfer between
data augmentation and robustness.

We experimented with applying additive noise that matches the statistics of the fog corruption in
the frequency domain. We define “fog noise” to be the additive noise distribution

∑
i,j

N (0, σ2
i,j)Ui,j

where the σi,j are chosen to match the typical norm of the fog corruption on basis vector Ui,j as
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Figure 6: Relationship between test accuracy and fraction of high frequency energy of the CIFAR-10-C
corruptions. Each scatter point in the plot represents the evaluation result of a particular model on a particular
corruption type. The x-axis represents the fraction of high frequency energy of the corruption type, and the y-axis
represents change in test accuracy compared to a naturally trained model. Overall, Gaussian data augmentation,
adversarial training, and adding low pass filter improve robustness to high frequency corruptions, and degrade
robustness to low frequency corruptions. Applying a high pass filter front end yields a more significant accuracy
drop on high frequency corruptions compared to low frequency corruptions. AutoAugment improves robustness
on nearly all corruptions, and achieves the best overall performance. The legend at the bottom shows the slope
(k) and residual (r) of each fitted line.

shown in Figure 2. In particular, the marginal statistics of fog noise are identical to the fog corruption
in the Fourier domain. However, data augmentation on fog noise degrades performance on the fog
corruption (Table 1). This occurs despite the fact that the resulting model yields improved robustness
to perturbations along the low frequency vectors (see the Fourier heat maps in the appendix).

fog severity 1 2 3 4 5
naturally trained 0.9606 0.9484 0.9395 0.9072 0.7429

fog noise augmentation 0.9090 0.8726 0.8120 0.7175 0.4626

Table 1: Training with fog noise hurts performance on fog corruption.

We hypothesize that the story is more complicated for low frequency corruptions because of an
asymmetry between high and low frequency information in natural images. Given that natural images
are concentrated more in low frequencies, a model can more easily learn to “ignore” high frequency
information rather than low frequency information. Indeed as shown in Figure 1, model performance
drops off far more rapidly when low frequency information is removed than high.

4.3 More varied data augmentation offers more general robustness
The trade-offs between low and high frequency corruptions for Gaussian data augmentation and
adversarial training lead to the natural question of how to achieve robustness to a more diverse
set of corruptions. One intuitive solution is to train on a variety of data augmentation strategies.
Towards this end, we investigated the learned augmentation policy AutoAugment [6]. AutoAugment
applies a learned mixture of image transformations during training and achieves the state-of-the-
art performance on CIFAR-10 and ImageNet. In all of our experiments with AutoAugment, we
remove the brightness and constrast sub-policies as they explicitly appear in the common corruption
benchmarks. 4 Despite the fact that this policy was tuned specifically for clean test accuracy, we
found that it also dramatically improves robustness on CIFAR-10-C. Here, we demonstrate part of
the results in Table 2, and the full results can be found in the appendix. In the third plot in Figure 6,
we also visualize the performance of AutoAugment on CIFAR-10-C.

More specifically, on CIFAR-10-C, we compare the robustness of the naturally trained model,
Gaussian data augmentation, adversarially trained model, and AutoAugment. We observe that among
the four models, AutoAugment achieves the best average corruption test accuracy of 86%. Using
the mean corruption error (mCE) metric proposed in [17] with the naturally trained model being the
baseline (see a formal definition of mCE in the appendix), we observe that AutoAugment achieves
the best mCE of 64, and in comparison, Gaussian data augmentation and adversarial training achieve
mCE of 98 and 108, respectively. In addition, as we can see, AutoAugment improves robustness on
all but one of the corruptions, compared to the naturally trained model.

4Our experiment is based on the open source implementation of AutoAugment at
https://github.com/tensorflow/models/tree/master/research/autoaugment.
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noise blur weather digital
model acc mCE speckle shot impulse defocus Gauss glass motion zoom snow fog bright contrast elastic pixel jpeg
natural 77 100 70 68 54 85 73 57 81 80 85 90 95 82 86 73 80
Gauss 83 98 92 92 83 84 79 80 77 82 88 72 92 57 84 90 91

adversarial 81 108 82 83 69 84 82 80 80 83 83 73 87 77 82 85 85
Auto 86 64 81 78 86 92 88 76 85 90 89 95 96 95 87 71 81

Table 2: Comprison between naturally trained model (natural), Gaussian data augmentation (Gauss), adversar-
ially trained model (adversarial), and AutoAugment (Auto) on CIFAR-10-C. We remove all corruptions that
appear in this benchmark from the AutoAugment policy. All numbers are in percentage. The first column shows
the average top1 test accuracy on all the corruptions; the second column shows the mCE; the rest of the columns
show the average test accuracy over the 5 severities for each corruption. We observe that AutoAugment achieves
the best average test accuracy and the best mCE. In most of the blurring and all of the weather corruptions,
AutoAugment achieves the best performance among the four models.

As for the ImageNet-C benchmark, instead of using the compressed ImageNet-C images provided
in [17], we evaluate the models on corruptions applied in memory, 5 and observe that AutoAugment
also achieves the highest average corruption test accuracy. The full results can be found in the
appendix. As for the compressed ImageNet-C images, we note that a follow-up work has utilized
AutoAugment in a way to achieve state-of-the-art results [1].

4.4 Adversarial examples are not strictly a high frequency phenomenon
Adversarial perturbations remain a popular topic of study in the machine learning community. A
common hypothesis is that adversarial perturbations lie primarily in the high frequency domain. In
fact, several (unsuccessful) defenses have been proposed motivated specifically by this hypothesis.
Under the assumption that compression removes high frequency information, JPEG compression has
been proposed several times [21, 2, 7] as a method for improving robustness to small perturbations.
Studying the statistics of adversarially generated perturbations is not a well defined problem because
these statistics will ultimately depend on how the adversary constructs the perturbation. This difficulty
has led to many false claims of methods for detecting adversarial perturbations [5]. Thus the analysis
presented here is to better understand common hypothesis about adversarial perturbations, rather than
actually detect all possible perturbations.

For several models we use PGD to construct adversarial perturbations for every image in the test set.
We then analyze the delta between the clean and perturbed images and project these deltas into the
Fourier domain. By aggregating across the successful attack images, we obtain an understanding
of the frequency properties of the constructed adversarial perturbations. The results are shown in
Figure 7.

For the naturally trained model, the measured adversarial perturbations do indeed show higher
concentrations in the high frequency domain (relative to the statistics of natural images). However,
for the adversarially trained model this is no longer the case. The deltas for the adversarially trained
model resemble that of natural data. Our analysis provides some additional understanding on a
number of observations in prior works on adversarial examples. First, while adversarial perturbations
for the naturally trained model do indeed show higher concentrations in the high frequency domain,
this does not mean that removing high frequency information from the input results in a robust model.
Indeed as shown in Figure 3, the naturally trained model is not worst-case or even average-case robust
on any frequency (except perhaps the extreme low frequencies). Thus, we should expect that if we
adversarially searched for errors in the low frequency domain, we will find them easily. This explains
why JPEG compression, or any other method based on specifically removing high frequency content,
should not be expected to be robust to worst-case perturbations.

Second, the fact that adversarial training biases these perturbations towards the lower frequencies
suggests an intriguing connection between adversarial training and the DeepViz [23] method for
feature visualization. In particular, optimizing the input in the low frequency domain is one of the
strategies utilized by DeepViz to bias the optimization in the image space towards semantically
meaningful directions. Perhaps the reason adversarially trained models have semantically meaningful
gradients [25] is because gradients are biased towards low frequencies in a similar manner as utilized
in DeepViz.

5The dataset of images with corruptions in memory can be found at https://github.com/tensorflow/
datasets/blob/master/tensorflow_datasets/image/imagenet2012_corrupted.py.
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Figure 7: (a) and (b): Fourier spectrum of adversarial perturbations. For any image X , we run the PGD
attack [22] to generate an adversarial example C(X). We estimate the Fourier spectrum of the adversarial
perturbation, i.e., E[|F(C(X) − X)[i, j]|], where the expectation is taken over the perturbed images which
are incorrectly classified. (a) naturally trained; (b) adversarially trained. The adversarial perturbations for the
naturally trained model are uniformly distributed across frequency components. In comparison, adversarial
training biases these perturbations towards the lower frequencies. (c) and (d): Adding Fourier basis vectors with
large norm to images is a simple method for generating content-preserving black box adversarial examples.

As a final note, we observe that adding certain Fourier basis vectors with large norm (24 for ImageNet)
degrades test accuracy to less than 10% while preserving the semantics of the image. Two examples
of the perturbed images are shown in Figure 7. If additional model queries are allowed, subtler
perturbations will suffice — the perturbations used in Figure 4 can drop accuracies to less than 30%.
Thus, these Fourier basis corruptions can be considered as content-preserving black box attacks, and
could be of interest to research on security. Fourier heat maps with larger perturbations are included
in the appendix.

5 Conclusions and future work
We obtained a better understanding of trade-offs observed in recent robustness work in the image
domain. By investigating common corruptions and model performance in the frequency domain
we establish connections between frequency of a corruption and model performance under data
augmentation. This connection is strongest for high frequency corruptions, where Gaussian data
augmentation and adversarial training bias the model towards low frequency information in the input.
This results in improved robustness to corruptions with higher concentrations in the high frequency
domain at the cost of reduced robustness to low frequency corruptions and clean test error.

Solving the robustness problem via data augmentation alone feels quite challenging given the trade-
offs we commonly observe. Naively augmenting on different corruptions often will not transfer well
to held out corruptions [12]. However, the impressive robustness of AutoAugment gives us hope that
data augmentation done properly can play a crucial role in mitigating the robustness problem.

Care must be taken though when utilizing data augmentation for robustness to not overfit to the
validation set of held out corruptions. The goal is to learn domain invariant features rather than simply
become robust to a specific set of corruptions. The fact that AutoAugment was tuned specifically
for clean test error, and transfers well even after removing the contrast and brightness parts of the
policy (as these corruptions appear in the benchmark) gives us hope that this is a step towards more
useful domain invariant features. The robustness problem is certainly far from solved, and our Fourier
analysis shows that the AutoAugment model is not strictly more robust than the baseline — there are
frequencies for which robustness is degraded rather than improved. Because of this, we anticipate
that robustness benchmarks will need to evolve over time as progress is made. These trade-offs are to
be expected and researchers should actively search for new blindspots induced by the methods they
introduce. As we grow in our understanding of these trade-offs we can design better benchmarks to
obtain a more comprehensive perspective on model robustness.

While data augmentation is perhaps the most effective method we currently have for the robustness
problem, it seems unlikely that data augmentation alone will provide a complete solution. Towards
that end it will be important to develop orthogonal methods — e.g. architectures with better inductive
biases or loss functions which when combined with data augmentation encourage extrapolation rather
than interpolation.
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Appendix

A Comparison of model robustness on all the corruptions in CIFAR-10-C
and ImageNet-C

We first define mCE, a quantity that we use to measure the robustness improvement of the models
compared to a baseline model. Consider a total of K corruptions, each with S severities. Let f be a
model, and Ek,s(f) be the model’s test error under the k-th corruption in the benchmark with severity
s, k = 1, . . . ,K, s = 1, . . . , S. Let f0 be the baseline model. We define mCE as the following
quantity:

mCE =
1

K

K∑
k=1

∑S
s=1Ek,s(f)∑S
s=1Ek,s(f0)

.

For our CIFAR-10-C results in Table 3, we use the naturally trained WideResNet model as the
baseline model. We present the full test accuracy results on CIFAR-10-C and ImageNet-C in Tables 3
and 4, respectively.

natural Gauss adversarial low pass high pass AutoAugment all-but-one
clean images 0.9626 0.9369 0.8725 0.9235 0.9378 0.9693 0.9546

brightness 0.9493 0.9244 0.8705 0.8996 0.9275 0.9635 0.9407
contrast 0.8225 0.5703 0.7700 0.6917 0.7806 0.9526 0.9015

defocus blur 0.8456 0.8371 0.8355 0.9063 0.7489 0.9229 0.9495
elastic transform 0.8600 0.8429 0.8175 0.8838 0.7870 0.8726 0.9221

fog 0.8997 0.7194 0.7263 0.8191 0.8811 0.9463 0.9061
Gaussian blur 0.7273 0.7907 0.8213 0.8929 0.6453 0.8840 0.9448

glass blur 0.5677 0.8046 0.8017 0.8770 0.4735 0.7621 0.8503
impulse noise 0.5428 0.8308 0.6881 0.5999 0.3619 0.8560 0.9016

jpeg compression 0.8009 0.9078 0.8541 0.8405 0.6395 0.8142 0.8807
motion blur 0.8079 0.7715 0.8045 0.8605 0.7206 0.8491 N/A

pixelate 0.7317 0.8983 0.8531 0.9156 0.6234 0.7066 0.9369
shot noise 0.6773 0.9233 0.8275 0.7447 0.5374 0.7834 0.9342

snow 0.8505 0.8835 0.8258 0.8688 0.7929 0.8939 N/A
speckle noise 0.7041 0.9171 0.8183 0.7502 0.5603 0.8125 0.9352

zoom blur 0.8046 0.8163 0.8279 0.8987 0.6514 0.8994 0.9412
average 0.7728 0.8292 0.8095 0.8299 0.6754 0.8613 N/A

mCE 1.000 0.9831 1.0825 0.8924 1.4449 0.6376 N/A

Table 3: Test accuracy on clean images and all the 15 corruptions in CIFAR-10-C. We compare 6 models: the
naturally trained model, Gaussian data augmentation with parameter 0.1, adversarially trained model, low pass
filter front end with bandwidth 15, high pass filter front end with bandwidth 31, and AutoAugment without
brightness and contrast. Every test accuracy for the corruptions is obtained by averaging over 5 severities.
The “average” row provides the average test accuracy over all the corruptions. We also present the results for
the all-but-one training. More specifically, for a given corruption type and severity, we train on all the other
corruptions at the same severity and evaluate on the given one. Due to some software dependency issue, we
were not able to implement two of the corruptions on the training data, therefore, we only report the all-but-one
results for 13 of the 15 corruptions. The test accuracy on clean images of all-but-one is averaged over all the
“all-but-one” models. Since there test accuracies are not achieved by a single model, we do not compare them
with other models, nor do we calculate the average corruption test accuracy and mCE.

B Fourier heat maps

In this section, we provide the Fourier heat maps for the intermediate layers of the model. We first
define the Fourier heat map of the output of a layer. Recall that the H-layer feedforward neural
network is a function that maps X to a vector z ∈ RK , known as the logits. Let Wh be the weights
and ρh be the possibly nonlinear activation in the h-th layer. We let

zh(X) = ρh(· · · ρ2(ρ1(X,W1),W2) · · · ,Wh) ∈ Rph

be the output of the h-th layer and thus the logits z(X) = zH(X). The model makes prediction by
choosing y = arg maxk z(X)[k]. Recall that for a validation image X , we can generate a perturbed
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natural Gauss low pass high pass AutoAugment
clean images 0.7623 0.7425 0.7082 0.7500 0.7725

brightness 0.6975 0.6687 0.6214 0.6923 0.7406
contrast 0.4449 0.3578 0.3473 0.4911 0.5656

defocus blur 0.5023 0.5294 0.5803 0.4414 0.5414
elastic transform 0.5637 0.6000 0.6211 0.5255 0.5846

fog 0.5715 0.4736 0.4031 0.6459 0.6534
frosted glass blur 0.4187 0.5217 0.6000 0.3460 0.5073
Gaussian noise 0.4492 0.6956 0.4897 0.3979 0.5798
impulse noise 0.4210 0.6785 0.4736 0.3737 0.5832

jpeg compression 0.6630 0.6997 0.5688 0.6388 0.6893
pixelate 0.5826 0.6173 0.6790 0.5237 0.6814

shot noise 0.4294 0.6820 0.4894 0.3837 0.5845
zoom blur 0.3663 0.3653 0.4177 0.2826 0.3398

average 0.5092 0.5741 0.5243 0.4785 0.5876
Table 4: Test accuracy on clean images and 12 corruptions in ImageNet-C. Instead of using the compressed
ImageNet-C images provided in [17], the models are evaluated on the corruptions applied in memory. Due to
some software dependency issue, we were not able to implement 3 of the 15 corruptions in memory, and thus we
only the report test accuracy for 12 corruptions. We compare 5 models: the naturally trained model, Gaussian
data augmentation with parameter 0.4, low pass filter front end with bandwidth 45, high pass filter front end
with bandwidth 223, and AutoAugmentation. Every test accuracy for the corruptions is obtained by averaging
over 5 severities.

image with Fourier basis noise, i.e., X̃i,j = X + rvUi,j . We then compute layers’ outputs zh(X)

and zh(X̃i,j), given the clean and perturbed images, respectively, and obtain ‖zh(X)− zh(X̃i,j)‖
as the model’s output change at the h-th layer. We conduct this procedure for n validation images
X(1), . . . , X(n), compute the average output change, and use this average as a measure of the model’s
stability to the Fourier basis noise. More specifically, we generate the Fourier heat map of the h-th
layer, denoted by Zh ∈ Rd1×d2 , as a matrix with entries Zh[i, j] = 1

n

∑n
`=1 ‖zh(X(`))− zh(X̃

(`)
i,j )‖.

In Figure 8, for 5 different models, we demonstrate the Fourier heat maps for the outputs of 5 layer
outputs in the WideResNet architecture: the output of the initial convolutional layer, the outputs of
the first, second, and third residual block, and the logits, and we also provide the test error heat map
in the last column. In Figure 9, we plot the test error Fourier heat map for two ImageNet models.

C Experiment detail

In Figure 1, we visualize the high pass filtered images using normalization. The specific method is as
follows. For an image X ∈ [0, 1]d1×d2 (for RGB images we can divide the pixel values by 255), we
compute the mean and standard deviation of all the pixels:

X̄ =
1

d1d2

∑
i,j

Xi,j

sX =

 1

d1d2

∑
i,j

(Xi,j − X̄)2,

1/2

and then the normalized image is defined as

Xnorm =
1

sX
(X − X̄).

In Figure 1, we visualize Xnorm using the imshow function in the matplotlib.pyplot python package.
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Figure 8: Model heat maps for naturally trained model, Gaussian data augmentation, adversarially trained
model, data augmentation with “fog noise” at severity 3 (additive noise that matches the Fourier statistics of
fog-3 corruption), and AutoAugment.
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Figure 9: Fourier heat map of ImageNet models with perturbation `2 norm 40. In a large area around the center
of the Fourier spectrum, the model has test error at least 95%. First row: heat map of the full Fourier spectrum
(224× 224); second row: heat map of the 63× 63 low frequency centered square in the Fourier spectrum.
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