
Nearly Linear-Time, Deterministic Algorithm for
Maximizing (Non-Monotone) Submodular Functions

Under Cardinality Constraint

Anonymous Author(s)
Affiliation
Address
email

Abstract

We develop two deterministic approximation algorithms for the maximization of1

non-monotone submodular functions under cardinality constraint: both are based2

upon the novel idea of interlacing two greedy procedures. Our algorithm FastInter-3

laceGreedy uses interlaced, thresholded greedy procedures to obtain ratio 1/4− ε4

in O
(
n
ε log

(
n
ε

))
queries of the objective, which improves upon both the ratio and5

the quadratic time complexity of the previously fastest deterministic algorithm for6

this problem. We validate our algorithms in the context of two applications of non-7

monotone submodular maximization, on which FastInterlaceGreedy outperforms8

the fastest deterministic and randomized algorithms in prior literature.9

1 Introduction10

Because of sundry applications, the maximization of a nonnegative submodular1 function with respect11

to a cardinality constraint (MCC) has a long history of study (Nemhauser et al., 1978). Applications of12

MCC include viral marketing (Kempe et al., 2003), network monitoring (Leskovec et al., 2007), video13

summarization (Mirzasoleiman et al., 2018), and MAP Inference for Determinental Point Processes14

(Gillenwater et al., 2012), among many others. In recent times, the amount of data generated by many15

applications has been increasing exponentially; therefore, linear or sublinear-time algorithms are16

needed.17

When f is monotone, greedy approaches for MCC have proven effective and nearly optimal, both in18

terms of query complexity and approximation factor: subject to a cardinality constraint k, a simple19

greedy algorithm gives a (1− 1/e) approximation ratio in O(kn) queries (Nemhauser et al., 1978),20

where n is the size of the instance. Furthermore, this ratio is optimal under the value oracle model21

(Nemhauser and Wolsey, 1978). Badanidiyuru and Vondrák (2014) sped up the greedy algorithm22

to require O(n log n) queries while sacrificing only a small ε > 0 in the approximation ratio, while23

Mirzasoleiman et al. (2015) developed a randomized (1− 1/e− ε) approximation in O(n/ε) queries.24

When f is non-monotone, the situation is very different; no subquadratic deterministic algorithm has25

yet been developed. Although a linear-time, randomized (1/e−ε)-approximation has been developed26

by Buchbinder et al. (2015), which requires O
(
n
ε2 log 1

ε

)
queries, the performance guarantee of this27

algorithm holds only in expectation. A derandomized version of the algorithm with ratio 1/e has been28

developed by Buchbinder and Feldman (2018a) but has time complexity O(k3n). Therefore, in this29

work, an emphasis is placed upon the development of nearly linear-time, deterministic approximation30

algorithms.31

1For technical definitions of terms used in the Introduction, the reader is referred to Section 1.

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Table 1: Fastest algorithms for cardinality constraint

Algorithm Ratio Time complexity Deterministic?
FastInterlaceGreedy (Alg. 2) 1/4− ε O

(
n
ε log n

ε

)
Yes

Gupta et al. (2010) 1/6− ε O
(
nk + n

ε

)
Yes

Buchbinder et al. (2015) 1/e− ε O
(
n
ε2 log 1

ε

)
No

Contributions32

We provide the deterministic approximation algorithm InterlaceGreedy (Alg. 1) for maximization of33

a submodular function subject to a cardinality constraint (MCC). InterlaceGreedy achieves ratio 1/434

in O(kn) queries to the objective function. We then speed the algorithm up in FastInterlaceGreedy35

(Alg. 2) to acheive ratio (1/4− ε) in O
(
n
ε log n

ε

)
queries. In Table 1, we show the relationship to36

the fastest deterministic and randomized algorithms for MCC in prior literature.37

Both algorithms operate by interlacing two greedy procedures together in a novel manner; that is,38

the two greedy procedures alternately select elements into disjoint sets and are disallowed from39

selection of the same element. We demonstrate this technique first with the interlacing of two standard40

greedy procedures in InterlaceGreedy, before interlacing thresholded greedy procedures developed41

by Badanidiyuru and Vondrák (2014) for monotone submodular functions to obtain the algorithm42

FastInterlaceGreedy.43

Our algorithms are validated in the context of cardinality-constrained maximum cut and social44

network monitoring, which are both instances of MCC. In this evaluation, FastInterlaceGreedy45

is more than an order of magnitude faster than the fastest deterministic algorithm (Gupta et al.,46

2010) and is both faster and obtains better solution quality than the fastest randomized algorithm47

(Buchbinder et al., 2015). The anonymized source code to reproduce the evaluation is available at48

https://gofile.io/?c=ChYSOQ.49

Organization The rest of this paper is organized as follows. Related work and preliminaries on50

submodular optimization are discussed in the rest of this section. In Section 2, InterlaceGreedy and51

FastInterlaceGreedy are presented and analyzed. Experimental validation is provided in Section 3.52

Related Work53

The literature on submodular optimization comprises many works. In this section, a short review of54

relevant techniques is given for MCC; that is, maximization of non-monotone, submodular functions55

over a ground set of size n with cardinality constraint k. For further information on other types of56

submodular optimization, interested readers are directed to the survey of Buchbinder and Feldman57

(2018b) and references therein.58

A deterministic local search algorithm was developed by Lee et al. (2010), which achieves ratio59

1/4 − ε in O(n4 log n) queries. This algorithm runs two approximate local search procedures in60

succession. By contrast, our algorithm FastInterlaceGreedy employs interlacing of greedy procedures61

to obtain the same ratio in O
(
n
ε log n

ε

)
queries.62

Gupta et al. (2010) developed a deterministic, iterated greedy approach, wherein two greedy pro-63

cedures are run in succession and an algorithm for unconstrained submodular maximization are64

employed. This approach requires O(nk) queries and has ratio 1/(4 + α), where α is the inverse65

ratio of the employed subroutine for unconstrained, non-monotone submodular maximization; under66

the value query model, the smallest possible value for α is 2, as shown by Feige et al. (2011), so67

this ratio is at most 1/6. The iterated greedy approach of Gupta et al. (2010) first runs one standard68

greedy algorithm to completion, then starts a second standard greedy procedure; this differs from69

our interlacing procedure which runs two greedy procedures concurrently and alternates between70

the selection of elements. The algorithm of Gupta et al. (2010) is experimentally compared to71

FastInterlaceGreedy in Section 3. The iterated greedy approach of Gupta et al. (2010) was extended72

and analyzed under more general constraints by a series of works: Mirzasoleiman et al. (2016);73

Feldman et al. (2017); Mirzasoleiman et al. (2018).74

An elegant randomized greedy algorithm of Buchbinder et al. (2014) achieves expected ratio 1/e75

in O(kn) queries for MCC; this algorithm was derandomized by Buchbinder and Feldman (2018a),76

2

https://gofile.io/?c=ChYSOQ


but the derandomized version requires O
(
k3n

)
queries. The randomized version was sped up77

in Buchbinder et al. (2015) to achieve expected ratio 1/e − ε and require O
(
n
ε2 log 1

ε

)
queries.78

Although this algorithm has better time complexity than FastInterlaceGreedy, the ratio of 1/e− ε79

holds only in expectation, which is much weaker than a deterministic approximation ratio. We80

compare experimentally with the algorithm of Buchbinder et al. (2015) in Section 3.81

Recently, an improvement in the adaptive complexity of MCC was made by Balkanski et al. (2018).82

Their algorithm, BLITS, requires O
(
log2 n

)
adaptive rounds of queries to the objective, where83

the queries within each round are independent of one another and thus can be parallelized easily.84

Previously the best adaptivity was the trivial O(n). However, each round requires Ω(OPT 2) samples85

to approximate expectations, which for the applications we evaluated in Section 3 is Ω(n4). For this86

reason, BLITS is evaluated as a heuristic in comparison with our algorithms in Section 3.87

Currently, the best approximation ratio of any algorithm for MCC is 0.385 of Buchbinder and88

Feldman (2016). Their algorithm also works under a more general constraint than cardinality89

constraint; namely, a matroid constraint. This algorithm is the latest in a series of works (e.g. (Naor90

and Schwartz, 2011; Ene and Nguyen, 2016)) using the multilinear extension of a submodular91

function, which is expensive to evaluate.92

Preliminaries93

Given n ∈ N, the notation [n] is used for the set {0, 1, . . . , n − 1}. In this work, functions f with94

domain all subsets of a finite set are considered; hence, without loss of generality, the domain of the95

function f is taken to be 2[n], which is all subsets of [n]. A nonnegative function f : 2[n] → R+ is96

submodular iff for all A,B ⊆ [n], x ∈ [n] \B, such that A ⊆ B, it holds that f (B ∪ x)− f(B) ≤97

f (A ∪ x)− f(A).98

In this work, the problem studied is to maximize a submodular function under a cardinality constraint99

(MCC), which is formally defined as follows. Let f : 2n → R+ be submodular; let k ∈ [n].100

Determine A ⊆ [n] such that |A| ≤ k and for all B such that |B| ≤ k, f(B) ≤ f(A). An instance of101

MCC is the pair (f, k); however, rather than an explicit description of f , the function f is considered102

to be a value oracle; f may be queried on any set A ⊆ [n] to yield f(A). The efficiency or runtime of103

an algorithm is measured by the number of queries made to the oracle f .104

Finally, without loss of generality, instances of MCC considered in the following satisfy n ≥ 4k. If105

this condition does not hold, the function may be extended to [m] by adding dummy elements to the106

domain which do not change the function value. That is, the function g : 2m → R+ is defined as107

g(A) = f(A ∩ [n]); it may be easily checked that g remains submodular, and any possible solution108

to the MCC instance (g, k) maps2 to a solution of (f, k) of the same value. Hence, the ratio of any109

solution to (g, k) to the optimal is the same as the ratio of the mapped solution to the optimal on110

(f, k).111

2 Approximation Algorithms112

In this section, we present the approximation algorithms based upon interlacing greedy procedures.113

In Section 2.1, the technique is demonstrated with standard greedy procedures in algorithm Interlace-114

Greedy. In Section 2.2, the nearly linear-time algorithm FastInterlaceGreedy is introduced.115

2.1 The InterlaceGreedy Algorithm116

In this section, the InterlaceGreedy algorithm (InterlaceGreedy, Alg. 1) is introduced. InterlaceGreedy117

takes as input an instance of MCC and outputs a set C, which approximates max|X|≤k f(X).118

InterlaceGreedy operates by interlacing two standard ;j;greedy procedures. This interlacing is119

accomplished by maintaining two disjoint sets A and B, which are initially empty. For k iterations,120

the element a 6∈ B with the highest marginal gain with respect to A is added to A, followed by an121

analogous greedy selection for B; that is, the element b 6∈ A with the highest marginal gain with122

respect to B is added to B. After the first set of interlaced greedy procedures complete, a modified123

2The mapping is to discard all elements greater than n.

3



Algorithm 1 InterlaceGreedy (f, k): The InterlaceGreedy Algorithm

1: Input: f : 2[n] → R+, k ∈ [n]
2: Output: C ⊆ 2[n], such that |C| ≤ k.
3: A0 ← B0 ← ∅
4: for i← 0 to k − 1 do
5: ai ← arg maxx∈2[n]\(Ai∪Bi) fx(Ai)
6: Ai+1 ← Ai + ai
7: bi ← arg maxx∈2[n]\(Ai+1∪Bi) fx(Bi)
8: Bi+1 ← Bi + bi
9: D1 ← E1 ← {a0}

10: for i← 1 to k − 1 do
11: di ← arg maxx∈2[n]\(Di∪Ei) fx(Di)
12: Di+1 ← Di + di
13: ei ← arg maxx∈2[n]\(Di+1∪Ei) fx(Ei)
14: Ei+1 ← Ei + ei
15: return C ← arg max{f(Ai), f(Bi), f(Di), f(Ei) : i ∈ [k + 1]}

version is repeated sets D,E, which are initialized to the maximum-value singleton {a0}. Finally,124

the algorithm returns the set with the maximum f -value of any query the algorithm has made to f .125

If f is submodular, InterlaceGreedy has an approximation ratio of 1/4 and query complexity O(kn);126

the deterministic algorithm of Gupta et al. (2010) has the same time complexity to achieve ratio 1/6.127

The full proof of Theorem 1 is provided in Appendix A.128

Theorem 1. Let f : 2[n] → R+ be submodular, let k ∈ [n], let O = arg max|S|≤k f(S), and let129

C =InterlaceGreedy (f, k). Then130

f(C) ≥ f(O)/4,

and InterlaceGreedy makes O(kn) queries to f .131

Proof sketch. The main idea of the proof is to exploit the fact that if S and T are disjoint,132

f(O ∪ S) + f(O ∪ T ) ≥ f(O) + f(O ∪ S ∪ T ), (1)

which is a consequence of the submodularity of f . Thus, if f(S) ≥ αf(O ∪ S) and f(T ) ≥133

βf(O ∪ T ), maxX∈{S,T} f(X) ≥ (α+ β)f(O)/4. Hence the proof proceeds by bounding f(A) ≥134

f(O ∪ A)/2 and f(B) ≥ f((O \ {a0}) ∪ B)/2. This is accomplished by an adaptation of the135

proof that the greedy algorithm is a (1/2)-approximation for monotone submodular maximization136

with respect to a matroid constraint (Fisher et al., 1978): the adaptation requires a re-ordering137

that is not possible subject to a general matroid constraint but is possible with the cardinality138

constraint considered here. Because of the way the re-ordering works, it is only possible to show that139

f(B) ≥ f((O \ {a0}) ∪B)/2, instead of the desired f(B) ≥ f(O ∪B)/2. Hence, a second greedy140

interlacing is required, starting both sets from {a0}, to produce D,E such that f(D) ≥ f(O ∪D)/2141

and f(E) ≥ f(O ∪ E)/2, with f(O ∪D) + f(O ∪ E) ≥ f(O ∪ {a0}) by submodularity. Finally,142

the argument concludes by noticing that either a0 ∈ O or a0 6∈ O.143

2.2 The FastInterlaceGreedy Algorithm144

In this section, we provide a faster interlaced greedy algorithm (FastInterlaceGreedy (FIG), Alg.145

2), which requires O(n log n) queries. As input, an instance (f, k) of MCC is taken, as well as a146

parameter δ > 0.147

The algorithm FIG works as follows. As in InterlaceGreedy, there is a repeated interlacing of two148

greedy procedures. However, to ensure a faster query complexity, these greedy procedures are149

thresholded: a separate threshold τ is maintained for each of the greedy procedures. The interlacing150

is accomplished by alternating calls to the ADD subroutine (Alg. 3), which adds a single element151

and is described below. When all of the thresholds fall below the value δM/n, the maximum of152

the greedy solutions is returned; here, δ > 0 is the input parameter, M is the maximum value of a153

singleton, and n is the size of the ground set.154

4



Algorithm 2 FIG (f, k, δ): The FastInterlaceGreedy Algorithm

1: Input: f : 2[n] → R+, k ∈ [n]
2: Output: C ⊆ 2[n], such that |C| ≤ k.
3: A0 ← B0 ← ∅
4: M ← τA ← τB ← maxx∈[n] f(x)
5: i← −1, a−1 ← 0, b−1 ← 0
6: while τA ≥ εM/n or τB ≥ εM/n do
7: (ai+1, τA)← ADD(A,B, ai, τA)
8: (bi+1, τB)← ADD(B,A, bi, τB)
9: i← i+ 1

10: D1 ← E1 ← {a0}, τD ← τE ←M
11: i← 0, d0 ← 0, e0 ← 0
12: while τD ≥ εM/n or τE ≥ εM/n do
13: (di+1, τD)← ADD(D,E, di, τD)
14: (ei+1, τE)← ADD(E,D, ei, τE)
15: i← i+ 1
16: return C ← arg max{f(A), f(B), f(D), f(E)}

Algorithm 3 ADD (S, T, j, τ): The ADD subroutine
1: Input: Two sets S, T ⊆ [n], element j ∈ [n], τ ∈ R+

2: Output: (i, τ), such that i ∈ [n], τ ∈ R+

3: if |S| = k then
4: return (0, (1− δ)τ)
5: while τ ≥ εM/n do
6: for (x← j;x < n;x← x+ 1) do
7: if x 6∈ T then
8: if fx(S) ≥ τ then
9: S ← S ∪ {x}

10: return (x, τ)
11: τ ← (1− δ)τ
12: j ← 0
13: return (0, τ)

The ADD subroutine is responsible for adding a single element above the input threshold and decreasing155

the threshold. It takes as input four parameters: two sets S, T , element j, and threshold τ ; furthermore,156

ADD is given access to the oracle f , the budget k, and the parameter δ of FIG. As an overview, ADD157

adds the first3 on the element x > j, such that x 6∈ T and such that the marginal gain fx(S) is at least158

τ . If no such element x > j exists, the threshold is decreased by a factor of (1− δ) and the process is159

repeated (with j set to 0). When such an element x is found, the element x is added to S, and the new160

threshold value and position x are returned. Finally, ADD ensures that the size of S does not exceed k.161

Next, we prove the approximation ratio of FIG.162

Theorem 2. Let f : 2[n] → R+ be submodular, let k ∈ [n], and let ε > 0. Let O =163

arg max|S|≤k f(S). Choose δ such that (1− 6δ)/4 > 1/4− ε, and let C =FIG (f, k, δ). Then164

f(C) ≥ (1− 6δ)f(O)/4 ≥ (1/4− ε) f(O).

Proof. Let A,B,C,D,E,M have their values at termination of FIG(f, k, δ). Let A =165

{a0, . . . , a|A|−1} be ordered by addition of elements by FIG into A. The proof requires the fol-166

lowing four inequalities:167

f(O ∪A) ≤ (2 + 2δ)f(A) + δM, (2)
f((O \ {a0}) ∪B) ≤ (2 + 2δ)f(B) + δM, (3)

f(O ∪D) ≤ (2 + 2δ)f(D) + δM, (4)
f(O ∪ E) ≤ (2 + 2δ)f(E) + δM. (5)

3The first element x > j in the natural ordering on [n] = {0, . . . , n− 1}.

5



Once these inequalities have been established, Inequalities 2, 3, submodularity of f , and A ∩B = ∅168

imply169

f(O \ {a0}) ≤ 2(1 + δ)(f(A) + f(B)) + 2δM. (6)

Similarly, from Inequalities 4, 5, submodularity of f , and D ∩ E = {a0}, it holds that170

f(O ∪ {a0}) ≤ 2(1 + δ)(f(D) + f(E)) + 2δM. (7)

Hence, from the fact that either a0 ∈ O or a0 6∈ O and the definition of C, it holds that171

f(O) ≤ 4(1 + δ)f(C) + 2δM.

Since f(C) ≤ f(O) and M ≤ f(O), the theorem is proved.172

The proofs of Inequalities 2–5 are similar. The proof of Inequality 3 is given here, while the proofs of173

the others are provided in Appendix B.174

Proof of Inequality 3. Let A = {a0, . . . , a|A|−1} be ordered as specified by FIG. Likewise, let175

B = {b0, . . . , b|B|−1} be ordered as specified by FIG.176

Lemma 1. O \ (B ∪ {a0}) = {o0, . . . , ol−1} can be ordered such that177

foi(Bi) ≤ (1 + 2δ)fbi(Bi), (8)

for any i ∈ [|B|].178

Proof. For each i ∈ [|B|], define τBi to be the value of τ when bi was added to B in the ADD179

subroutine. Order o ∈ (O \ (B ∪ {a0}))∩A = {o0, . . . , o`−1} by the order in which these elements180

were added into A. Order the remaining elements of O \ (B ∪ {a0}) arbitrarily. Then, when bi was181

chosen by ADD, it holds that oi 6∈ Ai+1, since A1 = {a0} and a0 6∈ O \ (B ∪ {a0}). Also, it is true182

oi 6∈ Bi; hence oi was not added into some (possibly non-proper) subset B′i of Bi at the previous183

threshold value τBi

(1−δ) . Hence foi(Bi) ≤ foi(B
′
i) <

τBi

(1−δ) , since oi 6∈ Ai+1. Since fbi(Bi) ≥ τBi
184

and δ < 1/2, inequality (8) follows.185

Order Ô = O \ (B ∪ {a0}) = {o0, . . . , ol−1} as indicated in the proof of Lemma 1, and let186

Ôi = {o0, . . . , oi−1}, if i ≥ 1, Ô0 = ∅. Then187

f(Ô ∪B)− f(B) =

l−1∑
i=0

foi(Ôi ∪B)

=

|B|−1∑
i=0

foi(Ôi ∪B) +

l−1∑
i=|B|

foi(Ôi ∪B)

≤
|B|−1∑
i=0

foi(Bi) +

l−1∑
i=|B|

foi(B)

≤
|B|−1∑
i=0

(1 + 2δ)fbi(Bi) +

l−1∑
i=|B|

foi(B)

≤ (1 + 2δ)f(B) + δM,

where any empty sum is defined to be 0; the first inequality follows by submodularity, the sec-188

ond follows from Lemma 1, and the third follows from the definition of B, and the facts that189

maxx∈[n]\A|B|+1
fx(B) < εM/n, l − |B| ≤ k, and oi 6∈ A|B|+1, for |B| ≤ i < l.190

Theorem 3. Let f : 2[n] → R+ be submodular, let k ∈ [n], and let δ > 0. Then the number of191

queries to f by FIG(f, k, δ) is at most O
(
n
δ log n

δ

)
.192

6



Proof. Recall [n] = {0, 1, . . . , n − 1}. Let S ∈ {A,B,D,E}, and S = {s0, . . . , s|S|−1} in the193

order in which elements were added to S. When ADD is called by FIG to add an element si ∈ [n] to194

S, if the value of τ is the same as the value when si−1 was added to S, then si > si−1. Finally, once195

ADD queries the marginal gain of adding (n− 1), the threshold is revised downward by a factor of196

(1− δ).197

Therefore, there are at most O(n) queries of f at each distinct value of τA, τB , τD, τE . Since at most198

O( 1
δ log n

δ ) values are assumed by each of these thresholds, the theorem follows.199

3 Experimental Evaluation200

In this section, performance of FastInterlaceGreedy (FIG) is compared with that of state-of-the-art201

algorithms on two applications of submodular maximization: cardinality-constrained maximum cut202

and network monitoring.203

3.1 Setup204

Algorithms We compare the following algorithms. Source code for the evaluated implementations205

of all algorithms is available at https://gofile.io/?c=ChYSOQ.206

• FastInterlaceGreedy (Alg. 2): FIG is implemented as specified in the pseudocode, with the207

following addition: a stealing procedure is employed at the end, which uses submodularity208

to quickly steal4 elements from A,B,D,E into C in O(k) queries. This does not impact209

the performance guarantee, as the value of C can only increase. The parameter δ is set to210

0.1, yielding approximation ratio of 0.1.211

• Gupta et al. (2010): The algorithm of Gupta et al. (2010) for cardinality constraint; as the212

subroutine for the unconstrained maximization subproblems, the deterministic, linear-time213

1/3-approximation algorithm of Buchbinder et al. (2012) is employed. This yields an overall214

approximation ratio of 1/7 for the implementation used herein. This algorithm is the fastest215

determistic approximation algorithm in prior literature.216

• FastRandomGreedy (FRG): The O
(
n
ε2 ln 1

ε

)
randomized algorithm of Buchbinder et al.217

(2015) (Alg. 4 of that paper), with expected ratio 1/e − ε; the parameter ε was set to218

0.3, yielding expected ratio of ≈ 0.07 as evaluated herein. This algorithm is the fastest219

randomized approximation algorithm in prior literature.220

• BLITS: The O
(
log2 n

)
-adaptive algorithm recently introduced in Balkanski et al. (2018);221

the algorithm is employed as a heuristic without performance ratio, with the same parameter222

choices as in Balkanski et al. (2018). In particular, ε = 0.3 and 30 samples are used to223

approximate the expections. Also, a bound on OPT is guessed in logarithmically many224

iterations as described in Balkanski et al. (2018) and references therein.225

Results for randomized algorithms are the mean of 10 trials, and the standard deviation is represented226

in plots by a shaded region.227

Applications Many applications with non-monotone, submodular objective functions exist. In this228

section, two applications are chosen to demonstrate the performance of the evaluated algorithms.229

• Cardinality-Constrained Maximum Cut: The archetype of a submodular, non-monotone230

function is the maximum cut objective: given graph G = (V,E), S ⊆ V , f(S) is defined231

to be the number of edges crossing from S to V \ S. In this evaluation, we consider the232

cardinality constrained version of this problem.233

• Social Network Monitoring: Given an online social network, suppose it is desired to choose234

k users to monitor, such that the maximum amount of content is propagated through these235

users. Suppose the amount of content propagated between two users u, v is encoded as236

weight w(u, v). Then f(S) =
∑
u∈S,v 6∈S w(u, v).237

4Details of the stealing procedure are given in Appendix C.

7

https://gofile.io/?c=ChYSOQ


3.2 Results238

In this section, results are presented for the algorithms on the two applications. In overview: in terms239

of objective value, FIG and Gupta et al. (2010) were about the same and outperformed BLITS and240

FRG. Meanwhile, FIG was the fastest algorithm by the metric of queries to the objective and was241

faster than Gupta et al. (2010) by at least an order of magnitude.242

200 400
k

2.5

5.0

7.5

10.0

12.5

V
al

ue
 x

 1
04

FIG
Blits
FRG
Gupta et al.

(a) ER, Cut Value

200 400
k

104

105

106

N
um

be
r 

of
 Q

ue
ri

es FIG
Blits
FRG
Gupta et al.

(b) ER, Function Queries

1000 2000
k

7.5

10.0

12.5

15.0

V
al

u
e 

x 
10

4

FIG
Blits
FRG
Gupta et al.

(c) BA, Cut Value

1000 2000
k

106

107

108

N
um

be
r 

of
 Q

ue
ri

es

FIG
Blits
FRG
Gupta et al.

(d) BA, Function Queries

250 500 750 1000
k

1

2

3

4

Va
lu

e 
x 

10
5

FIG
Blits
FRG
Gupta et al.

(e) Total content monitored versus
budget k

250 500 750 1000
k

106

107

108

N
um

be
r 

of
 Q

ue
ri

es

FIG
Blits
FRG
Gupta et al.

(f) Number of Queries versus bud-
get k

Figure 1: (a)–(d): Objective value and runtime for cardinality-constrained maxcut on random graphs.
(e)–(f): Objective value and runtime for cardinality-constrained maxcut on ca-AstroPh with simulated
amounts of content between users. In all plots, the x-axis shows the budget k.

Cardinality Constrained MaxCut For these experiments, two random graph models were em-243

ployed: an Erdős-Rényi (ER) random graph with 1, 000 nodes and edge probability p = 1/2, and a244

Barabási–Albert (BA) graph with n = 10, 000 and m = m0 = 100.245

On the ER graph, results are shown in Figs. 1(a) and 1(b); the results on the BA graph are shown in246

Figs. 1(c) and 1(d). In terms of cut value, the algorithm of Gupta et al. (2010) performed the best,247

although the value produced by FIG was nearly the same. On the ER graph, the next best was FRG248

followed by BLITS; whereas on the BA graph, BLITS outperformed FRG in cut value. In terms of249

efficiency of queries, FIG used the smallest number on every evaluated instance, although the number250

did increase logarithmically with budget. The number of queries used by FRG was higher, but after251

a certain budget remained constant. The next most efficient was Gupta et al. (2010) followed by252

BLITS.253

Social Network Monitoring For the social network monitoring application, the citation network254

ca-AstroPh from the SNAP dataset collection was used, with n = 18, 772 users and 198, 110 edges.255

Edge weights, which represent the amount of content shared between users, were generated uniformly256

randomly in [1, 10]. The results were similar qualitatively to those for the unweighted MaxCut257

problem presented previously. FIG is the most efficient in terms of number of queries, and FIG is258

only outperformed in solution quality by Gupta et al. (2010), which required more than an order of259

magnitude more queries.260

8



References261

Ashwinkumar Badanidiyuru and J Vondrák. Fast algorithms for maximizing submodular functions.262

Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages263

1497–1514, 2014.264

Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization in265

exponentially fewer iterations. In NeurIPS, 2018.266

Niv Buchbinder and Moran Feldman. Constrained Submodular Maximization via a Non-symmetric267

Technique. 2016.268

Niv Buchbinder and Moran Feldman. Deterministic Algorithms for Submodular Maximization. ACM269

Transactions on Algorithms, 14(3), 2018a.270

Niv Buchbinder and Moran Feldman. Submodular Functions Maximization Problems – A Survey. In271

Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics. Second272

edition, 2018b.273

Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. A Tight Linear Time ( 1 / 2 )274

-Approximation for Unconstrained Submodular Maximization. In FOCS, pages 649–658, 2012.275

Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. Submodular Maximization276

with Cardinality Constraints. In Symposium on Discrete Algorithms (SODA). ACM, 2014.277

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing Apples and Oranges: Query278

Tradeoff in Submodular Maximization. In Symposium on Discrete Algorithms (SODA), pages279

1149–1168. ACM-SIAM, 2015.280

Alina Ene and Huy L. Nguyen. Constrained Submodular Maximization : Beyond 1 / e. In FOCS,281

pages 248–257, 2016.282

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing Non-Monotone Submodular Functions.283

SIAM Journal on Computing, 40(4):1133–1153, 2011.284

Moran Feldman, Christopher Harshaw, and Amin Karbasi. Greed is Good: Near-Optimal Submodular285

Maximization via Greedy Optimization. In COLT, pages 1–26, 2017.286

M.L. Fisher, G.L. Nemhauser, and L.A. Wolsey. An analysis of approximations for maximizing287

submodular set functions-II. Mathematical Programming, 8:73–87, 1978.288

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-Optimal MAP Inference for Determinantal289

Point Processes. In NIPS, 2012.290

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-monotone291

submodular maximization: Offline and secretary algorithms. In WINE, volume 6484 LNCS, pages292

246–257, 2010.293

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social294

network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge295

Discovery and Data Mining (KDD), pages 137–146, 2003.296

Jon Lee, Vahab Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing Nonmonotone297

Submodular Functions under Matroid or Knapsack Constraints. Siam Journal of Discrete Math, 23298

(4):2053–2078, 2010.299

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie300

Glance. Cost-effective Outbreak Detection in Networks. In Proceedings of the 13th ACM SIGKDD301

International Conference on Knowledge Discovery and Data Mining (KDD), pages 420–429, 2007.302

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrak, and Andreas303

Krause. Lazier Than Lazy Greedy. In Proceedings of the Twenty-Ninth AAAI Conference on304

Artificial Intelligence (AAAI), pages 1812–1818, 2015.305

9



Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast Constrained Submod-306

ular Maximization : Personalized Data Summarization. In ICML, 2016.307

Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming Non-Monotone Submod-308

ular Maximization: Personalized Video Summarization on the Fly. In AAAI, pages 1379–1386,309

2018.310

Joseph Seffi Naor and Roy Schwartz. A Unified Continuous Greedy Algorithm for Submodular311

Maximization. pages 570–579, 2011.312

G L Nemhauser and L A Wolsey. Best Algorithms for Approximating the Maximum of a Submodular313

Set Function. Mathematics of Operations Research, 3(3):177–188, 1978.314

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing315

submodular set functions-I. Mathematical Programming, 14(1):265–294, 1978.316

10



A Proof of Theorem 1317

Proof of Theorem 1.318

Lemma 2.
4f(C) ≥ f (O \ {a0}) .

Proof. Let A = arg maxi∈[k+1] f(Ai). Let Ô = O \Ak = {o0, . . . , ol−1} be ordered such that for319

each i ∈ [l], oi 6∈ Bi; this ordering is possible since B0 = ∅ and l ≤ k. Also, for each i ∈ [l], let320

Ôi = {o0, . . . , oi}, and let Ô0 = ∅. Then321

f(O ∪Ak)− f(Ak) =

l−1∑
i=0

foi(Ôi ∪Ak)

≤
l−1∑
i=0

foi(Ai)

≤
l−1∑
i=0

fai(Ai) = f(Al),

where the first inequality follows from submodularity, the second inequality follows from the greedy322

choice ai = arg maxx∈2[n]\(Ai∪Bi) fx(Ai) and the fact that oi 6∈ Bi. Hence323

f(O ∪Ak) ≤ f(Al) + f(Ak) ≤ 2f(A). (9)

Let B = arg maxi∈[k+1] f(Bi). Let Ô = O \ ({a0} ∪Bk) = {o0, . . . , ol−1} be ordered such that324

for each i ∈ [l], oi 6∈ Ai+1; this ordering is possible since A1 = {a0}, a0 6∈ Ô, and l ≤ k. Also, for325

each i ∈ [l], let Ôi = {o0, . . . , oi}, and let Ô0 = ∅. Then326

f((O \ {a0}) ∪Bk)− f(Bk) =

l−1∑
i=0

foi(Ôi ∪Bk)

≤
l−1∑
i=0

foi(Bi)

≤
l−1∑
i=0

fbi(Bi) = f(Bl),

where the first inequality follows from submodularity, the second inequality follows from the greedy327

choice bi = arg maxx∈2[n]\(Ai+1∪Bi) fx(Bi) and the fact that oi 6∈ Ai+1. Hence328

f((O \ {a0}) ∪Bk) ≤ f(Bl) + f(Bk) ≤ 2f(B). (10)

By inequalities (9), (10), the fact that Ak ∩Bk = ∅, and submodularity, we have329

f(O \ {a0}) ≤ f(O ∪Ak) + f((O \ {a0} ∪Bk) ≤ 2(f(A) + f(B)) ≤ 4f(C).

330

Lemma 3.
4f(C) ≥ f (O ∪ {a0}) .

Proof. Let D = arg maxi∈[k+1] f(Ai). Let Ô = O \Dk = {o0, . . . , ol−1} be ordered such that for331

each i ∈ [l], oi 6∈ Ei; this ordering is possible since E0 = ∅ and l ≤ k. Also, for each i ∈ [l], let332

11



Ôi = {o0, . . . , oi}, and let Ô0 = ∅. Then333

f(O ∪Dk)− f(Dk) =

l−1∑
i=0

foi(Ôi ∪Dk)

≤
l−1∑
i=0

foi(Di)

≤
l−1∑
i=0

fdi(Di) = f(Dl),

where the first inequality follows from submodularity, the second inequality follows from the greedy334

choice di = arg maxx∈2[n]\(Di∪Ei) fx(Di) and the fact that oi 6∈ Ei. Hence335

f(O ∪Dk) ≤ f(Dl) + f(Dk) ≤ 2f(D). (11)

Let E = arg maxi∈[k+1] f(Ei). Let Ô = O \ Ek = {o0, . . . , ol−1} be ordered such that for each336

i ∈ [l], oi 6∈ Di+1; this ordering is possible since D1 = {a0}, a0 6∈ Ô (since a0 ∈ Ek), and l ≤ k.337

Also, for each i ∈ [l], let Ôi = {o0, . . . , oi}, and let Ô0 = ∅. Then338

f(O ∪ Ek)− f(Ek) =

l−1∑
i=0

foi(Ôi ∪ Ek)

≤
l−1∑
i=0

foi(Ei)

≤
l−1∑
i=0

fei(Ei) = f(El),

where the first inequality follows from submodularity, the second inequality follows from the greedy339

choices e0 = arg maxx∈[n] f(x), and if i > 0, ei = arg maxx∈2[n]\(Di+1∪Ei) fx(Ei) and the fact340

that oi 6∈ Di+1. Hence341

f((O ∪ Ek) ≤ f(El) + f(Ek) ≤ 2f(E). (12)
By inequalities (11), (12), the fact that Dk ∩ Ek = {a0}, and submodularity, we have342

f(O ∪ {a0}) ≤ f(O ∪Dk) + f((O ∪ Ek) ≤ 2(f(D) + f(E)) ≤ 4f(C).

343

The proof of the theorem follows from Lemmas 2, 3, and the fact that one of the statements a0 ∈ O344

or a0 6∈ O must hold; hence, either O ∪ {a0} = O or O \ {a0} = O.345

B Proofs for Theorem 2346

Proof of Inequality 2. Let A = {a0, . . . , a|A|−1} be ordered as specified by FIG. Likewise, let347

B = {b0, . . . , b|B|−1} be ordered as specified by FIG.348

Lemma 4. O \A = {o0, . . . , ol−1} can be ordered such that349

foi(Ai) ≤ (1 + 2δ)fai(Ai), (13)
if i ∈ [|A|].350

Proof. Order o ∈ (O \A) ∩B = {o0, . . . , o`−1} by the order in which these elements were added351

into B. Order the remaining elements of O \ A arbitrarily. Then, when ai was chosen by ADD, it352

holds that oi 6∈ Bi. Also, it is true oi 6∈ Ai; hence oi was not added into some (possibly non-proper)353

subset A′i of Ai at the previous threshold value τAi

(1−δ) . Hence foi(Ai) ≤ foi(A
′
i) <

τAi

(1−δ) , since354

oi 6∈ Bi. Since fai(Ai) ≥ τAi
and δ < 1/2, inequality (13) follows.355

12



Order Ô = O \ A = {o0, . . . , ol−1} as indicated in the proof of Lemma 4, and let Ôi =356

{o0, . . . , oi−1}, if i ≥ 1, Ô0 = ∅. Then357

f(O ∪A)− f(A) =

l−1∑
i=0

foi(Ôi ∪A)

=

|A|−1∑
i=0

foi(Ôi ∪A) +

l−1∑
i=|A|

foi(Ôi ∪A)

≤
|A|−1∑
i=0

foi(Ai) +

l−1∑
i=|A|

foi(A)

≤
|A|−1∑
i=0

(1 + 2δ)fai(Ai) +

l−1∑
i=|A|

foi(A)

≤ (1 + 2δ)f(A) + δM,

where any empty sum is defined to be 0; the first inequality follows by submodularity, the sec-358

ond follows from Lemma 4, and the third follows from the definition of A, and the facts that359

maxx∈[n]\B|A| fx(A) < εM/n and l − |A| ≤ k.360

Proof of Inequality 4. As in the proof of Inequality 2, it suffices to establish the following lemma.361

Lemma 5. O \D = {o0, . . . , ol−1} can be ordered such that362

foi(Di) ≤ (1 + 2δ)fdi(Di), (14)

for i ∈ [|D|].363

Proof. Order o ∈ (O \D) ∩ E = {o0, . . . , o`−1} by the order in which these elements were added364

into E. Order the remaining elements of O \D arbitrarily. Then, when di was chosen by ADD, it365

holds that oi 6∈ Ei. Also, it is true oi 6∈ Di; hence oi was not added into some (possibly non-proper)366

subset D′i of Di at the previous threshold value τDi

(1−δ) . Hence foi(Di) ≤ foi(D
′
i) <

τDi

(1−δ) , since367

oi 6∈ Ei. Since fdi(Di) ≥ τDi and δ < 1/2, inequality (14) follows.368

Proof of Inequality 5. As in the proof of Inequality 2, it suffices to establish the following lemma.369

Lemma 6. O \ E = {o0, . . . , ol−1} can be ordered such that370

foi(Ei) ≤ (1 + 2δ)fei(Ei), (15)

for i ∈ [|E|].371

Proof. Order o ∈ (O \ E) ∩D = {o0, . . . , o`−1} by the order in which these elements were added372

into D. Order the remaining elements of O \ E arbitrarily. Then, when ei was chosen by ADD, it373

holds that oi 6∈ Di+1, since D1 = {a0} and a0 = d0 6∈ O \ E. Also, it is true oi 6∈ Ei; hence oi was374

not added into some (possibly non-proper) subset E′i of Ei at the previous threshold value τEi

(1−δ) .375

Hence foi(Ei) ≤ foi(E′i) <
τEi

(1−δ) , since oi 6∈ Di+1. Since fei(Ei) ≥ τEi
and δ < 1/2, inequality376

(15) follows.377

378

C Stealing Procedure for FastInterlaceGreedy379

In this section, we describe an O(k) procedure that may improve the quality of the solution found by380

FastInterlaceGreedy (a similar procedure could also be employed for InterlaceGreedy).381

Let A,B,C,D,E have their values at the termination of FastInterlaceGreedy. Then calculate the sets382

G = {Bc = f(C)−f(C\{c}) : c ∈ C} andH = {Ax = f(C∪{x})−f(C) : x ∈ A∪B∪D∪E}.383

13



Then sort G = (Bc1 , . . . , Bck) in non-decreasing order and sort H = (Ax1 , . . . , Axl
) in non-384

increasing order. Computing and sorting these sets requires O(k log k) time (and only O(k) queries385

to f ).386

Finally, iterate through the elements of G in the sorted order, and if Bci < Axi
then C is assigned387

C \ {ci} ∪ {xi} if this assignment increases the value f(C).388

14


	Introduction
	Approximation Algorithms
	The InterlaceGreedy Algorithm
	The FastInterlaceGreedy Algorithm

	Experimental Evaluation
	Setup
	Results

	Proof of Theorem 1
	Proofs for Theorem 2
	Stealing Procedure for FastInterlaceGreedy

