
A Examples of efficient averaging

For instance, consider the generative model in Fig. 5A. The corresponding TMC estimator is

PTMC =
1

K1K2K3K4

∑

k1,k2,k3,k4

fk1k2
1 fk1k3

2 fk2k4
3 fk3k4

4 , (29)

which can be understood by reference to a loopy factor graph defined over k1, k2, k3, k4 (Fig. 5B).
Summing over k1, we obtain Fig. 5C,

PTMC =
1

K2K3K4

∑

k2,k3,k4

fk2k3
12 fk2k4

3 fk3k4
4 (30)

fk2k3
12 =

1

K1

∑

k1

fk1k2
1 fk1k3

2 , (31)

and summing over k2 we obtain Fig. 5D,

PTMC =
1

K3K4

∑

k3,k4

fk3k4
123 fk3k4

4 (32)

fk3k4
123 =

1

K2

∑

k2

fk2k3
12 fk2k4

3 , (33)

which be computed directly. Now we can find the optimal settings for the generative and proposal
parameters by performing gradient ascent on logPTMC using standard automatic differentiation tools.

As a second more practical example, consider the generative model in Fig. 6A, with unknown
parameters, θ, and unknown latents, zi, corresponding to each data point, xi. The corresponding
TMC estimator is,

PTMC =
1

KθKN

∑

kθ,k1,k2,...,kN

fkθ

θ

N
∏

i=1

fkθ,ki

i , (34)

where ki, which runs from 1 to K, indexes samples of zi and kθ, which runs from 1 to Kθ, indexes
samples of θ. We can represent this estimator as a factor graph (Fig. 6B). To efficiently compute the
TMC estimate, we sum over k1, k2, . . . , kn,

PTMC =
1

Kθ

Kθ
∑

kθ=1

fkθ

θ

N
∏

i=1

fkθ

i (35)

fkθ

i =
1

K

K
∑

ki=1

fkθ,ki

i , (36)

which is represented in Fig. 6C and can be computed directly.

B TMC for non-factorised proposals

Now that we have established the possibility of efficiently computing the TMC marginal likelihood
estimate, we come back to show that it is possible to use non-factorised proposals in TMC.

Unfortunately, the proof is considerably more involved than the previous proof for factorised TMC,
requiring us to consider the joint distribution over all samples for all latents, z = (z1, z2, . . . , zn),

where all samples for the ith latent are given by zi = (z1i , z
2
i , . . . , z

Ki

i ). Our approach is to define
sets of generative distributions, Pk(z) and Pk(x|z), indexed by k = (k1, k2, . . . , kn) such that for all
choices of k, the usual importance ratio gives an unbiased estimate of the model evidence,

P(x) = EQ(z)

[

Pk(x|z)
Pk(z)

Q(z)

]

(37)

11



A

z1 z2

z3 z4

x

B

k1 k2

k3 k4

fk1,k2

1

fk1,k3

2 fk2,k4

3

fk3,k4

4

C

k2

k3 k4

fk2,k3

12

fk2,k4

3

fk3,k4

4

D

k3 k4

fk3,k4

123

fk3,k4

4

Figure 5: A graphical depiction of the proceedure for efficiently computing the marginal likelihood
for a loopy factor graph. A. The original graphical model. B. Representing the TMC unbiased
estimator as a factor graph. C. Summing over k1 simplifies the graph. D. Summing over k2 gives a
simple graph that can readily be summed out.

A

θ

z1 z2 . . . zn

x1 x2 . . . xn

B

kθ

k1 k2 . . . kn

fkθ

θ

fkθ,k1

1 fkθ,kn
n

C

kθ

fkθ

θ

fkθ

1 fkθ

2 fkθ
n

. . .

Figure 6: A graphical depiction of the proceedure for efficiently computing the marginal likelihood
for a latent variable model with unknown parameters, θ, and latents, zi corresponding to each data
point, xi. A. The original graphical model. B. Representing the TMC unbiased estimator as a factor
graph. C. Summing over k1, k2, . . . kn simplifies the graph, allowing the TMC estimator to be readily
computed by summing over kθ.

To obtain this equality, we split the full latent space, z into the “indexed” latents, zk =
(zk1

1 , zk2
2 , . . . , zkn

n ), and the other, “non-indexed” latents, z−k. We chose the likelihood, Pk(x|z),
such that the data depends on only the indexed latents, zk, in exactly the same way as in the original
model,

Pk(x|z) = P
(

x|z = zk
)

. (38)

For the prior, we begin by factorising it into terms for the indexed and non-indexed latents,

Pk(z) = P
(

z−k|zk
)

P
(

zk
)

. (39)

and we chose the distribution over the indexed latents to be that under the original model,

P
(

zk
)

= P
(

z = zk
)

. (40)

These two choices are all that is required to give an unbiased estimator of the original model evidence.
In particular,

EQ(z)

[

Pk(x|z)
Pk(z)

Q(z)

]

=

∫

dzk dz−k P
(

x|zk
)

P
(

zk
)

P
(

z−k|zk
)

(41)

integrating over z−k, then using our choices for the likelihood and prior,

EQ(z)

[

Pk(x|z)
Pk(z)

Q(z)

]

=

∫

dzk P
(

x|zk
)

P
(

zk
)

=

∫

dz P(x|z) P(z) = P(x) , (42)

as required. Importantly, note that this derivation made no assumptions about the proposal, Q(z), and

the generative model for the non-indexed latents, P
(

z−k|zk
)

, giving us complete freedom — at least
in principle — about how we choose those quantities.

12



However, importance sampling over the enlarged latent space (z) may give rise to higher variance
estimators than working in the orignal space, (z or zk). As such, it pays to be careful about the choice
of generative model for the non-indexed latents, P

(

z−k|zk
)

, and the proposal, Q(z). In particular,

our strategy is to choose P
(

z−k|zk
)

such that it cancels many of the terms in Q(z). We begin by
assuming that each sample for a single latent is independent, conditioned on all samples of previous
latents,

Q(z|x) =
∏

i

∏

ki

Q
(

zki

i |x, zqa(i)

)

(43)

where qa(zi) ⊆ {1, . . . , n} gives the indices of the parents of zi under the proposal. To give as much
cancellation as possible, we assume that the generative model for the non-indexed latents is equal to
the proposal,

P
(

z−k|zk
)

=
∏

i

∏

k′

i 6=ki

Q
(

zk
′

i
i |x, zqa(i)

)

(44)

After cancelling P
(

z−k|zk
)

with terms in the proposal the importance ratio becomes,

Pk(x|z)
Pk(z)

Q(z|x)
=

P
(

x|zk
)

P
(

zk
)

∏

i Q
(

zki

i |x, zqa(i)

) =
P
(

x, zk1
1 , zk2

2 , . . . , zkn
n

)

∏

i Q
(

zki

i |x, zqa(i)

) (45)

Notably, this is analogous to the factorised case, except that the proposal is allowed to depend on
samples of the other latents. Further, note that the techniques for efficient averaging continue to work
in exactly the same way: the proposal factors depend only on one index, ki, and so we can always
use the same factorisation of the importance ratio under a factorised or non-factorised approximate
posterior.

C Typical choice of approximate posteriors

In the previous section, we used approximate posteriors of the form, Q
(

zki

i |x, zqa(i)

)

. In general it

is possible to use any (permutation invariant) function of the set of previous samples, for instance,
taking their mean, and this would be computationally efficient. However, in order to match TMC and
IWAE as closely as possible, it is appropriate to use an mixture distribution, where each component
of the mixture model depends on one combination of past samples,

Q
(

zki

i |x, zqa(i)

)

=
∑

kqa(i)

Q
(

zki

i |x, z
kqa(i)

qa(i)

)

. (46)

In our experiments, the non-factorised distributions depend only on one previous random variable, so
they become,

Q
(

zki

i |x, zqa(i)

)

=
∑

ki−1

Q
(

z
ki−1

i−1 |z
ki−1

i−1

)

. (47)

Again, the asymptotic cost of sampling and evaluating the log-probability for all ki is O(K2), but for

practical problem sizes, the dominant cost is computing the mixture components, Q
(

z
ki−1

i−1 |z
ki−1

i−1

)

by propagating the previous samples, zk−1
i−1 , through the appropriate neural network, and this cost

again scales with O(K).

D Exact marginalisation over discrete latent variables

Notably, the TMC framework can be extended to incorporate exact marginalisation over discrete
variables. In particular, we take the number of importance samples, Ki, to be equal to the number of
settings of the discrete variable, we consider a uniform proposal, Q(zi) = 1/Ki, and we use stratified
sampling, such that each possible setting of the latent variable is represented by one sample (e.g.

13



taking zi = {1, 2, . . . ,Ki}, we might have zki
i = ki). Making these choices, and taking z1 to be a

discrete variable, the TMC estimator over P
(

x, zk1
1 , zk2

2 , . . . , zkn
n

)

is,

PTMC =
1

Kn−1

∑

k2,...,kn

∑

z1

P
(

x, z1, z
k2
2 , zk3

3 . . . , zkn
n

)

Q
(

zk2
2

)

Q
(

zk3
3

)

· · ·Q(zkn
n )

. (48)

Note that this is exactly equal to a different TMC estimator, over a model with z1 marginalised out
(i.e. P(x, z2, z3, . . . , zn)). This is important because it enables us to link TMC with the rich prior
literature on exact marginalisation in discrete graphical models, and because it allows us to combine
importance sampling over continuous variables and exact marginalisation over discrete variables into
a single framework.

E Numerically stable matrix (tensor) products in the log-domain

When we take inner products of tensors representing large probabilities, there is a considerable risk
of numerical overflow. To avoid this risk, we work in the log-domain, and write down a numerically
stable matrix-inner product, denoted logmmexp, by analogy with the standard logsumexp function.
In particular, consider the problem of computing eZik , as the matrix product of eXij and eYjk ,

eZik =
∑

j

eXijeYjk . (49)

taking the logarithm so as to compute Zik,

Zik = log





∑

j

eXijeYjk



 . (50)

as the elements of Xij and Yjk could be very large (or very small), to ensure numerical stability of
the sum, we add and subtract xi and yk,

Zik = log





∑

j

eXij−xieYjk−yk



+ xi + yk, (51)

where

xi = max
j

Xij (52)

yk = max
j

Yjk. (53)

F Combining DReGs and TMC

To perform DReGs, we optimize the generative parameters using the usual IWAE/TMC cost func-
tion, but use a different strategy for optimizing the recognition model, that involves non-trivial
manipulations of the importance weights. In particular, the DReGs recognition updates are given by,

∑

i

w2
i

(
∑

j wj)2
∂zi
∂φ

∂ logwi

∂zi
(54)

=
∑

i

w2
i

(
∑

j wj)2
∂z(ǫi;φ)

∂φ

∂ logw(z;φ)

∂z

∣

∣

∣

∣

z=z(ǫi;φ)

,

where the first version is that given in prior work, and the second version has been written out more
carefully to highlight the functional dependencies, and hence how the partial derivative applies to
each term. The latents have been written in their usual reparameterised form, and the importance
weights can be written as a function of the latents, and the parameters,

w(z;φ) =
P(x, z)

Qφ(x, z)
, (55)

14



but we write down the individual importance weights as functions of the reparameterised noise, ǫi,
and the parameters,

wi(ǫi;φ) = w(z(ǫi;φ);φ). (56)

We cannot compute this function directly in the TMC set-up, because TMC involves exponential
numbers of importance samples, and allows only a fairly restricted set of operations (such as summing
the importance weights) to be performed efficiently. In contrast, DReGs appears to require complex,
almost arbitrary operations over the importance weights. However, it is possible to write down a
surrogate objective, utilizing the stop-gradients operation, that does have the required gradients. To
do so, we need to begin by carefully introducing notation. Remember that any particular importance
weight, wi, can be written as a function of the uniform noise, ǫi and the parameters (Eq. (56)), and as
such, the gradient of wi can be broken up into two terms,

∂wi(ǫi;φ)

∂φ
=

∂w(zi;φ)

∂φ
+

∂z(ǫi;φ)

∂φ

∂w(z;φ)

∂z

∣

∣

∣

∣

z=z(ǫi;φ)

(57)

where the first term is the direct effect of φ, on wi, and the second term is the “indirect” effect,
through the reparameterised latents. Now we are in a position to define ŵi and w̄i, which always
have the same value as wi, but where we have applied the stop-gradients operation to drop different
gradient terms. In particular, w̄i stops all gradients, so that (in a slight abuse of notation),

∂w̄i

∂φ
= 0, (58)

and ŵi stops only the “direct” term in Eq. (57), such that,

∂ŵi

∂φ
=

∂z(ǫi;φ)

∂φ

∂w(z;φ)

∂z

∣

∣

∣

∣

z=z(ǫi;φ)

(59)

Now, we hypothesise that the DReGs estimator can be rewritten as,

1

2

(

∑

j w̄
2
j

(
∑

w̄j)
2

)

log
∑

i

ŵ2
i (60)

Note that this is written entirely in terms of
∑

j wj , which can be computed directly using TMC, as

given above, and
∑

j w
2
j , which can be computed by running TMC again, with squared weights. The

gradient of w̄j is zero, so

∂

∂φ

[

1

2

(

∑

j w̄
2
j

(
∑

w̄j)
2

)

log
∑

i

ŵ2
i

]

(61)

=
1

2

(

∑

j w
2
j

(
∑

wj)
2

)

∂

∂φ
log
∑

i

ŵ2
i , (62)

where the value of wj , ŵj and w̄j is equal, so when the gradient operation is no longer applied, we
can revert to the standard notation, wj . Applying the derivative to the logarithm,

=
1

2

(

∑

j w
2
j

(
∑

wj)
2

)
∑

i
∂
∂φ

ŵ2
i

∑

j w
2
j

, (63)

cancelling terms,

=
1

2

∑

i
∂
∂φ

ŵ2
i

(
∑

wj)
2 , (64)

and applying the derivative to ŵ2
j ,

=

∑

i wi
∂
∂φ

ŵi

(
∑

wj)
2 , (65)

15



−600

−400

−200

100 103 106

A

lo
g
P
(x
)

0.00

0.20

0.40

100 103 106

B

ti
m

e
(s

)

−3

−2

100 103 106

C

lo
g
P
(x
)/
N

10−6

10−3

10 0

100 103 106

D

ti
m

e
(s

)

K

TMC
SMC

IWAE
GT

K N N

Figure 7: Performance of TMC, SMC, IWAE and ground truth (GT) on a simple Gaussian latent
variable example, run in PyTorch using a GPU. A. The marginal likelihood estimate (y-axis) for
different numbers of particles, K (x-axis), with the number of data points fixed to N = 128. B. The
time required for computing marginal likelihood estimates in A on a single Intel Xeon compute core.
C. The marginal likelihood estimate per data point (y-axis), for models with different numbers of
data points, N , and a fixed number of particles, K = 128. Note that the TMC, SMC and GT lines lie
on top of each other. D. The time required for computing marginal likelihood estimates in C.

Finally, using ∂
∂φ

ŵi = wi
∂
∂φ

log ŵi,

=
∑

i

w2
i

(
∑

wj)
2

∂

∂φ
log ŵi, (66)

and substituting the gradient of ŵi,

=
∑

i

w2
i

(
∑

wj)
2

∂zi
∂φ

∂ logwi

∂zi
, (67)

which matches Eq. (54), as required.

G TMC helps even on CPU

To confirm that our results were not just applicable to GPUs, we redid Fig. 1 using a single-threaded
CPU implementation. Replicating Fig 1BD, we find similar, albeit less extreme results, with TMC
always being faster than SMC. This conflicts with the asymptotic results, which suggest that TMC
(O(K2)) should be slower than SMC (O(K)). This conflict likely arises because of the overhead
of the Python interpreter: in this model with TMC, we can perform the reduction over all N latent
variables in a single efficient tensor operation (on one CPU), whereas the SMC resampling step
requires us to use an explicit Python for-loop.

H Complex, random graphical model

The latents, zi were drawn IID from a standard Gaussian,

P(zj) = N (zj ; 0, 1) (68)

and the data, xi was generated by,

P(xi|z1, . . . , zN ) = N



xi;
∑

j

Cijzj , 0.1
2



 (69)

where C is a fixed, known binary matrix,

P(Cij) = Bernoulli(0.01). (70)

While the prior in the model is simple, the posterior factor graph has complex, random structure due
to explaining-away: in our experiment, the factor graph had a tree width of 4. Even 16 million IWAE
importance samples, (15 s on CPU) is insufficient (marginal likelihood estimate is around −1400). In
contrast, only K = 64 TMC importance samples were required (0.4 s on CPU), giving a marginal
likelihood estimate of −69.9, compared to a true value of −67.1. Ultimately, these asymptotic
results imply that, if the number of latents is considerably greater than the tree width (i.e. there are
exploitable conditional independencies), then TMC will give dramatic benefits over IWAE.

16


	Examples of efficient averaging
	TMC for non-factorised proposals
	Typical choice of approximate posteriors
	Exact marginalisation over discrete latent variables
	Numerically stable matrix (tensor) products in the log-domain
	Combining DReGs and TMC
	TMC helps even on CPU
	Complex, random graphical model

