A Proof Sketch for Finding Second-order Stationary Points

In previous Section we only discuss some high-level proof ideas for finding a second-order
stationary point with high probability due to the space limit. In this appendix, we give a more detailed
proof sketch for finding a second-order stationary point with high probability (Theorem [2). The
complete proof of Theorem 2]is deferred to Appendix [C.1.1]

We divide the proof into two situations, i.e., large gradients and around saddle points. According
to (I6), a natural way to prove the convergence result is that the function value will decrease at
a desired rate with high probability. Note that the amount for function value decrease is at most

Af = flxo) = f*.

Large gradients: |V f(2)|| > Gihres

In this situation, due to the large gradients, it is sufficient to adjust the first-order analysis to show that
the function value will decrease a lot in an epoch. Concretely, we want to show the function value
decrease bound (T6) holds with high probability. It is not hard to see that the desired rate of function

~°, ~

value decrease is O(1g7,,..s) = O(<) per iteration (recall the parameters gipres = € and ) = O(1/L)
in our Theorem . Also note that we compute b + = = 2,/n stochastic gradients at each iteration
(recall m = b = +/n in our Theorem . Here we amortize the full gradient computation of the
beginning point of each epoch (n stochastic gradients) into each iteration in its epoch (i.e., n/m) for
simple presentation (we will analyze this more rigorous in the complete proof in Appendix [C.1.T).
Thus the number of stochastic gradient computation is at most O(\/ﬁﬁ/f =) = O( LAF";\M) for this
large gradients situation.

For the proof, to show the function value decrease bound (T6) holds with high probability, we need to
show that the bound for variance term (||vx — V f(z1)||%) holds with high probability. Note that the
estimator vy, defined in @]) is correlated with previous vy _1. Fortunately, let y;, := v, —V f(x1), then
it is not hard to see that {y;, } is a martingale vector sequence with respect to a filtration {.% } such
that E[yg|%r—1] = yr—1. Moreover, let {z; } denote the associated martingale difference sequence
with respect to the filtration { %}, i.e., zi, := yr — Elyg|-Fr—-1] = yx — yr—1 and E[z;|-Fr_1] = 0.
Thus to bound the variance term ||vy — V f(x)||? with high probability, it is sufficient to bound
the martingale sequence {yy }. This can be bounded with high probability by using the martingale
Azuma-Hoeffding inequality. Note that in order to apply Azuma-Hoeffding inequality, we first need
to use the Bernstein inequality to bound the associated difference sequence {z}. In sum, we will get
the high probability function value decrease bound by applying these two inequalities (see (@4) in

Appendix [C.T).

Note that (@4)) only guarantees function value decrease when the summation of gradients in this epoch
is large. However, in order to connect the guarantees between first situation (large gradients) and
second situation (around saddle points), we need to show guarantees that are related to the gradient
of the starting point of each epoch (see Line[3]of Algorithm[2). Similar to [15]], we achieve this by
stopping the epoch at a uniformly random point (see Line[T6|of Algorithm[2). We use the following
lemma to connect these two situations (large gradients and around saddle points):

Lemma 1 (Connection of Two Situations) For any epoch s, let x; be a point uniformly sampled

from this epoch {z }g‘:;iy)lm Moreover, let the step size n < 7% (where C' = O(log dfn) =

6(1) ) and the minibatch size b > m, there are two cases:

1. If at least half of points in this epoch have gradient norm no larger than ginhyes, then
IV f(xe)|| < ginres holds with probability at least 1/2;

2. Otherwise, we know f(zsm) — f(z¢) > %?‘"“ holds with probability at least 1/5.
Moreover, f(xy) < f(xsm) holds with high probability no matter which case happens.

Note that if Case 2 happens, the function value already decreases a lot in this epoch s (as we already
discussed at the beginning of this situation). Otherwise, Case 1 happens, we know the starting point
of the next epoch 2,41y, = 2 (i.e., Line of Algorithm , then we know ||V f(2(s11)m)|| =
[V f(24)]] < genres- Then we will start a super epoch (see Line [3|of Algorithm 2). This corresponds
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to the following second situation around saddle points. Note that if Amin (V2 f (2 (s41)m)) > —0, this
point (44 1)y, is already an (¢, §)-second-order stationary point (recall ggnres = € in our Theorem .

Around saddle points: ||V f(Z)| < ginres and Apin (V2 f(Z)) < —6 at the initial point Z of a super
epoch
In this situation, we want to show that the function value will decrease a lot in a super epoch (instead
of an epoch as in the first situation) with high probability by adding a random perturbation at the
initial point 2. To simplify the presentation, we use xg := T + £ to denote the starting point of the
super epoch after the perturbation, where £ uniformly ~ By (r) and the perturbation radius is r (see
Line[6]in Algorithm [2)). Following the classical widely used two-point analysis developed in [18],
we consider two coupled points g and x{, with wg := xg — x{, = rpe1, where r is a scalar and e;
denotes the smallest eigenvector direction of Hessian V2 f(Z). Then we get two coupled sequences
{x¢} and {z}} by running SSRGD update steps (Line [8H12|of Algorithm [2) with the same choice of
minibatches (i.e., ;’s in Line[I2) of Algorithm 2)) for a super epoch. We will show that at least one
of these two coupled sequences will decrease the function value a lot (escape the saddle point) with
high probability, i.e.,

3t < tinres, such that max{f(zo) — f(z¢), f(z() — F(2})} > 2 finres- (19)
Similar to the classical argument in [[18]], according to (I9), we know that in the random perturbation
ball, the stuck points can only be a short interval in the ey direction, i.e., at least one of two points in
the e; direction will escape the saddle point if their distance is larger than rg = C—\/g. Thus, we know
that the probability of the starting point zy = T 4 £ (where £ uniformly ~ B (7)) located in the stuck

region is less than ¢’ (see (30) in Appendix|C.I). By a union bound (z is not in a stuck region and
(T9) holds), with high probability, we have

Jt S tthres 7f(-7;0) - f(xt) Z thhres' (20)

Note that the initial point of this super epoch is Z before the perturbation (see Line[6] of Algorithm [2)),
thus we also need to show that the perturbation step xg = = + £ (where & uniformly ~ B(r)) does
not increase the function value a lot, i.e.,

Flao) < FE)+ (V@) w0~ ) + 5 o ~ 7

~ L
S f(.’L’) + Jthres ° T + 572

= f(Z) + fihres, 1)
where the last inequality holds since the initial point Z satisfying ||V f(Z)|| < gtnres and the pertur-

bation radius is r , and the last equality holds by letting the perturbation radius r small enough. By
combining (20) and (Z2T)), we obtain with high probability

f(/j‘:) - f(mt) = f(:f) - f(.’L'()) + f(l'()) - f(mt) > _fthres + 2fthres = fthres- (22)

Now, we can obtain the desired rate of function value decrease in this situation is f“—“ =

thres

~ 3,2 ~ ~ . -~
O(%) = O(f—;) per iteration (recall the parameters finres = O(5%/p?), tinres = O(1/(nd))

and ) = O(1/L) in our Theorem. Same as before, we compute b+ - = 21/n stochastic gradients
at each iteration (recall m = b = y/n in our Theorem . Thus the number of stochastic gradient
W)

computation is at most 5(\/5%) = O for this around saddle points situation.

Now, the remaining thing is to prove (I9). It can be proved by contradiction. Assume the contrary,
f(xo) — f(xt) < 2finres and f(z() — f(z}) < 2fthres- First, we show that if function value does
not decrease a lot, then all iteration points are not far from the starting point with high probability.

Lemma 2 (Localization) Let {z:} denote the sequence by running SSRGD update steps (Line|S
of Algorithm E} from xg. Moreover, let the step size n < ﬁ and minibatch size b > m, with

probability 1 — ¢, we have
4t(f(xo) — f(x

where C' = O(log %) =0(1).
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Then we will show that the stuck region is relatively small in the random perturbation ball, i.e., at
least one of z; and x} will go far away from their starting point xy and z{, with high probability.

Lemma 3 (Small Stuck Region) Ifthe initial point T satisfies —y := Amin(V2f(Z)) < —6, then let
{z:} and {x}} be two coupled sequences by running SSRGD update steps (Line|SH12|of Algorithm|[2))
with the same choice of minibatches (i.e., Ij,’s in Line fmm xo and xgy with wy = xo — x[ = €1,

where xg € Bz(r), xy € Bz(r), ro = % and e; denotes the smallest eigenvector direction of

(86f)

21o ~
Cyip¢'r 1 .
s = O(;5). the step size

)= 6(%), minibatch size b > m and the perturbation radius

Hessian V2 f (Z). Moreover, let the super epoch length tinres =

1 1
8 log( %ﬁ:ﬁr YL’ 4C2Llog tinres

7 < min (
r < %p, then with probability 1 — (, we have

)
3T < tinres, max{||zr — ol la7 — 20ll} = 7~ 24
1P

where Cy > 22% and Cy = O(log dt“%) =0(1).

Based on these two lemmas, we are ready to show that (T9) holds with high probability. Without loss
of generality, we assume ||lzr — ol = & in (24) (note that 23) holds for both {x:} and {x}}),
then by plugging it into (23) to obtain

\/4T(f(xo) —flar) o 6
C'L — Cip
C'L5?
_ > 27
nC’'L§>
T 8C3 % log(S2VE)
53
O
= 2fthr657

where the last inequality is due to T' < tnres and the first equality holds by letting C] =
8CF log(£24F)

= O(1) (recall the parameters fipres = O(63/p?) and y = O(1/L) in our The-
oremb Now, the high-level proof for this situation is finished.

In sum, the number of stochastic gradient computation is at most 9] (%@‘/ﬁ)

(Lp Af\/ﬁ)

for the large gradients
situation and is at most O

~ 2 ~

classical version where § = /pe [25[18]], then O(Lp ?f‘/ﬁ) = O(LAEQ‘/E), i.e., both situations get
the same stochastic gradient complexity. It also matches the convergence result for finding first-order
stationary points (see our Theorem|[I)) if we ignore the logarithmic factor.

for the around saddle points situation. Moreover, for the

Finally, we point out that there is an extra term 2 2%]0 ™ in Theorembeyond these two terms obtained
from the above two situations. The reason is that we amortize the full gradient computation of the
beginning point of each epoch (n stochastic gradients) into each iteration in its epoch (i.e., n/m)
for simple presentation. We will analyze this more rigorous in Appendix [C.I.T} which incurs the

2
term p?%. For the more general online problem (@), the high-level proofs are almost the same as
the finite-sum problem (T)). The difference is that we need to use more concentration bounds in the
detailed proofs since the full gradients are not available in online case.
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B Tools

In this appendix, we recall some classical concentration bounds for matrices and vectors.

Proposition 1 (Bernstein Inequality [31]) Consider a finite sequence { Zi.} of independent, random
matrices with dimension dy X ds. Assume that each random matrix satisfies

E[Z;] =0 and || Zk|| < R almost surely.

[ *Zk]H}-

Define

0'2 = max{

Then, for all t > 0,
—t2/2
{||ZZk.|>t} d1+d2)eXp(02+]ét/3>'

In our proof, we only need its special case vector version as follows, where z, = v, — E[vg].

Proposition 2 (Bernstein Inequality [31]) Consider a finite sequence {vy, } of independent, random
vectors with dimension d. Assume that each random matrix satisfies

llve — E[vg]|l < R almost surely.

= > Elvox — Efui]*
k

Define

Then, for all t > 0,
Z —12/2

Moreover, we also need the martingale concentration bounds, i.e., Azuma-Hoffding inequality. Now,
we will only write the vector version not repeat the more general matrix version.

Proposition 3 (Azuma-Hoeffding Inequality [17,30]) Consider a martingale vector sequence
{yr} with dimension d, and let {z1} denote the associated martingale difference sequence with
respect to a filtration { %}, i.e., zp = yr — Elyx|Fr—1] = yr — yp—1 and E[z|Fr_1] = 0.
Suppose that {z } satisfies

lzell = llyx — ye—1l] < ¢k almost surely. (25)
Then, for allt > 0,

Pl ol 21} < (@ e (55

However, the assumption that ||z;|| < ¢ in (23) with probability one sometime fails. Fortunately,
the Azuma-Hoffding inequality also holds with a slackness if ||z || < ¢i with high probability.

Proposition 4 (Azuma-Hoeffding Inequality with High Probability [7,29]) Consider a martin-
gale vector sequence {yy, } with dimension d, and let {1} denote the associated martingale differ-
ence sequence with respect to a filtration { F}, i.e., zi, := yr — Elyg| Fr—1] = yx — yx—1 and
E[zx|Fr—1] = 0. Suppose that {zy, } satisfies

lzill = llye — a1l < cx with high probability 1 — G.
Then, for all t > 0,

P{llye — yoll >} < <oz+1>exp(8Z )+Z<k.

zlz
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C

Missing Proofs

In this appendix, we provide the detailed proofs for Theorem [TH4]

C.1 Proofs for Finite-sum Problem

In this section, we provide the detailed proofs for finite-sum problem () (i.e., Theorem [TH2).

First, we obtain the relation between f(x;) and f(x;_1) as follows similar to [23, [13], where we let

Tt

=21 — e and Ty = 241 — NV f(24—1),

Flae) SF@1) + VI @), 0= o) + 5 e = el 26)

L
=f(zi—1) + (Vf(@io1) —vp—1, @ — 1) + (U1, T — 1) + EH% - $t71H2

1 L
2

=f(@e—1) + (Vf(@t-1) — ve—1, —M01-1) — (77 e — 21 |?

1 L
=f(x1—1) + IV (@eo1) = ve1l]* = n(Vf (1) = v1—1, Vf(20-1)) — (5 - 5)”% — 34
1 1 L
=f(x1—1) + IV f(ze-1) — vea|]® — 5(% = Ty, Ty—1 — Tt) — (; - §)H$t — x4
1 L
=f(x1—1) + IV f(@e—1) — vea || — (5 - 5)”% —za?
1
- %(H’It = Z|]? + (w1 — Ze|)® — oy — ft—1||2)
1 L
=) + IV o) = vl = GIVH DI = (5 = Pl =l @D

where (26) holds since f has L-Lipschitz continuous gradient (AssumptionT). Now, we bound the
variance term as follows, where we take expectations with the history:

Elllvi—1 — Vf(zi-1)]?]

IA

<

- E % Z (Vfilzi—1) = Vfi(xi-2)) +vi—2 — Vf(xt*l)HQ}

i€ly

=&[|; 3= (Vi) ~ Vilwri2) — (Vo) — Vi@2)) + s~ Vi) ]

=[5 32 ((hitoi-0) = Vitwes)) = (T wes) = 9 -2)| ] + Bllo-z = Vo)

i€l
(28)
SB[ (Vi) - Vhiwia)) — (TF i) - V)] + Ellons — V(i)
i€l
) (29)
SE[ S [Vhitw-0) - V)| ] + Bllos - Vi) (30)
i€l
L? )
T Elllzems = 2]?) + Ellloe—z = V f(ai—2) ). GD)

where (28) and (29) use the law of total expectation and E[||z1 +z2 + - - - + x4 ||?] = Zle E[||z:]?]
<

if 21, 29, ..., x) are independent and of mean zero, (30) uses the fact E[||x — Ex||?]

E[[|x[|*]. and

(3T) holds due to the gradient Lipschitz Assumption|[I]
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Note that for E[||v;—a — V f(z¢—2)|*] in (BT), we can reuse the same computation above. Thus we
can sum up (31)) from the beginning of this epoch sm to the point ¢ — 1,

t—1

L2
Effvi-1 = Vi@e-)IPl < = > Elley — 21 *] + Elogm — V(@m)IIP)  32)
j=sm+1
t—1
<5 2 Bl —aal?), (33)
j=sm+1

where (33) holds since we compute the full gradient at the beginning point of this epoch, i.e.,
Vsm = V f(Zsm) (see Line I of Algonthm' Now, we take expectations for (]T_7|) and then sum it up
from the beginning of this epoch s, i.e., iterations from sm to ¢, by plugging the variance (33) into
them to get:

t t

E[f(wt)]SE[f(fcsm)]—g > BV - (5 —5) 3 Ellay —aioalf]

j—sm+1 j=sm+1

Z Z [l — 2j-1f°]

k=sm+1 j=sm+1
t

smmmn—g > BV - (o —5) 3 Elley —ayoalf]

j=sm+1 j=sm+1
L3(t—1
NUGECL IR o RPN
j=sm+1
. t . L t
< E[f(zsm)] - 5 > E[IVFA-)IP - (% - 5) > Elllzy -z
j=sm+1 j=sm+1
J
+5 O Elley — il (34)
j=sm+1
t
<E[f@wm)l =3 > ElVHz;-0)I?), (35)
j=sm+1

where (34) holds if the minibatch size b > m (note that here ¢ < (s + 1)m), and (33) holds if the
step size n < .

Proof of Theorem Let b = m = +/n and step size n < \QL , then (33) holds. Now, the proof is

directly obtained by summing up (33)) for all epochs 0 < s < S as follows:
nd
E[f(zr)] < E[f( 52 IV f(z;-1)11%]

B[V ()] < VEVI@T] < W])T‘f)z G6)

2(f(wo)—f") _

ne?
O(%) Note that the total number of computation of stochastic gradients equals to

L (o) — 1)y

€2

where (36) holds by choosing 2 uniformly from {@1—1}iepr) and letting Sm < T' =

Sn+ Smb < [%

]n+Tbg (%—I—l)n—kT\/ﬁ:n—i—ZT\f:O(n—F

O
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C.1.1 Proof of Theorem 2]

For proving the second-order guarantee, we divide the proof into two situations. The first situation
(large gradients) is almost the same as the above arguments for first-order guarantee, where the
function value will decrease a lot since the gradients are large (see (33)). For the second situation
(around saddle points), we will show that the function value can also decrease a lot by adding a
random perturbation. The reason is that saddle points are usually unstable and the stuck region is
relatively small in a random perturbation ball.

Large Gradients: First, we need a high probability bound for the variance term instead of the
expectation one (33). Then we use it to get a high probability bound of (33) for function value
decrease. Recall that v, = % Zielb (Vfi (zx) =V (xkfl)) +vi_1 (see Line g of Algorithm, we
let yx := v — V f(xk) and 2y := Y —yx—1. It is not hard to verify that {yy. } is a martingale sequence
and {zy} is the associated martingale difference sequence. In order to apply the Azuma-Hoeffding
inequalities to get a high probability bound, we first need to bound the difference sequence {zy }. We
use the Bernstein inequality to bound the differences as follows.

o= e~ Yt =k~ V) — (s — Vi)
- % > (Viilawr) = Vi(wr-1)) +vk-1 — Vf(@x) = (0h-1 — V(2-1))

i€l
= % Z (Vf1($k) —Viilzp_1) — (Vf(zr) — vf@k—l)))- (37)
i€l
We define u; := V fi(zr) — Vfi(rr—1) — (Vf(zr) — Vf(21_1)), and then we have
luill = |V fixr) = V filan—1) — (VF(zr) = V(ar-1)| < 2)lox —zp-all,  38)

where the last inequality holds due to the gradient Lipschitz Assumption [I| Then, consider the
variance term o2

0* = 3 Eljuil?

i€l
=Y ElIVfilxr) = Vfilzn-1) = (V@) = Vf(xe-1)]
iely
< D E(|Vilar) = Vilee-)|]
i€y
S bLQHLEk - xk_1||2, (39)

where the first inequality uses the fact E[||z — Ez|?] < E[||z]|?], and the last inequality uses the
gradient Lipschitz Assumption[I} According to (38) and (39), we can bound the difference z;, by
Bernstein inequality (Proposition|2)) as

—t2/2 )

P{szH > %} < (d+1)exp (m

(d+1)e ( /2 )
= X
PAbL2|lzr — 25 1|2 + 2llen — 2r1|t/3
= Ck»

where the last equality holds by letting ¢t = CL\/b||x), — zx_1]|, where C' = O(log Cik) = O(1).

Now, we have a high probability bound for the difference sequence {2}, i.e.,

CLH:Ek — :L'k,1||
Vb

Now, we are ready to get a high probability bound for our original variance term by using the

martingale Azuma-Hoeffding inequality. Consider in a specifical epoch s, i.e, iterations ¢ from sm+1
to current sm + k, where k is less than m (note that we only need to consider the current epoch since

lzk] < with probability 1 — (k. (40)
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each epoch we start with y = 0), we use a union bound for the difference sequence {z;} by letting
Cr = ¢/m such that

CLHJ)t — Tt—-1 ||

Vb

Then according to Azuma-Hoeffding inequality (Proposition and noting that (;, = ¢/m, we have

ll2ell < e = forall sm + 1 <t < sm + k with probability 1 —¢.  (41)

—B?
IP’{Hysm+k = B} (d+1)exp (T) +¢
8 Zt:stn+1 cf
= 2,
C'L szﬁ»k Ti—Tp_1 2
where the last equality holds by letting 5 = \/8 me;irl ci log C \/Zt_mt/}j o o] )

where C' = O(C', /log %) = O(1). Recall that y, := v, — V.f(x)) and at the beginning point of
this epoch ys,, = 0 due to vy, = Vf(2gm) (see Linelof Algorithm , thus we have

C'Ly /S Nz — 512
Vb

o1 = V(2| = llyeall <

with probability 1 — 2¢, where ¢ belongs to [sm + 1, (s + 1)m)].

(42)

Now, we use this high probability version {2)) instead of the expectation one (33) to obtain the high
probability bound for function value decrease (see (33))). We sum up from the beginning of this
epoch s, i.e., iterations from sm to ¢, by plugging (42) into them to get:

t t

n 1 L
f(@e) < f(zsm) — 3 > VA=) - (2* - 5) > ey — P
j=sm+1 n j=sm+1
n n tz_f C”L? Z] sm—+1 ij - ZCj—1||2
2 b
k=sm+1
- 1L t
< f(@sm) — B SV - (2* - 5) > ey =P
j=sm+1 77 j=sm+1

C/2L2
+ 1 Z Z e — 2512

k=sm+1 j=sm+1

t t
n 1 L
< f@sm) = 5 SV - (% - 5) >l =zl
Jj=sm+1 j=sm+1

t
nC?L2(t — 1 — sm)
+ 5 >y =l

j=sm+1

: 1 L nC?Lr,
< f(wsm) — g Z IV f(x;-)l* = (2* -5 L B ) Z ;= x5 1]* (43)

j=sm+1 n j=sm+1
t
n 2
< fleam) =5 X0 IVl (44)
Jj=sm+1
where (@3) holds if the minibatch size b > m (note that here ¢ < (s + 1)m), and {@4) holds if the
step size n < VASTHSL,

Note that (@) only guarantees function value decrease when the summation of gradients in this epoch
is large. However, in order to connect the guarantees between first situation (large gradients) and
second situation (around saddle points), we need to show guarantees that are related to the gradient
of the starting point of each epoch (see Line [3]of Algorithm 2). Similar to [T3], we achieve this by
stopping the epoch at a uniformly random point (see Line[I6]of Algorithm 2).

Now we recall Lemma [I|to connect these two situations (large gradients and around saddle points):
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Lemmal [T] (Connection of Two Situations) For any epoch s, let z; be a point uniformly sampled
from this epoch {gcj}(S+1 . Moreover, let the step size n < Y=5—1=— 40'” =L (where C" = O(log %”) =

j=sm

( )) and the minibatch size b > m, there are two cases:

1. If at least half of points in this epoch have gradient norm no larger than ginyes, then
IV f(z:)]] < gehres holds with probability at least 1/2;

2. Otherwise, we know f(xsm) — f(x¢) > %ﬁhms holds with probability at least 1/5.

Moreover, f(xy) < f(xsm) holds with high probability no matter which case happens.

Proof of Lemmal I} There are two cases in this epoch:

1. If at least half of points of in this epoch {z;} jsti)lm have gradient norm no larger than gipyes,

then it is easy to see that a uniformly sampled point x; has gradient norm ||V f (z¢)|| < gthres
with probability at least 1/2.

2. Otherwise, at least half of points have gradient norm larger than g.es. Then, as

long as the sampled point z; falls into the last quarter of {J;J}]Sti,{m, we know
Zj‘:smﬂ IVf(zj—1)|? > %. This holds with probability at least 1/4 since

x¢ is uniformly sampled. Then combining with @), ie., f(xsm) — flay) >
3Z§-:sm+1 |V f(x;-1)||?, we obtain the function value decrease f(zsm) — f(2) >

%?‘“CS. Note that (44) holds with high probability if we choose the minibatch size

b > m and the step size n < ¥ 42002,2+L L By a union bound, the function value decrease

f(@om) — flay) > %?‘“es with probability at least 1/5.

Again according to @4), f(z:) < f(zsm) always holds with high probability. O

Note that if Case 2 happens, the function value already decreases a lot in this epoch s (corresponding
to the first situation large gradients). Otherwise, Case 1 happens, we know the starting point of
the next epoch z(s; 1), = @ (i.e., Line [19] of Algorithm [2), then we know ||V f(z(si1)m)| =
IVf(z)]| < gthres- Then we will start a super epoch (correspondmg to the second situation
around saddle points). Note that if Amin(vzf(x(5+1)m)) > —0, this point (s 1), is already an
(e, 0)-second-order stationary point (recall that g¢pres = € in our Theorem .

Around Saddle Points ||V f(Z)|| < gihres and Apin(V2f(Z)) < —6: In this situation, we will
show that the function value decreases a lot in a super epoch (instead of an epoch as in the first
situation) with high probability by adding a random perturbation at the initial point z. To simplify the
presentation, we use g := Z + & to denote the starting point of the super epoch after the perturbation,
where £ uniformly ~ By (r) and the perturbation radius is r (see Line E]in Algorithm . Following
the classical widely used two-point analysis developed in [18]], we consider two coupled points xg
and z{, with wg := g — x, = r9e1, where r( is a scalar and e; denotes the smallest eigenvector
direction of Hessian H := V2 f(). Then we get two coupled sequences {z;} and {z}} by running
SSRGD update steps (Line of Algorithm[2) with the same choice of minibatches (i.e., I},’s
in Line [T2]of Algorithm [2) for a super epoch. We will show that at least one of these two coupled
sequences will decrease the function value a lot (escape the saddle point), i.e.,

3t S tthrcsv such that max{f(x()) - f(xt), f(xé)) - f(l'g)} 2 2fthrcs' (45)

We will prove {@3)) by contradiction. Assume the contrary, f(zo) — f(2t) < 2fthres and f(x() —
f(z}) < 2finres- First, we show that if function value does not decrease a lot, then all iteration points
are not far from the starting point with high probability. Then we will show that the stuck region is
relatively small in the random perturbation ball, i.e., at least one of x; and x} will go far away from
their starting point ;¢ and z(, with high probability. Thus there is a contradiction. We recall these two
lemmas here and their proofs are deferred to the end of this section.

Lemma 2] (Localization) Let {x;} denote the sequence by running SSRGD update steps (Line|§
of Algorithm @fmm xo. Moreover, let the step size n < 26‘% and minibatch size b > m, with
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probability 1 — (, we have

where C' = O(log %) =0(1).

Lemma 3| (Small Stuck Region) [fthe initial point T satisfies —y := Amin(V2f(Z)) < —0, then let

{z+} and {x}} be two coupled sequences by running SSRGD update steps (Line|8H12| of Algorithm[2)

with the same choice of minibatches (i.e., I,’s in Line(12)) from x¢ and x{, with wy := 29—z = roeq,

where xg € Bz(r), xy € Bz(r), ro = % and e; denotes the smallest eigenvector direction of

2 lOg(C?Tﬁ _ 6
7

1 1 _ Nl .. . > . .
STos( 21" TR Tog tthres) = O(7 ), minibatch size b > m and the perturbation radius

Hessian V2 f(Z). Moreover; let the super epoch length tip es = (77—15) the step size

ngmin(

r< C%p’ then with probability 1 — (, we have

4]
AT < tinres, max{|lzr — a0, |27 — ap|[} > i (47)

where Cy > 22% and Cy = O(log dt‘%) =0(1).

Based on these two lemmas, we are ready to show that @3] holds with high probability. Without loss
of generality, we assume ||z — xq| > %ﬂ in (@7) (note that @6) holds for both {x,} and {z}}),
then plugging it into (@6) to obtain
\/4T(f($o) — f(zr)) N i
C'L — Cip
1T 82
S C'Lé
T A4CEp2T
nC'Lé§>
T 8C2p? log($2E)
53
~ O
= 2fthresv

f(zo) — f(z7)

(48)

8C2 log(B8Yd )

where the last inequality is due to 7' < typ,es and (@8)) holds by letting C = nC,CL”C'T . Thus,

we already prove that at least one of sequences {x;} and {x}} escapes the saddle point with high
probability, i.e.,

ar S tthres ,max{f(a:o) - f(xT)a f(x6) - f(‘r/T)} 2 2fthre3a (49)
if their starting points xo and z{, satisfying wo := zg — 2, = roe1, where ro = % and e; denotes

the smallest eigenvector direction of Hessian H := V2 f(Z). Similar to the classical argument in
[L8], we know that in the random perturbation ball, the stuck points can only be a short interval in the
e direction, i.e., at least one of two points in the e; direction will escape the saddle point if their

distance is larger than ry = %. Thus, we know that the probability of the starting point xg = & + £
(where £ uniformly ~ By (r)) located in the stuck region is less than

roVa—1(r) _ Tor(g;r 1) < o (@+1>1/2§T0\/E
Va(r) VArD(4 + 1) — Var'2 r

where V;(r) denotes the volume of a Euclidean ball with radius r in d dimension, and the first
inequality holds due to Gautschi’s inequality. By a union bound for (50) and @8) (holds with high
probability if z( is not in a stuck region), we know

f(l'()) - f(mT) 2 2fthres -

=, (50)

53

o (51)
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with high probability. Note that the initial point of this super epoch is = before the perturbation
(see Line@of Algorithm , thus we need to show that the perturbation step xg =  + & (where &
uniformly ~ B(r)) does not increase the function value a lot, i.e.,

F(@o) < F(@) + (V@) 70~ 7) + ¢ llwo 7
- ~ . L ~
< 1@+ IV @ lllzo — 7 + 5 o — 7|2
< f(g) + Gthres - T+ gTQ
53
2C1p?
= f(f) =+ fthres: (52)

< f(@)+

53 53 }
P2 ginres * \/ 2C1p2LJ"

where the last inequality holds by letting the perturbation radius 7 < min{ ;=
1

Now we combine with (51)) and (52) to obtain with high probability
3

f(/‘f) - f(xT) = f(/jf) - f(-TO) + f(l'()) - f(xT) 2 _fthres + 2fthres = W (53)

Thus we have finished the proof for the second situation (around saddle points), i.e., we show that the
§3 1. 2log( &2 \?r )
50757) inasuper epoch (recall that T < fypres = ——+5")
1P n

by adding a random perturbation § ~ By (r) at the initial point Z.

function value decrease a 1ot (finres =

Combing these two situations (large gradients and around saddle points) to prove Theorem 2}
First, we recall Theorem 2 here since we want to recall the parameter setting.

Theorem 2| Under Assumption[I|and2|(i.e. (3) and @), let Af := f(xo) — [*, where x is the
initial point and f* is the optimal value of f. By letting step size n = O(%), epoch length m = \/n,
minibatch size b = \/n, perturbation radius r = 6( min(ﬁ %)), threshold gradient gihres = €,

pZe’
threshold function value fipres = 6( 2—;) and super epoch length tipres = 6( %) SSRGD will at
least once get to an (e, 0)-second-order stationary point with high probability using
~LAf\yn  Lp’Afyn 2Afn
0( J;f+p4ff+p f)
€ 0 03
stochastic gradients for nonconvex finite-sum problem ().

Proof of Theorem 2} Now, we prove this theorem by distinguishing the epochs into three types as
follows:

1. Type-1 useful epoch: If at least half of points in this epoch have gradient norm larger than
Gehres (Case 2 of Lemmal[T);

2. Wasted epoch: If at least half of points in this epoch have gradient norm no larger than
Jthres and the starting point of the next epoch has gradient norm larger than gipes (it means
that this epoch does not guarantee decreasing the function value a lot as the large gradients
situation, also it cannot connect to the second super epoch situation since the starting point
of the next epoch has gradient norm larger than ggpyres);

3. Type-2 useful super epoch: If at least half of points in this epoch have gradient norm no
larger than gy;,es and the starting point of the next epoch (here we denote this point as
¥) has gradient norm no larger than ginres (i-€., || Vf(Z)|| < gthres) (Case 1 of Lemmal|l),
according to Line [3] of Algorithm [2] we will start a super epoch. So here we denote this
epoch along with its following super epoch as a type-2 useful super epoch.

First, it is easy to see that the probability of a wasted epoch happened is less than 1/2 due to the
random stop (see Case 1 of Lemma|I]and Line[T6]of Algorithm [2) and different wasted epoch are
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independent. Thus, with high probability, there are at most O(1) wasted epochs happened before
a type-1 useful epoch or type-2 useful super epoch. Now, we use /N and N to denote the number
of type-1 useful epochs and type-2 useful super epochs that the algorithm is needed. Recall that
Af = f(xo) — f*, where xq is the initial point and f* is the optimal value of f. Also recall that the
function value always does not increase with high probability (see Lemma T}

For type-1 useful epoch, according to Case 2 of Lemmal[I] we know that the function value decreases

at least % with probability at least 1/5. Using a standard concentration, we know that with

2
high probability N; type-1 useful epochs will decrease the function value at least %, note
8041

- ngchres

that the function value can decrease at most A f. So %(S“Nl < Af, we get Ny

For type-2 useful super epoch, first we know that the starting point of the super epoch z has gradient
norm ||V f(Z)|| < gthres- Now if )\mm(sz(x)) > —4, then 7 is already a (¢, d)-second-order
stationary point. Otherwise, ||V f(Z)|| < gihres and Amin (V2 f(Z)) < =4, this is exactly our second
situation (around saddle points). According to (53], we know that the the function value decrease

(f(x)—f (xT)) is at least fipres = 23,3 > with high probability. Similar to type-1 useful epoch, we

know N, < S1e2.8f by a union bound (so we change C] to C{, anyway we also have C7’ 6(1)).

Now, we are ready to compute the convergence results to finish the proof for Theorem 2]

Ny(O(W)n -+ -+ mb) + No(O(1)n + [“22 4 tpyeeh)

S nmgghrei 53 ( - %))
LAf\f LPQAff p*Afn
<0(=; ) 54

O

Now, the only remaining thing is to prove Lemma 2]and 3] We provide these two proofs as follows.

Lemma 2] (Localization) Let {x:} denote the sequence by running SSRGD update steps (Line|§
of Algorithm @) from xy. Moreover, let the step size n < ﬁ and minibatch size b > m, with

probability 1 — (, we have
4t(f(zg) — f(x
th xo” < \/ (f( OC)”[ f( t))v

where C' = O(log %) =0(1).
Proof of Lemma 2] First, we assume the variance bound (42) holds for all0 < j <¢—1(thisis

true with high probability using a union bound by letting C’ = O(log L)). Then, according to (#3),
we know for any 7 < ¢ in some epoch s

a 1 L nC?L2, <
f(zr) < f(@sm) — g > V)l - (% S D 2

) 2 2 .

j=sm+1 j=sm+1

1L q0”L% )
Sf(xsm)*(%*gf 5 ) ' Z 2 — 2l

j=sm+1
C'L <
< fam) == D Nzl (55)
j=sm+1

where the last inequality holds since the step size n < 5 C, 7 and assuming C” > 1. Now, we sum up
(53) for all epochs before iteration ¢,

LY
fla) < f Z lzj — 1.
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Then, the proof is finished as

t

t 1 — )
ot = ol < 3 ke =l < | 032 ey = a5 SN EEDEIE]

Jj=1

O

Lemma 3| (Small Stuck Region) [fthe initial point T satisfies —y := Amin(V2f(Z)) < —0, then let
{a} and {x}} be two coupled sequences by running SSRGD update steps (Line|SHI2| of Algorithm|2)
with the same choice of minibatches (i.e., Ij)’s in Line from xo and x(y with wy = xo — x[ = €1,

’
where xg € Bz(r), xy € Bz(r), ro = % and e; denotes the smallest eigenvector direction of
. 2 ~ ]Og( ;Sgr ~/ 1 .
Hessian V* f (). Moreover, let the super epoch length tinres = — = O(%)’ the step size

1 1
8 log( 7531‘1‘\??7. )L 7 4C2 L 1og tinres

7 < min ( ) = 6(%) minibatch size b > m and the perturbation radius
r< %ﬁ, then with probability 1 — (, we have

)
T < tinwes, max{[lor — woll, oy — g} = Z—,
1P

where Cy > 22% and Cy = O(log %) =0(1).

Proof of Lemma[3} We prove this lemma by contradiction. Assume the contrary,

) 0
YVt < tenres ||t — To|| < =— and ||z} — || < 56
< fanes lfre = 0]l < g and |l — ) < (56)
We will show that the distance between these two coupled sequences w; := x; — x} will grow

exponentially since they have a gap in the e; direction at the beginning, i.e., wg := z¢ — {, = roer,
where ry = % and e; denotes the smallest eigenvector direction of Hessian H := V2 f (). However,
[well = lze = 24l < oo = wol| + llwo — Zl| + [l — 26]| + [l — Z[| < 2r + 2% according to
(56) and the perturbation radius r. It is not hard to see that the exponential increase will break this
upper bound, thus we get a contradiction.

In the following, we prove the exponential increase of w; by induction. First, we need the expression
of wy (recall that x; = x;,_; — nuv;— (see Line[TT|of Algorithm [2)):

wy = wy—1 — (Vi1 — Vi)
w1 = N(Vf(xi-1) = Vf(ai_1) + o1 = V() — vy + V(ai_y))

1
—wir = | V(e 0 )b - i)
0

+ve1 = V(@) —v;_q + Vf@i—l))

= (I —nH)wi—1 — n(A¢—1wi—1 + y4—1)
t—1

= (I —nH)'wg —n Z(I —H) T (Arwr + ) (57
=0

where A, := [[(V2f(z} + 0(z, — a.)) — H)d and y, := v, — Vf(z,) — v, + Vf(z]). Note
that the first term of is in the e; direction and is exponential with respect to ¢, i.e., (1 +77y)irpeq,
where —v 1= Anin(H) = Anin(V2f(Z)) < —4. To prove the exponential increase of wy, it is
sufficient to show that the first term of (57)) will dominate the second term. We inductively prove the
following two bounds

Lo +my)'ro < Jlwell < 51+ 7)o

2. lyell < myL(1+ny)tro
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First, check the base case t = 0, ||wo|| = ||roe1|| = ro and ||yo|| = ||[vo— V f(z0) — vy + V f(zp)] =
IV f(xo) — Vf(xo) — Vf(z() + Vf(z5)] = 0. Assume they hold for all 7 < ¢ — 1, we now prove
they hold for ¢ one by one. For Bound 1, it is enough to show the second term of (57) is dominated
by half of the first term.

t—1 t—1
I (T = ) ™ T (Agw) || < n Y (L4 79) T Al |

7=0 7=0
3
< gn(+m)’ TOZHA [ (58)
7=0
3 x
< gn(+m)’ roZpD (59)
7=0
< §n(1 - m)t—lrot,o(i +7) (60)
2 Cip
3 t—1
< —=not(L+m7) "o 61
Ch
6log 85‘@
S (ClpC 7’) (1 + ,,,],_Y)tflro (62)
Cq
1
< ;1 (+m)'ro, (63)
where (38) uses the induction for w, with 7 < ¢ — 1, (59) uses the definition D¥ := max{||z, —
z||, ||z% — Z||}, (60) follows from |z, — Z|| < ||zt — zo|| + ||zo — Z|| = 5 + r due to (56) and
the perturbation radius r, (61)) holds by letting the perturbation radius r < (]6_7[) holds since
2log( 2YL)

t < tihres =

, and (63) holds by letting C; > 24log(88Yd).

no p¢'r

t—1 t—1

In> (T =nH) " Tyl <0 > (14 9y) Tyl
=0 7=0
t—1

<Y (A4 Ty L+ 7)o (64)
7=0

=y Lt(1+ )" 'ro

2 log( S0VL )
< L S (L) (65)
8dvd -
< 2log( = )L +m) o (66)
1
< 7+ m)'ro, (67)
2log(csl‘sp‘£§ )

where (64) uses the induction for y, with 7 < ¢ — 1, (63) holds since ¢ < tipres = s ,
@) holds i > 6 (reca]] =7 = Amin(H) = Amin(V2f(Z)) < —9), and (67) holds by letting

77 — 8log(2

Cl/JC’ )L

Combining (63 and (67), we proved the second term of is dominated by half of the first term.
Note that the first term of (37) is ||(1 — nH)*wo|| = (1 + ny)'ro. Thus, we have

1 3
S+ 7)o < Jlwg| < S+ 7)o (68)
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Now, the remaining thing is to prove the second bound ||y;|| < nyL(1 + ny)tro. First, we write the
concrete expression of ;:

ye = v — Vf(ze) — vy + V()
- % D (Vfilws) = Vfilwe-1)) +ver = Vf(x2)

€1y
S (Vi) ~ VAila) vl + V() (©9)
i€ly
= % Z (Vfi(ze) = Vi(zi—1)) + Vf(zi-1) — V f(w¢)
i€l
1

=D (Vfi}) = Vfilzi_1)) = V(zi_y) + V[(z})
i€l
+vio1 = V(1) — vy + V(zp_y)
1
=3 D (Viilwr) = Vila}) = Vilw) + V(@) _,))

i€l

— (Vf(x) = V() = Vf(@-1) + V(@i 1)) + yer,
where (69) due to the definition of the estimator v; (see Line[12]of Algorithm[2)). We further define
the difference z; := y; — y;—1. It is not hard to verify that {y; } is a martingale sequence and {z;} is
the associated martingale difference sequence. We will apply the Azuma-Hoeffding inequalities to
get an upper bound for ||y;|| and then we prove ||y || < nyL(1 + n7y)'ro based on that upper bound.
In order to apply the Azuma-Hoeffding inequalities for martingale sequence ||y;||, we first need to

bound the difference sequence {z;}. We use the Bernstein inequality to bound the differences as
follows.

f=y— s = 3 3 (Vi) — Vilat) = Ve ) + Vi)

i€l

— (Vf(xe) = Vf(ay) = V(1) + V(i)
= 2 3 (Vi) ~ Vilah) — (Vi) — Vi)

i€l

— (Vi) = V@) + (V@) — Vf(x;,l))). (70)

We define u; = (Vfi(z) — Vfi(z})) — (Vfi(w—1) — Vi(zi_y)) — (Vf(@e) — Vf(a})) +
(Vf(zi-1) — Vf(z}_,)), and then we have

luill = I[(V fi(ze) = Vfi(x})) — (VSi(ze1) — Vi(z;_4))
— (V) = V() + (Vf(@e—1) = V()]

1 1
<| / V2 (2 + 0z, — o)) d0(x, — o)) — / V2 (%), + 0(ze1 — o)1) d0(@ 1 — 7))
0 0

1 1
~ [ Ot 4 e~ )b )+ [ VRl 0 )b i)
0

0
= || Hw + Aiwt — (Hiwg—1 + Aiflwtfl) — (Hw; + Aywy) + (Hwe—1 + Ap—qwe—1)||
(71)
< (Hi = H)(we — w1 ||+ 1(A] = Ap)w; — (Al — Ar1)wy 1|
< 2L||wy — wi—1| + 2pD¢ |we || + 2p Dy |we—1 ], (72)

where (71) holds since we define A; := fol (V2f(z}+0(xy —x})) —H)dO and AL := fol (V2 fi(zh+
0(xy — x})) — H;)d0, and the last inequality holds due to the gradient Lipschitz Assumption [1|and
Hessian Lipschitz Assumption [2| (recall DY := max{||x: — Z||, ||z} — Z||}). Then, consider the
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variance term o2

0t = 3 Bl

i€l
< Y E[[(Vfilwe) = VSi(at)) = (Vfilze1) = VSilaiy) ]
i€l
= > E[|Hiwe + Afwy — (w1 + Af_yw,1)|%]
i€l
< b(L||wy — we—1 || + pDf |lwe|| + pDi_ [lwe—1])?, (73)

where the first inequality uses the fact E[||z — Ez|?] < E[||z]|?], and the last inequality uses the
gradient Lipschitz Assumption [I|and Hessian Lipschitz Assumption[2] According to (72) and (73),
we can bound the difference z; by Bernstein inequality (Proposition [2)) as (where R = 2L||w; —
we—1]| +2pDf|lwe]| +2p D7y [Jwe—1 ] and 02 = b(L||we — wi—1[| + pDf we| + pDi_y [Jwe-11)*)
—a?/2

P{Hth > %} < (d+1)exp (m

):Cka

where the last equality holds by letting a = C4vV/b(L||w; — wi_1|| + pDF ||ws|| + pD?F_; |Jwi_1]])s
where Cy = O(log C%) =0(1).
Now, we have a high probability bound for the difference sequence {2}, i.e.,

Ca(Llwe — wea || + pDF lwell + pDF_ [lwi—1|)
Vb

with probability 1 — (k.
(714)

2kl < cx =

Now, we are ready to get an upper bound for y, by using the martingale Azuma-Hoeffding inequality.
Note that we only need to consider the current epoch that contains the iteration ¢ since each epoch we
start with y = 0. Let s denote the current epoch, i.e, iterations from sm + 1 to current ¢, where ¢
is no larger than (s + 1)m. According to Azuma-Hoeffding inequality (Proposition and letting
¢k = ¢/m, we have

,52
]P){Hyf - yemH > 6} < (dJr 1) exp (tiz) +¢
8 k=sm-+1 ck
= 2¢,
where the last equality holds by letting 23 = \/ 8 411G log% =
C34/>f— s (Dllwe—wi—1 | +pDF [lwe | +pDF_ [we—1]])? ~
3\/ k +1 1\/5'0 L L ! , wWhere (35 = 0(04\/10?%) = O(l)

Recall that y;, := vy — V f(zx) — vj, + V f(),) and at the beginning point of this epoch ys, = 0
due to Vg, = Vf(zsm) and v, = Vf(2),,) (see Lineof Algorithm , thus we have

Cs \/Zi=sm+1(Lllwt —wi—1|| + pD¥||we|| + pDF_; [|we—1]])?
Nyl = llye — yomll < 7 (75)

with probability 1 — 2, where ¢ belongs to [sm + 1, (s + 1)m]. Note that we can further relax the
parameter C in (73) to Co = O(log dt‘%) (see ([76)) for making sure the above arguments hold
with probability 1 —  for all ¢t < #iy5 by using a union bound for (;’s:

Co \/chzsmH(Lllwt — wi—1|| + pD¥llwe| + pDi_y [|we-1]])?
lyell = llye = yomll < 7 . (76)

Now, we will show how to bound the right-hand-side of (]7_3[) to finish the proof, i.e., prove the
remaining second bound ||y:|| < nyL(1 + n7y)tro.
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First, we show that the last two terms in the right-hand-side of (76) can be bounded as

. . § 3 § 3 _
pD;lwill + pDisllwi—sll < p(5— +7) 50 +17)'r0 + p(F5— +7) 51 +17)"'ro

Clp

)
< 3p(6’71p +7)(L+17)"ro

Clp

< %6(1 +n7)*ro,

(77)

where the first 1nequahty follows from the induction of [lw;_1|| < 2(1 + 77y)'~!ro and the already
proved [|w; | < 2(1 + n7y)'ro in (68), and the last inequality holds by letting the perturbation radius

T S Cilp
Now, we show that the first term of right-hand-side of (76) can be bounded as
Lljwy = we |

t—2

= L|| = nH(I = 1) wo — 0 > HI — nH) "> (Arwr +yr) +1(Ar 1w+ yi1) |

7=0
t—2

< Iny(L+09) o + Ll > oM —nH)' > (Arws + o) || + Lln(A1wey + ye-a)|

7=0
t—2
< Ly (L)' ro o Lnf| Do (1 = mp) =2 77||| mmax [ Ak + g
=0 ==
+ Lnp( e + ) gl + Ll
Cip
< Lpy(1+ )"~ T0+LUZ 1 Akwr + gl

- T O<k<

]
+ Lnp(go ) el + Ll |

< Liy(1 "“lry + Lnl A
< Lipy(L )™ "o + Liplogt | max | Agwy + i

1)
+ an(Cip + 7”) lwe—1]| + Ln||ye—1|
< Lyy(L4nv)"'ro + Lnlogt o, | Axwr + yil|

5 3 _ _
+an(a+ )2(1+m)t Yro 4+ LymyL(1 4+ nv)" " 'ro

- 5 3 _ _
< Lyy(L4+n0v)""'ro + Ln logt(p(f +7) S+ )" 2o + nyL(1 + ) 2T0)

Clp

5 3 _ _
+ an(OTp + T)§(1 + 7)) ro + Ly L(1 +ny)" g

36
< Lypy(1+ 7)) tro+ Ly logt(f

c, (14 n7)"2ro + nyL(1 + nv)t_Qro)

3Lnd
+ 0

4
< (g logt +2Lnlogt )iy L(1 +my)'ro,
1
where the first equality follows from (7)), (78) holds from the following (84),

(L+m7)" " ro 4+ LynyL(1 + 1) 'ro

1)
1A < pDY < p(A—

Cp+r)’

(78)

(79)

(80)

81

(82)

(83)

(84)

where @) holds due to Hessian Lipschitz Assumption[2] (56) and the perturbation radius r (recall that
A= [y (V2 f (@) +0(z,— ;) —H)db, H = V2 f(F) and Df := max{ |, = 7], |; — 7| }), )
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holds due to [|nH (I —nH)*|| < w5, B0 holds by plugging the induction [|w 1 || < 3(1+77)" " 'ro
and [ly,—1]| < nyL(1 4 ny)"~tro, BI) follows from (84), the induction |[wy|| < 3(1 + ny)*r

and ||yk | < nyL(1 + nv)Fro (hold for all k < ¢ — 1), (82) holds by letting the perturbation radius
r < & and the last inequality holds due toy > § (recall —y := Amin(H) = Amin(V2£(Z)) < =9).

By pluggmg (77) and (83) into (76)), we have

60
il < Co (

q

4
(1 +ny)tro + (F logt + 2Lnlog t)nvL(l + n’y)tm)

6
< — logt+ 2Lnlogt)nyL(1
_02(C177L+Cl ogt+ 2Lnlog )m (L4 n7)'ro

< myL(1 +ny)'ro, (85)

where the second inequality holds due to v > 4, and the last inequality holds by letting C; > 22%

and 7 < m. Recall that Cy = O(log %) is enough to let the arguments in this proof hold
with probability 1 — ¢ for all ¢ < tipyes-

From (68) and (83)), we know that the two induction bounds hold for ¢. We recall the first induction
bound here:

L 21 +my)tro < lwell < 3(1 + 7)o

Thus, we know that [[w|| > $(1 4 n7)'ro = (1 +ny)tE f However, ||w| = ||z — 2] <
e —xol|+ || xo—2 ||+ || —xp || +|lzo—Z]| < 2r+2c — < 04— accordmgto(]S_E[)andtheperturbatlon

radius 7. The last inequality is due to the perturbation radius r < 7 (we already used this condition

in the previous arguments). This will give a contradiction for (]3_3[) if L 51+ ny)* f/% > Cﬁ% and it

g( S

. . P

will happen if ¢ > —

. o o 2log(EYL)

So the proof of this lemma is finished by contradiction if we let tipyes 1= T”’, i.e., we have

! / 6
ar < tthresv ma'X{HmT - -'L'OH; ||xT - xOH} > C ,0
1
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C.2 Proofs for Online Problem

In this section, we provide the detailed proofs for online problem () (i.e., Theorem . We will
reuse some parts of our previous proofs for finite-sum problem (I) in previous Section

First, we recall the previous key relation (27) between f(x:) and f(z¢—1) as follows (recall z; :=
Ty—1 — NU_1):
1 L

fze) <f(we—1) + g||Vf(xt,1) —va|® - gllvf(wH)IIQ - (% - 5)”% —z 4|7 (86)
Next, we recall the previous bound (3T)) for the variance term:
L2
Efllvi-1 = Vf(@e)|*] € TElllzer = 20a]?] + Elloes = V(@2)I?]. - 87)

Now, the following bound for the variance term will be different from the previous finite-sum case.
Similar to (32), we sum up (87) from the beginning of this epoch sm to the point ¢ — 1,

t—1

L2
Efljvi-1 = Vf(ze)|P] < 5 Y Elllzy — z-al*] + Elllvsm — Vf (@sm)|I?] (88)
j=sm+1
2 =1 1 2
== Y Ella— 0l +E ]| 5 X Vi@m) — Vi@ |
j=sm+1 j€ls
(89)
2 o?
<= > Efllz; —aalPl+ 5, (90)
b j=sm+1 B

where (88) is the same as (32), (89) uses the modification (TT) (i.c., vsm = £ ;¢ s, Vi (Tsm)
instead of the full gradient computation vs,, = V f(Zsy,) in the finite-sum case), and the last
inequality (90) follows from the bounded variance Assumption 3]

Now, we take expectations for (86) and then sum it up from the beginning of this epoch s, i.e.,
iterations from sm to ¢, by plugging the variance (90) into them to get:

I t
E[f(x1)] < E[f (zam)] Z BV (a5l - (5~ 3) O Ellley — w5l
J sm+1 n j=sm+1
’I’)L2 t—1 n t 0_2
Z Z Efl|z; — ;- %] + 9 Z B
k=sm+1 j=sm+1 j=sm+1
1 L, < )
< E[f(zsm)] Z E[|[V f(zj-1)]%] - (7 5) > Elllay — )
J sm+1 j=sm+1
L2(t—1— ! t— 2
p L) S gy 2]+ 07
j=sm+1
. t 1 I t
< E[f(zsm)] = 5 > ENV(i-0)IP) - (2* - 5) > Efllzy — )
j=sm+1 N j=sm+1
2 < t— 2
F IS Bl -y + EEI O
j=sm+1
n i (t — sm)no?
<E[f(zsm)] — 5 Z B[V f(x;-1)I1%] + g 92)
j=sm+1

where (]Zfl) holds if the minibatch size b > m (note that here ¢ < (s + 1)m), (92) holds if the step
sizen < .
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Proof of Theorem Let b = m = =Z and step size nn < ‘/;
directly obtained by summing up @]) for all epochs 0 < 5 < S as follows:

[ (wr)] < E[f ZE IV ey )+ 2
B[ V@) < VEIVI@IF < \/ W +o =t t=e ©3)
8(f(zo) /") _

where (©3) holds by choosing # uniformly from {x; 1 };c[7] and letting Sm < T = ez

O(%) and B = 46%2. Note that the total number of computation of stochastic gradients
equals to

40
2

”, Mita) = £y

SB+smbg[ﬂB+Tb<(2Z/€+1) +T2?U:O(€—2 .

C.2.1 Proof of Theorem[

Similar to the proof of Theorem [2] for proving the second-order guarantee, we will divide the
proof into two situations. The first situation (large gradients) is also almost the same as the above
arguments for first-order guarantee, where the function value will decrease a lot since the gradients
are large (see (92))). For the second situation (around saddle points), we will show that the function
value can also decrease a lot by adding a random perturbation. The reason is that saddle points are
usually unstable and the stuck region is relatively small in a random perturbation ball.

Large Gradients: First, we need a high probability bound for the variance term instead of the
expectation one (90). Then we use it to get a hlgh probability bound of (92) for function value
decrease. Note that in this online case, vem = 5 > jers V/i(2sm) at the beginning of each epoch

(see (TI)) instead of vy, = V f(xsm) in the previous finite-sum case. Thus we first need a high
probability bound for ||vgm — V f(Zsm )] Accordlng to Assumption 4] we have

IVfi(x) = V@) <o,
S 194(2) ~ VI@)P < Bo®.
jE€IpB
By applying Bernstein inequality (Proposition [2), we get the high probability bound for ||vs,, —
V f(xsm)|| as follows:

t —t2/2
]P’{Hvsm — Vf(msm)H > E} < (d+1)exp (m) =,
where the last equality holds by letting t = Cv/Bo, where C' = O(log %) = O(1). Now, we have a
high probability bound for ||vs,, — V f(2sm)]], i-€.

Hvsm - Vf(xsm)H < 3% with probability 1 — ¢. (94)

Now we will try to obtain a high probability bound for the variance term of other points beyond the
starting points. Recall that vy, = § D icl, (Vfi(zr) = Vfi(zr-1)) + vk_1 (see Linel?]of Algorithm
[1), we let yj, := vi, — V f(xx) and zj, := yx, — y—1. It is not hard to verify that {yy,} is a martingale
sequence and {z} is the associated martingale difference sequence. In order to apply the Azuma-
Hoeffding inequalities to get a high probability bound, we first need to bound the difference sequence
{2k }. We use the Bernstein inequality to bound the differences as follows.

4 = U i1 =~ VS ax) — (s~ VS x )
- % > (Viilawr) = Vi(wr-1)) +vk-1 = Vf(@x) = (0h-1 — V(z-1))

i€l

= 23 (Vhlew) — Vilanor) — (V) — V). ©3)

i€l
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We define w; := V f;(xx) — Vfi(zk—1) — (Vf(xr) — Vf(xk_1)), and then we have
luill = IV fi(en) = Viler) = (Vf(2x) = VI (@e-))ll < 2llen —zpall,  (96)

where the last inequality holds due to the gradient Lipschitz Assumption [T} Then, consider the

variance term
> EffJus|?]

il
=Y ElIVfilzr) = Vfilze-1) = (V@) = Vf(ze-1)’]
i€l
< STE(Vfilar) - Viilao)])
i€l
S bL2||:Ck7$k_1H2, (97)

where the first inequality uses the fact E[||z — Ez|?] < E[||z]|?], and the last inequality uses the
gradient Lipschitz Assumption[I} According to (96) and (97), we can bound the difference zj, by
Bernstein inequality (Proposition [2)) as

Pllasf| 2 1} < @+ Desp (ﬂ—jﬁ/g)

—t2/2
=(d+1)ex
(d+1) p(bLﬂmkga%_ﬂP4—ﬂwkthJHU3>
= Ck,

where the last equality holds by letting t = C'LV/b||zy — z,_1||, where C' = O(log C%) = 0(1).
Now, we have a high probability bound for the difference sequence {2}, i.e.,

CLHik — l’k,1||
Vb

lzell < ek = with probability 1 — (. (98)

Now, we are ready to get a high probability bound for our original variance term (90) by using the
martingale Azuma-Hoeffding inequality. Consider in a specifical epoch s, i.e, iterations ¢ from sm+1
to current sm + k, where k is less than m. According to Azuma-Hoeffding inequality (Proposition [4)
and letting ¢, = ¢/m, we have

P{|lysm+k — Yom|| = 6} < (d+1)exp (Mic?) +¢
t=sm-+1 -t

= 2G,

C' LS e ?

\/g b
where C' = O(C, /log g) = O(1). Recall that y;, := v, — V f () and at the beginning point of this
epoch [[Ysm || = ||[Vsm — Vf (2sm)|| < Co/+/B with probability 1 — ¢, where C' = O(log %) =0(1)
(see (94)). Combining with (94) and using a union bound, we have

where the last equality holds by letting 3 = \/ 85tk (21og % =

t=sm-+1

CL\S i 2y — 212 o
Vi1 — V(i = — < + sm S : + — 99
lor—1 = VF@emn)l| = lye-rll < B+ [yl N 7= 9

with probability 1 — 3¢, where ¢ belongs to [sm + 1, (s + 1)m].

Now, we use this high probability version (99) instead of the expectation one (90) to obtain the high
probability bound for function value decrease (see (92))). We sum up (86) from the beginning of this
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epoch s, i.e., iterations from sm to ¢, by plugging (99) into them to get:

t t

n 1 L
P < flaam) =3 30 IS @ )IP = (5= 5) D Ny — oyl
j=sm+1 ! Jj=sm+1
t—1 12712 t
20712 Y] l2; — 2j-1]? 02 2
n j=sm+1 J J 77
3 2 ; >
k=sm-+1 j =sm-+1

t t

< Ja) =1 S IV (e~ 5 Y ey -

j=sm+1 21 j=sm+l1

C/2L2 02 2
L0 Z Z e — ;1 |? + %
k=sm+1 j=sm+1

t t

n 1 L
< f(@sm) — 9 Z ||Vf(33j—1)||2 - (7 - 5) Z llo; — l‘j—1||2
j=sm+1 N j=sm+1
C?L*(t—1—sm ! t — sm)nC2o?
pITLRZLZ) S gy g 4 T
j=sm+1
- LI t
< flam) =5 D IV DIP = (5 — 5 —nC%L%) D0 oy — il
j=sm+1 n j=sm+1
t— C?0?
L = sm)nC% (100)
B
t
7 (t — sm)nC?0?
<f@om) =5 D0 IV )P+ —pF— (101)
j=sm+1
where (T00) holds if the minibatch size b > m (note that here ¢ < (s + 1)m), and (T0T) holds if the
step sizen < ¥ 8405,;"L L

Similar to the previous finite-sum case, (I0T)) only guarantees function value decrease when the sum-
mation of gradients in this epoch is large. However, in order to connect the guarantees between first
situation (large gradients) and second situation (around saddle points), we need to show guarantees
that are related to the gradient of the starting point of each epoch (see Line[3]of Algorithm[2). As we
discussed in previous Section we achieve this by stopping the epoch at a uniformly random
point (see Line[T6of Algorithm 5)

We want to point out that the second situation will have a bit difference due to (ﬂ;f[), i.e., the full
gradient of the starting point is not available (see Line[3|of Algorithm[2). Thus some modifications
are needed for previous Lemmal[I] we use the following lemma to connect these two situations (large
gradients and around saddle points):

Lemma 4 (Connection of Two Situations) For any epoch s, let xi be a point uniformly sampled

from this epoch {z; }jst,},{m Moreover, let the step sizen < ¥ Sf(;,aL L (where C" = O(log dTm) =

O(1)), the minibatch size b > m and batch size B > 25960 < (where C = O(log C) O(1)), there
are two cases: e

1. If at least half of points in this epoch have gradient norm no larger than 295, then
IVf(@srnym)ll < 2522 and ||v(s41ym|l < Ginres hold with probability at least 1/3;

2. Otherwise, we know f(xsm) — f(x¢) > % holds with probability at least 1/5.
(t—sm)nC2o? . . e .
Moreover, f(x;) < f(2sm)+ ~——5— holds with high probability no matter which case happens.

Proof of Lemma[d} There are two cases in this epoch:
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1. If at least half of points of in this epoch {x; }giti)lm have gradient norm no larger than Ztes,

then it is easy to see that a uniformly sampled point 2; has gradient norm ||V f () || < 9ties
with probability at least 1/2. Moreover, note that the starting point of the next epoch
T(s+1)m = 2z (i.e., Line [19| of Algorithm , thus we have ||V f(z(sy1)m)|| < Lo

with probability 1/2. According to (94), we have [|[v(s41)m — V. (Z(s41)m) || < C—\/% with

probability 1 — ¢, where C' = O(log %) = O(1). By a union bound, with probability at
least 1/3, we have

Co Gthres Jthres YJthres
||U(s+1)m|| S + To8 S %8 + a < Gthres-

VB 2 16 2 =

2. Otherwise, at least half of points have gradient norm larger than &= Then, as

long as the sampled point z; falls into the last quarter of {a:]}g::ﬂm, we know
Eé‘:smﬂ IVf(zj—1)|]* > % This holds with probability at least 1/4 since x;

is uniformly sampled. Then by combining with (TOI)), we obtain the function value decrease

(t — sm)nC?o?
B

\

fam) = fl@) 2 3 3 IVl -

j=sm+1
> nmgtzhres o nmgtzhres _ 7nmgt2hres
- 32 256 256’

where the last inequality is due to B > 2560%0* Note that (T0T) holds with high probability

thres

if we choose the minibatch size b > m and the step size n < 7%. By a union bound,

2
the function value decrease f(24,) — f(x;) > 2dihwes with probability at least 1/5.

Again according to (TOI), f(x¢) < f(zsm) + % always holds with high probability. O

Note that if Case 2 happens, the function value already decreases a lot in this epoch s (corresponding
to the first situation large gradients). Otherwise, Case 1 happens, we know the starting point of the
next epoch (1), = ¥ (i.e., Line|19|of Algorithm , then we know ||V f(2(sq1)m)|| < 2=
and ||v(s11)m|| < Genres- Then we will start a super epoch (corresponding to the second situation
around saddle points). Note that if Apin (V2 f (T(s41)m)) > —0, this point (s 1), is already an
(e, 0)-second-order stationary point (recall that gipres < € in our Theorem .

Around Saddle Points [|v(s41),|| < gthres ad Amin (V2 f (2 (541)m)) < —0: In this situation, we
will show that the function value decreases a lot in a super epoch (instead of an epoch as in the first
situation) with high probability by adding a random perturbation at the initial point T = Z (44 1)
To simplify the presentation, we use zy := T + £ to denote the starting point of the super epoch
after the perturbation, where £ uniformly ~ Bg(r) and the perturbation radius is r (see Line @ in
Algorithm[2)). Following the classical widely used two-point analysis developed in [18], we consider
two coupled points z¢ and x(, with wy := z¢ — x, = rpe1, wWhere g is a scalar and e; denotes
the smallest eigenvector direction of Hessian H := V2 f(¥). Then we get two coupled sequences
{a} and {z}} by running SSRGD update steps (Line [BH12|of Algorithm [2) with the same choice of
batches and minibatches (i.e., Ip’s (see (1)) and Line[8)) and I;’s (see Line @)for a super epoch.
We will show that at least one of these two coupled sequences will decrease the function value a lot
(escape the saddle point), i.e.,

3t < tinres, such that max{f(zo) — f(z¢), f(xy) — F(@})} > 2 finres- (102)

We will prove (I02)) by contradiction. Assume the contrary, f(xo) — f(2:) < 2fihres and f(z() —
f(x}) < 2finres- First, we show that if function value does not decrease a lot, then all iteration points
are not far from the starting point with high probability. Then we will show that the stuck region is
relatively small in the random perturbation ball, i.e., at least one of x; and x} will go far away from
their starting point z¢ and x{, with high probability. Thus there is a contradiction. Similar to Lemma
[2and Lemma 3] we need the following two lemmas. Their proofs are deferred to the end of this
section.
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Lemma 5 (Localization) Ler {x;} denote the sequence by running SSRGD update steps (Line|S|
of Algorithm El)fram zo. Moreover, let the step size n < ﬁ and minibatch size b > m, with
probability 1 — (, we have

At(f(xo) — flar)) | 4P2nC20?
— ozl <
I = @olf < \/ 5C'L | 5C'LB

where C' = O(log %) = O(1) and C = O(log &) = O(1).

(103)

Lemma 6 (Small Stuck Region) If the initial point T satisfies —y := Amin(V2f(2)) < —0, then
let {x;} and {x}} be two coupled sequences by running SSRGD update steps (Line|§ of Algorithm
With the same choice of batches and minibatches (i.e., I5’s (see (1) and Line[8) and I,’s (see Line

2)) from x¢ and x{, with wg := xo — xy = roe1, where xg € Bz(r), zj € Bz(r), 1o = ff and eq

denotes the smallest eigenvector direction of Hessian V? f (). Moreover, let the super epoch length

85vd
t _ 2loslod) O(-%), the step size n < min ( L 1 ) =0(1)
thres = né - néd/’ P n= 1610 ( 88\/3 )L’ 8CsLlog ttnres / L”

~ 2
minibatch size b > m, batch size B = O(g;’

) and the perturbanon radius r < C , then with
thres
probability 1 — (, we have

)
T < tenress maX{||mT—x0H,||x’T—x6H} > Cip’ (104)
1

where Cy > 22%, Cy = O(log Tees ) = O(1) and C, = O(log ) — O(1).

Based on these two lemmas, we are ready to show that (T02) holds with high probability. Without
loss of generality, we assume ||x7 — || > C — in (T04) (note that (T03) holds for both {z;} and

{z}}), then plugging it into (TO3) to obtain
\/4T(f(xo) —f(er) | ATC%” &

5C'L 5C'LB ~ Cip
5C'Lé%  TnC?c?
_ > _
5770/[/53 20202 lOg(CE%fF:é,ET) (105)
SCHlog(5) B
53
> — 106
=T (106)
= 2fthresa
8C% lo d
where @ is due to T' < tyhres and (I06) holds by letting C = %. Recall that

B = O( ) and ginres < 62/p. Thus, we already prove that at least one of sequences {z;} and

{z}} escapes  the saddle point with high probability, i.e.,

Jr S tthrcs ,max{f(:co) - f(xT)a f(xé)) - f(x’lf)} 2 2fthrcsa (107)

if their starting points o and z{, satisfying wo := zg — 2, = roe1, where ro = E/E and e; denotes

the smallest eigenvector direction of Hessian H := V2 f(Z). Similar to the classical argument in
[L8], we know that in the random perturbation ball, the stuck points can only be a short interval in the
e direction, i.e., at least one of two points in the e; direction will escape the saddle point if their

distance is larger than ry = %. Thus, we know that the probability of the starting point xg = & + £
(where £ uniformly ~ By (r)) located in the stuck region is less than

roVa_1(r) TOF(% 1) ro ,d 1/2 7“0\/&
Va(r)  arl(¢+3) = fr( +1) r

=, (108)
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where V;(r) denotes the volume of a Euclidean ball with radius r in d dimension, and the first
inequality holds due to Gautschi’s inequality. By a union bound for (TI08) and (I06) (holds with high
probability if xg is not in a stuck region), we know

53
C1p?
with high probability. Note that the initial point of this super epoch is = before the perturbation

(see Line@of Algorithm , thus we need to show that the perturbation step xg =  + & (where &
uniformly ~ By (r)) does not increase the function value a lot, i.e.,

f(xo) = f(z1) = 2 fihres = (109)

F(a0) < FE) + (V@) 0~ ) + & o 7

~ ~ . L ~
<@+ IVI@Hlzo = 2 + 5 llwo — 21
~ L
< f(.l?) + Gthres " T + 57“2
53
2C1p°
= f('%) + fthre37 (110)

[l 53 }
ingthres7 201/)21‘ '

< f(@)+

where the last inequality holds by letting the perturbation radius r < min{ ;5

Now we combine with (109) and (I10)) to obtain with high probability
3

f(z') - f(xT) = f(f) - f(IO) + f(xO) - f(‘TT) Z 7fthres + 2fthres == W (111)
1

Thus we have finished the proof for the second situation (around saddle points), i.e., we show that the
2 log( C?fﬁr
nd )

function value decrease a 1ot (fihres = 26‘5—,[)2) in a super epoch (recall that T' < tipyes =
1
by adding a random perturbation £ ~ B (r) at the initial point .

Combing these two situations (large gradients and around saddle points) to prove Theorem [d;
First, we recall Theorem A here since we want to recall the parameter setting.

Theorem[d Under Assumption (i.e. @) and (6)) and Assumptiond] let Af = f(xo) — 7,

where xq is the initial point and f* is the optimal value of f. By letting step size n = O(%), batch

size B = 5(95’2 )= 5(‘:—22), minibatch size b = /B = 5(%) epoch length m = b, perturbation
thres

radius r = O(min(ﬁ %)) threshold gradient ges = € < 62/p, threshold function value

pZe’

Sihres = 5(;‘)—2) and super epoch length tipres = 5(77—15) SSRGD will at least once get to an
(e, 8)-second-order stationary point with high probability using

6(LAfU p?Afo? LpQAfO')
€3 €243 €0t

stochastic gradients for nonconvex online problem (2)).

Proof of Theorem[d Now, we prove this theorem by distinguishing the epochs into three types as
follows:

1. Type-1 useful epoch: If at least half of points in this epoch have gradient norm larger than
Gthres (Case 2 of Lemmald);

2. Wasted epoch: If at least half of points in this epoch have gradient norm no larger than g res
and the starting point of the next epoch has estimated gradient norm larger than ggpyes (it
means that this epoch does not guarantee decreasing the function value a lot as the large
gradients situation, also it cannot connect to the second super epoch situation since the
starting point of the next epoch has estimated gradient norm larger than gipyes);
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3. Type-2 useful super epoch: If at least half of points in this epoch have gradient norm no
larger than ginres and the starting point of the next epoch (here we denote this point as
(s+1)m)) has estimated gradient norm no larger than ginres (i-€., [|V(s41)mll < Gthres) (Case
1 of Lemmafd), according to Line [3of Algorithm[2] we will start a super epoch. So here we
denote this epoch along with its following super epoch as a type-2 useful super epoch.

First, it is easy to see that the probability of a wasted epoch happened is less than 2/3 due to the
random stop (see Case 1 of Lemma[d]and Line[I6]of Algorithm 2)) and different wasted epoch are
independent. Thus, with high probability, there are at most O(1) wasted epochs happened before
a type-1 useful epoch or type-2 useful super epoch. Now, we use N7 and N, to denote the number
of type-1 useful epochs and type-2 useful super epochs that the algorithm is needed. Recall that
Af = f(xg) — f*, where x is the initial point and f* is the optimal value of f.

For type-1 useful epoch, according to Case 2 of Lemmald] we know that the function value decreases

2
at least % with probability at least 1/5. Using a standard concentration, we know that with
7nmgt2hres N1

high probability N; type-1 useful epochs will decrease the function value at least TEae=—, note
. TNMg2 e N1 1536A f
that the function value can decrease at most A f. So —agee— < Af, we get Ny < TomgZ.

For type-2 useful super epoch, first we know that the starting point of the super epoch 7 := x4 1),
has gradient norm ||V f(Z)|| < ginres/2 and estimated gradient norm [[v(s41)m|l < Gehres- Now
if A\nin(V2f(Z)) > —0, then T is already a (e, d)-second-order stationary point. Otherwise,
[vs+1ymll < Genres and Amin (V2 f(Z)) < —4, this is exactly our second situation (around sad-
dle points). According to (TTT)), we know that the the function value decrease (f(Z) — f(x7)) is at

"2
least finres = % with high probability. Similar to type-1 useful epoch, we know Ny < A §3Af

by a union bound (so we change C] to CY, anyway we also have C}' = 6(1)).

Now, we are ready to compute the convergence results to finish the proof for Theorem 4]

N1(O(1)B + B + mb) + Ny (O(1)B + [tt;;eS}B + tenresh) (112)

<O+ T G 330)

o(I3fe ot 11
0

Now, the only remaining thing is to prove Lemma[5]and[§] We provide these two proofs as follows.

Lemma 5] (Localization) Let {x,} denote the sequence by running SSRGD update steps (Line|§
of Algorithm @) from xg. Moreover, let the step size n < 40% and minibatch size b > m, with
probability 1 — (, we have

At(f(zo) — f(we)) | 4t?nC20>
— <
vt, th -TOH \/ 5C"L + 5C'LB

where C' = O(log %) = O(1) and C = O(log Cd—r’;) =0(1).

Proof of Lemma First, we assume the variance bound @I) holds forall 0 < 5 <t — 1 (this is true
with high probability using a union bound by letting C' = O(log %) and C' = O(log g%)). Then,
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according to (T00), we know for any 7 < ¢ in some epoch s

T

1 L i

n
Flar) < flaam) =5 Do (V@0 = (5 — 5 —nC2L%) D0 oy — il
j=sm+1 n Jj=sm+1
(1 — sm)nC?c?
B
I L / . (1 — sm)nC?0?
< flzsm) — (% -5 ¢ L?) ' >l =il + —5
j=sm+1
5C'L & 7 — sm)nC?o?
< foam) = SE YT g -yl 4 TCT (114)

j=sm+1

where the last inequality holds since the step size n < C, + and assuming C’ > 1. Now, we sum up
(TT4) for all epochs before iteration ¢,

t

50/ t C2 2
flwe) < f(zo) Z la; — 1] + ﬂBU )

Then, the proof is finished as

t

t
4t(f(xo) — f(xy)) | 42nC%02
e — ol <Y llay —ajall < ([l — 25412 < \/ SOTL 2t 50LE
j=1 j=1

O

Lemma 6] (Small Stuck Region) If the initial point T satisfies —v 1= Amin(V2f(Z)) < —6, then
let {x,} and {x}} be two coupled sequences by running SSRGD update steps (Line|8H12|of Algorithm
with the same choice of batches and minibatches (i.e., Ig’s (see (I1)) and Line@) and I,’s (see Line

2)) from xy and x, with wg 1= xg — xy = roey, where xg € Bz(r), zj € Bz(r), 1o = f/g and eq

denotes the smallest eigenvector direction of Hessian V? f (T). Moreover, let the super epoch length

QIOg(csfﬂr) Sl . . 1 1 3!
tihres = —— 45— = O(%), the step size n < mln(161 P SCZLlogtthm) = O(+),
~ 2
minibatch size b > m, batch size B = O(=%—) and the perturbatlon radius r < =2—, then with

thres

probability 1 — (, we have

)
3T < tinwes, max{[lor —woll, oy —apll} = 5—,
1P

where Cy > 22%, Cy = O(log dt“‘re°) = O(1) and C} = O(log %) =O(1).

Proof of Lemmal6 We prove this lemma by contradiction. Assume the contrary,

) 0
Vt < tinres s ||zt — 2ol < =— and < — 115
<t sl = ol < o and ot~ < o (115)
We will show that the distance between these two coupled sequences w; := x; — x} will grow

exponentially since they have a gap in the e; direction at the beginning, i.e., wg := xo — x{, = 79€1,
where 7o = C—\/g and e; denotes the smallest eigenvector direction of Hessian H := V2 f(Z). However,
[well = llz — 2]l < lze — zoll + |20 — Z| + [l — ]l + |l — Z[| < 2r + 22 according to

(TT3) and the perturbation radius r. It is not hard to see that the exponential increase will break this
upper bound, thus we get a contradiction.
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In the following, we prove the exponential increase of w; by induction. First, we need the expression
of wy (recall that z; = 2,1 — nv;_1 (see Line[TT]of Algorithm2)):
wy = wy—1 — N(Vs—1 — Vp_q)
=wi—1 —(Vf(ze1) = V(i) + o1 = Vf(@e1) —vj_ + V(i)

1
—wis = [ Vi i )b~ i)
0

vt = Vi (@et) = vy + V()
= —nH)wi—1 = n(As—1wi—1 + Y1)
t—1
= —nH)'wg —n Z(I —H) T (A wr +yr) (116)
7=0
where A, = fol(VQf(x’T +6(x; —2.))—H)db and y, := v, — V f(x,;) —v. +V f(2}). Note that
the first term of (T16) is in the e; direction and is exponential with respect to ¢, i.e., (1 + 1y)'roes,
where =7 1= Amin(H) = Anin(V2f(Z)) < —4. To prove the exponential increase of wy, it is
sufficient to show that the first term of (I16)) will dominate the second term. We inductively prove the
following two bounds

L 214 ny)ro < [Jlwell < 3(14n7)'ro
2. \lyell < 20y L(1 4 ny)tro

First, check the base case t = 0, ||wg|| = ||roe1]| = ro holds for Bound 1. However, for Bound 2, we
use Bernstein inequality (Proposition[2) to show that ||yo|| = |[vo—V f (mo) vo+V (@) < nyLro.
According to (TT), we know thatvg = % Y., Vfj(2o) and vy = & ZjeIB V f(xp) (recall that

these two coupled sequence {z;} and {z}} use the same choice of batches and minibatches (i.e., I5’s
and [I,’s). Now, we have

Yo =vo — V f(x0) — v + V f(xp)
= % > Vii(xo) = VF(xo) ~ % > Viiap) + V(ap)

Jj€lB jElB
= LS (Vo) - Vhylah) — (Vo) - Vi(a). 1)
j€lB

We first bound each individual term of (T17):
IV fj(x0) = V fj(20) = (Vf(x0) = VI (20))]| < 2Lllwo — ap]| = 2L|wol| = 2Lro,  (118)
where the inequality holds due to the gradient Lipschitz Assumption[I] Then, consider the variance

term of (TT7):
> E[IV (o) = Vi(h) — (Vf (o) — V()]

jE€lB
< Z E[|V f;(z0) — V£;(x0)?]
jE€IB
< BL?||zo — x|
= BL?||wo||* = BL*rZ, (119)

where the first inequality uses the fact E[||z — Ez|?] < E[||z]|?], and the last inequality uses the
gradient Lipschitz Assumption [I] According to (IT8) and (T19), we can bound y, by Bernstein
inequality (Proposition[2)) as

P{lnll = 5} < @+ Do (222 0)

—a?/2
—(d+1
(d+1)exp (BLQrS i 2Lr0a/3)
=
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where the last equality holds by letting o = C5L+v/Brg, where Cs = O(log g) Note that we can

further relax the parameter C5 to C% = O(log %) = O(1) for making sure the above arguments
hold with probability 1 — ¢ for all epoch starting points ys,, with sm < tines. Thus, we have with
probability 1 — (,

02 LTO

VB

where the last inequality holds due to B = 5(

)\mm(VQf( )) < —d and GJthres S 6 /p)

Now, we know that Bound 1 and Bound 2 hold for the base case ¢ = 0 with high probability. Assume
they hold for all 7 < ¢ — 1, we now prove they hold for ¢ one by one. For Bound 1, it is enough to
show the second term of (TT6) is dominated by half of the first term.

t—1 t—1

ln Y (=) T (Agw)l <) (14 07) T T IAL |

lyoll < < nyLro, (120)

2 ) (recall that —y = Auin(H) =

thres

7=0 7=0
_3
< gn(+m)'” lelA [ (121)
<3 (1+ 1y, Z D (122)
< 5 ) e Y p
< §77(1 + 17y t,o(i +7) (123)
=5 0 Cip
< S pot(1 + )" (124)
Gy
6 log 80+v/d
< DO 14 gy (125)
Cq
1
< 4(1 + m7)'ro, (126)

where (I121) uses the induction for w, with 7 < ¢ — 1, (122)) uses the definition D := max{||x, —
z||, ||zt — 2|}, (123) follows from ||z, — Z|| < [|at — zol| + ||zo — Z|| = C%p + r due to (T13) and
the perturbation radius r, (I24) holds by letting the perturbation radius r < C%p, (T23) holds since

b e = 2T (T76) holds by letting Cy > 24 log(522
< tihres = ——, 47, an (T26) holds by letting C; > 24 log( pC’r)'

t—1 t—1

In> (T —=nH) " Tyl <n > (A +y) " |yl

7=0 7=0
t—1
<0 @+ T2y LA+ ) o (127)
7=0
= 2mnyLt(1 4 nv)""'ro
(Cgfp\é’gr) t—1
< 277777LT(1 +n7) "o (128)
86v/d
< 4nl L(1 t—1 129
< nog(clpw) (I+nv)"" o (129)
1
1( + n7)tro, (130)
2log(c?1‘sﬁ )

where (I127) uses the induction for y, with 7 < ¢ — 1, (I28) holds since ¢ < tipres = 0 ,
(T129) holds v > § (recall =y := Apin(H) = Amin(V2f(Z)) < —6), and (I30) holds by letting
1

n< 85vd :
16 log( C1PC’T)L
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Combining (126) and (I30), we proved the second term of (TT6) is dominated by half of the first
term. Note that the first term of (T16)) is ||(I — nH) wo| = (1 + 7y)'ro. Thus, we have

1 3
3 (L+m)'ro < flwell < 5(1+n7)'ro (131)

Now, the remaining thing is to prove the second bound ||y¢|| < nyL(1 + 1y)tro. First, we write the
concrete expression of y;:

ye = vr — V f(x) — vy + V f(ap)
3 (Vhilw) ~ Vfilwn) + v~ Vi)

i€l
— ST (V) — Vi) — v + V() (132)
€1y
= % S (Vi) = Vi) + V(@) = Vf()
iely

2 S (Viilah) ~ V() - Vi) + V)

i€l
+ 01 — Vf(@io1) —vi_ + Vf(zi_y)

1
5 > (Vfilws) = Vfila}) = Vfilwer) + Vfilay_y))

i€l

— (Vf(ze) = V(@) = V(@e1) + V(@) 1)) +ye-1,
where (I32) due to the definition of the estimator v, (see Line[I2]of Algorithm [2)). We further define
the difference z; := y; — y;—1. It is not hard to verify that {y; } is a martingale sequence and {z;} is
the associated martingale difference sequence. We will apply the Azuma-Hoeffding inequalities to
get an upper bound for ||y | and then we prove ||y;|| < 29y L(1 + n7y)'ro based on that upper bound.
In order to apply the Azuma-Hoeffding inequalities for martingale sequence ||y;||, we first need to

bound the difference sequence {z;}. We use the Bernstein inequality to bound the differences as
follows.

2t =Yt — Yt—1

= 3 3 (Vi) = Vi) = Viwi) + V(e )
i€ly
— (Vf(ae) = Vf(a}) = V(@em1) + V(2i1))
=3 3 (Ve = Vial)) = (Vi) - VHi(a} )
i€ly
— (Vf(xe) = V() + (V(@e-1) - vm;,l))). (133)
We define u; = (Vfi(zy) — Vfi(z})) — (Vfi(w—1) — Vi(zi_y)) — (Vf(@e) — Vf(a})) +
(Vf(zi-1) — Vf(z}_,)), and then we have
usll = 1(V filze) = Vfilzy) — (Vfilzio1) = VSilxi_y))
— (Vf(xe) =V f(xh) + (Vf(@e—1) = V(i)

1 1
<| / V2 () + 0wy — 2}))d0(m — a) — / V2 (@) + 0(xe1 — ) 1))d0(@ 1 — 7))
0 0

1 1
= [ Vel + bGa — )bl — o) + [ V(e + Ol — )b )|
0 0

= || Hswe + Aiwt — (Hwe—1 + Aifﬂﬁtfl) — (Hwe + Aywy) + (Hwi—1 + Ap_qwi—1) ||
(134)

< (M = H) (wi — wi) | + (A = An)we — (A)_y — Ay—1)wi ||

< 2L||lwy — wy—1l| + 2pDf ||wi || + 2pDi_4 |we-1 |, (135)
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where (T34) holds since we define A := fol (V2f(z}+0(xy—x}))—H)dO and A} := fol (V2 fi(xy+
0(xy — x})) — H;)dO, and the last inequality holds due to the gradient Lipschitz Assumption [l|and
Hessian Lipschitz Assumption [2] (recall Df := max{||z; — Z||, ||z} — Z||}). Then, consider the

variance term
> Eflfuill?]

i€l
< E[(V i) = Vi) = (Vilwia) = Vi) 1)
i€l
= Y E[|[Haw; + Afwy — (Haw 1 + Aj_yw;1)|]
el
< b(Lllwe — wer || + pDF lwe|l + pDY_ [lwi—1])?, (136)

where the first inequality uses the fact E[||z — Ez|?] < E[||z]|?], and the last inequality uses the
gradient Lipschitz Assumption[T|and Hessian Lipschitz Assumption[2] According to (I33) and (I36),
we can bound the difference z;, by Bernstein inequality (Proposition [2) as (where R = 2L|[w, —
wi—1l| +2pDf ||we|| + 2pDf_y [wi-1 and 0® = b(L|[wy — w1 || + pDf [lwel| + pDF_y [lwe-11])*)

! —a?/2
P{llae] = 2} < (@+ Dexp (52 ) = G,
Hth ) < (d+1)exp 0?2+ Ra/3 G
where the last equality holds by letting o = C4vVb(L||w; — wi_1|| + pDF ||ws|| + pD7F_; [|wi_1]])s
where Cy = O(log C%) =0(1).
Now, we have a high probability bound for the difference sequence {2}, i.e.,
Cy(L —wi_1|| + pDf + pD¥_ _
llzell < ek = a(Lffwn = o]l % pDylleell + pDiy fwral) with probability 1 — (k.
Vb
(137)

Now, we are ready to get an upper bound for y; by using the martingale Azuma-Hoeffding inequality.
Note that we only need to focus on the current epoch that contains the iteration ¢ since the martingale
sequence {y; } starts with a new point ys,, for each epoch s due to the estimator v,,. Also note
that the starting point ys,, can be bounded with the same upper bound (I20) for all epoch s. Let s
denote the current epoch, i.e, iterations from sm + 1 to current ¢, where ¢ is no larger than (s 4+ 1)m.
According to Azuma-Hoeffding inequality (Proposition and letting ¢, = {/m, we have

—B?
P{Hyt - ysmH > 6} <(d+1)exp (t72) +¢
8 Zk::sm+1 Ck:
=2¢,
where the last equality is due to fS = \/8 Z}; ot ¢ log % _
03\/Z:c:strl(L“wt_wt—lH+pr”wiH+pr—1Hwt—lH)2

7 , where G5 = O(Cy\flogd) = O(1).

Recall that y, = vy — Vf(zx) — v}, + Vf(a},) and at the beginning point of this epoch

Ysm = |[vsm — Vf(@sm) — vl + Vf(2h,,)|| < nyLre with probability 1 — ¢ (see (I20)).
Combining with (T20) and using a union bound, we have

t x X
Cs\/Zk:sm+1(Lllwt — wia || + pDf wel| + pDF_4 [Jwi—1])?
Vb

lyell < B+ [ysml| < + 1y Lrg

(138)
with probability 1 — 3¢, where ¢ belongs to [sm + 1, (s + 1)m]. Note that we can further relax the

parameter C3 in (I38) to Cy = O(log dt‘%) (see (139)) for making sure the above arguments hold

with probability 1 — ( for all ¢ < tip,es by using a union bound for (;’s:
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\/Zk smi1(Lllwe = wiall + pDF[|wel| + pDF_y [lwi—1 )2
||ytH < \/l; +77’YL7"0, (139)

where ¢ belongs to [sm + 1, (s + 1)m].

Now, we will show how to bound the right-hand-side of (I39) to finish the proof, i.e., prove the
remaining second bound ||y;|| < 2nvL(1 + ny)tro.

First, we show that the last two terms in the first term of right-hand-side of (I39) can be bounded as

i ) 5.3 5.3 .
pDf ||wi|| + pDy_q w1 ]| < p(C’ilp + 7“)5(1 + 7)o + P(@ + 7“)5(1 + )" o
1)
< 30(@ +7)(L+17)"ro
< 63(1 +117)"ro, (140)
Cq

where the first inequality follows from the induction of [|w;_1|| < 2(1 4 )~ 17 and the already
proved |lw|| < 3(1 + ny)'rg in (T3), and the last inequality holds by letting the perturbation radius
r<
— Cip

Now, we show that the first term in (T39) can be bounded as

Lllwy — we—1|]

t—2
= L|| = nH(I — M) wo = Y nHT = nH)' 27T (Awr +yr) + n(Aeywioy + 1)
7=0
t—2
t—1 t—2—71
< Iny(L+n9) o + Ll > oM —nH)' = (Arws + o) || + Lln(A1wiy + yeoa)|
7=0
t—2
t—1 t—2—71
< Liy(1+ 7)o + L ;WH(I — M) T e 1Ak + g
5
+ Lap( G+ r)lweal + Inllye— | (141)
<
Liy(1+ )"~ ro+LnZ T o Ak +
5
+ Lnp(g + r)llwesll + Lnllye | (142)

< Lny(14nv)" 'ro + Lnlogt oJnax | Arwy + yi ||

1)
+ an(Cip + 7")||wt—1|| + Llye—1 ||

< Lny(14nv)""'ro + Lnlogt ohax [ Arwy + Yl
1) 3 t—1 t—1
+an(c—p+7~)§(1+m)/ ro 4+ 2Ly L(1 4 ny)t g (143)
1
- b 3 _ _
< Lyy(L4+n0v)"'ro + Ly logt(p(cfp +7) S+ ) 2 + 207 L(1 + ny)! 27‘0)
1

5 3 - _
+ an(a + r)§(1 + 7)o + 2Ly L(1 + )t g (144)
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B 30 _ _
< Ly(L4+ )" 'ro + L logt<a(1 +177) " 2ro + 207 L(1 + 1y)" 2T0>

3Lné
Ch

4
< (Elogt+4Lnlogt)mL(1 +17)"r0, (146)
1

+ (14 n7) " ro 4+ 2Lgny L1+ 17) ro (145)

where the first equality follows from (T16)), (T41)) holds from the following (I47),

)
Al < pDF < p(—
|| t” = pLly; _p(Clp

where (T47) holds due to Hessian Lipschitz Assumption [2] (IT3) and the perturbation radius r
(recall that A; := fol V2 f(z} + 0(xy — x})) — H)db, H = V2f(%) and D} := max{|z; —

||, =t — ZII}), (T42) holds due to [[yH (I — nH)"|| < =5, (T43) holds by plugging the induction
[wieall < 3(14nv)" " rg and [Jye—1| < 29yL(1 4 ny)' = ro, (T44) follows from (I47), the
induction |Jwg|| < 2(14 nv)kro and |lyx| < 29yL(1+ nv)*ro (hold for all k < t — 1), (143)
holds by letting the perturbation radius r < %ﬂ, and the last inequality holds due to v > 0 (recall

- = Amin(H) = /\mm(vzf( )) < 5)
By plugging (I40) and (T46) into (I39), we have

66 4
[yel| < Co ( (L4 nv)'ro + (5 logt + 4Lnlog t)nvL(l + nv)%) +nyLro

+7), (147)

6
< =
< 02(01 I + cr logt+4Ln10gt>n7L(1 +77W’) ro 4+ myLro

< 20yL(1 + ny)"ro, (148)
where the second inequality holds due to v > 4, and the last inequality holds by letting C; > 22%

and n < m. Recall that C = O(log dtt%) is enough to let the arguments in this proof hold
with probability 1 —  for all ¢ < tipyes-

From (I3T) and (148}, we know that the two induction bounds hold for ¢. We recall the first induction
bound here:

L (1 +my)tro < lwell < 31+ mv)'ro

Thus, we know that [[wy | > §(1477)'r0 = 3(1 + )" %, —all < floe -
zoll+ lzo — Z|| + ||} — x|l + |lzp — 2] < 27“+201p < C‘}‘Sp accordmg to @) and the perturbation
radius 7. The last inequality is due to the perturbation radius r < - (we already used this condition
t¢ 45
in the previous arguments). This will give a contradiction for @ if 2(1+1n7) 72 > &, and it
. . 2log( BV )
will happen if ¢ > —
21 7
So the proof of this lemma is finished by contradiction if we let tipyes 1= % i.e., we have
4]

Ir < tihress maX{HxT - JJOHa ”'rT xOH}

Cip
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