
We appreciate reviewers’ comments. Below are our responses to each reviewer.1

Reviewer 1 1) About the motivation of Equation (4). Consider the case of exact updates of two canonical variables2

Φ and Ψ in Equation (3), i.e., ξt = ηt = 0. In the second line of Equation (3), it is easy to see that if Φt is equal to3

the canonical subspace Φ? = C
−1/2
xx U (i.e., ground truth) then Φ̃t+1 = C

−1/2
yy VΣ will span the canonical subspace4

Ψ? = C
−1/2
yy V. This basically means that if Φt is closer to the ground truth, Ψt+1 will be closer to its ground truth as5

well. This in turn suggests that replacing Φt with Φt+1 in the second line of Equation (3) may improve the convergence,6

because Φt+1 is supposed to be closer to the ground truth than Φt. This replacement makes Equation (3) have deviated7

from the standard power iteration from which Equation (3) is derived. Thus it is no longer necessary for us to stick8

to the joint orthogonalization of two canonical variables. Instead, sperate orthogonalizations are used. The proof of9

Theorem 3.1 justifies this change. We then can arrive at Equation (4) in the inexact case.10

2) About the lack of convergence analysis. We guess the reviewer referred to the tight convergence analysis of FastTALS,11

as TALS is globally convergent and the analysis is tight (i.e., rate matching the method) as stated in Theorem 3.1.12

FastTALS is locally convergent and the analysis is not tight as stated in Theorem 4.1. First, the global convergence13

actually is not an issue, because one can use our globally convergent TALS algorithm to warm start FastTALS so that14

two canonical variables are sufficiently close to the ground truth. On the tight analysis, this is indeed difficult. We15

tried to follow the work of accelerated stochastic power method by Xu et al., 2018. for a tight analysis. However, their16

analysis only considered the vector case k = 1 in the stochastic setting where there are special structures, e.g., the17

quantity inside the trace in Problem (1) is a scalar, that can be sufficiently utilized. In our case, this quantity is a matrix18

and many analysis tricks fail to be applied. The extensions from vector to block are often difficult for this class of19

problems. More difficulties arise in our case due to the coupling of update equations as well as approximation errors.20

We thus leave it to our future work at the current stage.21

3) We will follow the suggestion to improve the readability and move the description of the datasets back.22

Reviewer 2 1) View on the difference of performance. First, algorithms ALS-k (using block size k and adapted23

from ALS for vector setting k = 1) and CCALin-k (using block size k and adapted from CCALin for block setting)24

are introduced to show the necessity of using block size 2k in order for them to recover top-k canonical subspaces.25

Throughout our experiments, they indeed fail to learn anything because their ground truth do not cover the top-26

k canonical subspaces. Second, the reason why CCALin is worse than our algorithms (TALS, FastTALS, and27

AdaFastTALS) is that CCALin needs to use block size 2k and a post-processing step that randomly projects the resulting28

2k-dimensional subspaces onto k-dimensional subspaces.29

2) View as to whether the proposed algorithm would work in all cases or a set of them. One premise of our algorithms30

is that they work in the offline setting, i.e., the data pair (X,Y) is ready. This means that our algorithms may not work31

in streaming/online setting directly. However, following the idea of GenOja (Kush Bhatia et al. NeurIPS 2018), we may32

use one step of stochastic gradient descent as the least-squares solver. This might give rise to new algorithms, i.e., truly33

streaming versions of our algorithms, and is well worth investigating. We may also consider our algorithms in robust34

settings for future work.35

3) Applications to downstream tasks. This is a good suggestion for the extension of the present work.36

Reviewer 3 1) Simulation study. We initially planned simulation study. However, we soon found that there is no37

simple way to generate the simulated data (X,Y) using U and V. This is because we can only use the singular value38

decomposition (1nXX>)−1/2 1
nXY>(1nYY>)−1/2 = C

−1/2
xx CxyC

−1/2
yy = C = UΣV> to generate C from random39

matrices U, Σ, and V, but cannot recover X and Y from C. This may be the reason why there are no previous CCA40

works that did experiments on such simulated data (to the best of our knowledge). Nonetheless, we did experiments on a41

randomly generated data pair (X,Y) (the first two plots in the figure) for which the ground truth is obtained by matlab’s42

function svds. Contrastingly, the performance improvements of our algorithms on real data are more prominent.43

2) Convergence of competing methods. As mentioned in the first item of our response to Reviewer 2, ALS-k and44

CCALin-k fail to recover top-k canonical subspaces for CCA. Given sufficient running time, CCALin indeed can45

recover top-k canonical subspaces, as shown in the last two plots of the figure.46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (seconds)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

v

syn: k=2

ALS-k
CCALin-k
CCALin
TALS
FastTALS-T

0
=4

FastTALS-T
0
=6

AdaFastTALS

0 100 200 300 400 500 600 700 800 900 1000

Passes

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

v

syn: k=2

ALS-k
CCALin-k
CCALin
TALS
FastTALS-T

0
=4

FastTALS-T
0
=6

AdaFastTALS

0 5 10 15 20 25 30 35

time (seconds)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

v

mmill: k=4

ALS-k
CCALin-k
CCALin
TALS
FastTALS-T

0
=4

FastTALS-T
0
=6

AdaFastTALS

0 200 400 600 800 1000 1200 1400 1600 1800

Passes

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

si
n2

v

mmill: k=4

ALS-k
CCALin-k
CCALin
TALS
FastTALS-T

0
=4

FastTALS-T
0
=6

AdaFastTALS

