Supplements to
“Semi-flat minima and saddle points by embedding
neural networks to overparameterization”

A Definitions

Let © be an open domain in R%, and f : Q — R be a differentiable function. zy € Q is called a
mininum (global minimum) if f(z) > f(xo) for all x € Q. g is a local minimum if there is an open
neighborhood U of z such that x( is a minimum f|y in U. A point o € 2 is a saddle point if for
any open neighborhood of x has y and z such that f(y) > f(zo) and f(z) < f(zo). Some literature
discuss flat minima [3, 4, 1, 5], which are observed to have link with generalization performance.
In this paper, we introduce semi-flat minima, which is defined as an affine subset V" of €2 such that
c¢= f(z)forany x € V and f(z) > cfor any z € Q.

B Proof of Theorem 2

We show a proof using the original parameterization. We can also use the repameteriation introduced
in Section 3.2, which may give other insights on the local properties, but we omit it here. See also
Figure 3 for the meaning of parameters.

Recall that the gradients of Lz with respect to the parameters can be given by the back-propagation,
which computes the derivatives with respect to the weight parameters successively from the output
layer to the input. For simplicity we use the notation

0,01 = t(y,, ' (x,;01)). (14)

Let 2Fv = (zf’”, e zﬁf)T be the input to the Hj, units in the k-th layer for x,, i.e.,

Hy,
k o k=1
= Z wij¢(2'
=1
where wfj is the weight parameter connecting from / Jk Lo UF. Let

g o OLul81)
3zf '

Then, the back-propagation or generalized delta rule [9] computes the derivatives by

Hy41

. L Hy &
5§,u Z wk+15k+1 (2} )’ JLy(64") 9 Z(sku _—1,u (15)

Now consider the embedding using a unit in the g-th layer. Note that the output of any layer except q
in U (z; OE\H)) is equal to that of f(Ho) (a; OiHO)), and the backpropagation of the both networks
gives exactly the same 5f ¥ to any Uy, ; for k > ¢. It follows that

6LH(9(H))‘ _ OLn, (0<H°>)’ _ {16)
Vo leun—e™ Vo 0(Ho) (o)
The derivatives of Ly, with respect to ¢; and u; (1 < j < Hy) are given by
DL, (0H0)) "L 00, () gzattv
— 31T o(xy u;, W, (17)
o¢; L ozatlv 0 Z wl i»Wo)
8LH0 (B(HO)) _ - ael’ (H(HU)) zq+1 v i q+1, T 8(,0(13,/, Uj, WO) (18)
Ou,; = Ozatlv = ou; ’
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Figure 3: Function of neural networks

where §9t1Y = (§9T1V L §TINT,

In the same manner, for 1 < j < Hy — 1, the derivatives of Ly with respect to u; and w; are given
by

OLpy(0H) I~ 00, (0H) ozatlv

— — 5q+1,u LW 1
dv; 29zt ou, ; i wg, Wo) (1%
0Ly (0 (H)) oL, (0 pzatlv " T Op(x,;wi, W)
= SatLwvt gy 2V gy 707 20
Ow; = DzatY dw; ; i ow; (20)

It is obvious that these derivatives at (1) = Bg\H) are equal to those of Ly, at H,EH")

to zero.

For Hy < j < H, by the definition of HE\H), we have

, and thus equal

OLp(6U) a1, g+l
T‘ . ZJ o(x,;wji, Wo) ‘ = ZJ o(Ty; Wrys, Wox) (21
>‘ v=1
0Ly (6U1) T Op(x,;wi, Wo) T Oo(xy; Whys, Wos)
— 6q+1”/ . 78] 20 —_ )\ 6q+17y . 128} 0%
a,wj B;H) Z Yj a,wj B;H) JVZ * CH, auHo
(22)
which are zero from the stationary condition of 0£H°). We have also
8LH(9(H)) Z Zaqﬂ w7y &p(my,wj, Wo)
oWy o e oW, o
! o(xy; i, W, (@y; Wiy s, Wos)
_ Zéqul T Z Cj* v; ]*a 0* + Z‘Squl T Z s CHO* vy WHox; VV0x
j=Ho W
T 0 Ty WUjx, Wox
=Ygy Dot e o) @
=1 j=1 0
B 3LH0(0(H°))
S OW ‘9<Ho>:e£H0)
=0, (24)

which completes the proof.
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C Embedding by inactive units and propagation for smooth networks

As in Egs. (17) through (20), stationary conditions for Ly, give, for 1 < ¢ < Hy,

I (Ho) ~
9L, (617) > 8 (@, ui, W) = 0

acl v=1
6LH (0( 0)) - +1,0T 34,0(5'3:/, U;, WO)
The derivatives of Lz with respect to v; and w; are glven by
0Ly (6U1) "L 00,(0H)) gzativ »
ov; B dzatlv Qv Z ot p(@y;wj, Wo) (26)
v=1 v=1
ALy (01) B 90, (01D 9za+Lv z”: saLrTy 8<p(a;y,wj, Wo) 27
8wj B 1 anJrl’V awj 1 8’1.0]'

©
In the case of inactive units, v; for j > Hy + 1 is arbitrary and the de(@piw . Wo) jg not necessarily

zero, so that Eq. (25) does not necessarily imply that Eq. (27) is zero. "In the case of inactive
propagation, wj is arbitrary for j > Hy + 1, which does not mean Eq. (26) is zero in general.

Consider the embedding by making both of units and propagation inactive; i.e.,
v;=¢ (1<i<Hy)
v;=0 (Hy+1<j<H)
w; =w® (Hy+1<j<H). (28)

Then, for j > Hy + 1, we have p(x; w;, Wy) =0 atw; = w(© which means Eq. (26) is zero, and
Eq. (27) vanishes from v; = 0. Therefore, the stationary point of L, is embedded to a stationary
point of L, but there is no flat direction for this stationary point in general.

D Proofs of Lemmas 3, 4, and Theorem 5 in Section 3

In the sequel, we repeatedly use the following relations.

0 0 0 0
ar Z ; = Z Qej 7,
0b iy ow; one ) ow;
H H
0 0 0 0
7o = Z Aj A = Z AkQek 35— - (29)
da iy ov; o€, ) vy,
D.1 Proof of Lemma 3
It follows from Eq. (29) that
0f " (: 81) o O (@; 01
b o —g(H) ,Z dw; ‘9<H>:9§H)
j=Ho
H
_ Z U_(?go(m;wj)’
j_HO 7w, leun=e(™
do(x;u
— Z )\ CHO 806 HO)
j=Ho WUHy
_of ) (@;0)
- 8UH0

12



since Zj Aj = 1. Also,

of ) (2; 0(H)) Z N FE (2;001))
one o —g() =7 J w; o1 =g{™
dp(x;u
Z Qi A Gy o o) <P( Hy) -0,
J=Ho Ho

since } ; acjA; = 0 by definition of A.
From Eq. (29), we have

Of 1) (; 01) o~ OF (@07
o (" Z A O0v; ‘9<H>=9§H>

da Pyt
H
=3 Aw(oc;wj)f\w):e;m
j=Ho
= p(z;um, )]
3f(H0)(:c; 0£H0))
- Km,
and
3f(H)(m;9(H)) )(C,c g(H))
9. leun—et - Z /\k%k Oy, ot =g(M
k=H,

Z Akeero(x;upy)I =0.
k=Ho

D.2 Proof of Lemma 4

We use the notation
z, = f(x,;0UD),

(1) First, we compute the blocks related to the derivative with respect to 7. We have

OLp (01 oL, 9< 8zl, a0,(0H)) & playiw;)
e ) Z LS gy PEE) = (30)
v=1 v=1m=1 j=Hp
It follows from Egs. (29) and (30) that
O°Lu(0) _ <~ | 9Lu(6")
on.0a flayl " on.ovy
n M H H
9%0,,(0(M) Ip(xy; w;)
= Z Z 02,072 Z /\k@(muvwk) Z Qi Vjim awj
v=1m=1 ) k=Hy j=Hy
0,(01) & D, ; wy,)
—_— kA —— 1
Jr; 0z, k; ek owy, D

By inserting (1) = G;H), the first term is zero since v; = A;¢x and ) ; acjA; = 0. The second
term is also zero from Zk Qe Mg = 0.
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Differentiation of Eq. (30) with b gives

0?Ly( o ) - M 9%0,( (H) =l :cl,,wk Op(x,; wj)
~ on.0b Zlmz ) 8zym821,m ; v 2] Jz; Qi Vam T g
8[ 8 (P JCV,’lUk;
+ 5k Qi Vjm . (32)
D Z i Z o,

At ) = B&H), both the terms are zero for the same reason as Eq. (31).
Similarly, for s; = v; orw; (1 <1 < Hy — 1),

PLy ()  02Ly(0)
on.0s; 87]6381'

n
8zy . wu,w])
ZZ 8zl,821,m 0s; Z G dwy

v=1m=1 j=Ho

which is zero at () = G&H) from -, acjA; = 0.

Next, from Egs. (29) and (30), we have

d*Ly (6 20, ( wu,wg)
E E Oédk/\kSO T, wy) E OV
87]68&1 6z,,8z,, fard 77 w,
- 8€V(9(H)) Op(x,; wy)
+ Z _— Z adkack)\ki. (33)
— 0z, ) owy,

At = HE\H), the first trem vanishes and the second term reduces to

PLrO37) _ (30 2elO) Do um,)
nc0€a “ 0z, Jum,

v=1

which is (AAAT) 4 F.

The block ;’ G 5n ) can be computed in a similar way to Eq. (33):

n M H

0?Ly (0 0%, ( o(x,;w)) Ao(x,; wy)
377c377d Z:l Z 1 621/ m’azum Z acyvjm wﬂ kz]:{ kSt awk
m,m 0
0( ) =t 0%p(x,; w;)
£303° W0 - )
== 8z,,m =&, ow,w;

By plugging ) = OE\H), the first term is zero, and the second term is reduced to

2 .
5 Ao Z WAY D, LoD ), (34)

J—Ho 6UH0 8UH0
which is (AAAT)..G.

(ii) Second, we will compute the remaining second derivatives including &.. From Eq. (29), the first
derivative with respect to £, is given by

ALy (0H) " 90,00 K
PE)(E) = Z % Z )\jacj@(wuéwj)- (35)
¢ v=1 Y j=Hp
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From this expression,

92 Ly (6UH) 920, ( 2
agcavk B(H)ZG;H) Z 8zy8z,, Z Aj OéCJ CEV7UH07*))
j=H
-0,
(H) (H)
which means L (67) O Lu(637) are zero.

906, MY "¢ 0a
It follows from Egs. (35) and (29) that
82LH(0(H)) ‘
0€.0b  lotm—o(™
n a2€ ( (H) H

H
O (@0 Uy«
~> S T S wasteuiin,) 3 2]

v=1m=1 j=H, k=Hy
" 90,0y & (@0 Uy )
#3220 5 sy Do),
Bt &zl, J—Ho 8uH0

which is zero from 3 a;A; = 0.
It is also easy to see that for s; = v; orw; (1 <7 < Hyg — 1)
82LH(9(H)) ’ B
0€.0s; loun=g(™

(IIT) We compute the upper-left four blocks. We have

OL (60U L(0H) &
Ha(a ) — Z 8z Z )\jgo wl,,wj (36)
v=1 v Jj=Hy
from which
82LH(0(H))’ & 020,047 (@i, ) = 9° L, (0")
dada  lom—o" ~ 2= 0z,0z, M T 0y, 0¢H,
and
BQLH(O(H))’
8a8b o ={")
Il?l”'UJk)
,;mzl 8zU6z,,m :Z Ajo(,; w; kZHU 'Ukm 601 —o ()
06,(0) L dp(x,;w,)
430 2O S ) Oplming)
z::l 0z, j;o T Ow; PRAEICE
9%¢,(0"™)) Op(@uium,s) | 00 (087) 0@y um, )
Z 8z,,3z Ctto. <P Utto.«) Oup, +; 0z, dup,
_ aQLHo<0£H°>>
- GCHO(’)uHO '

Finally, using

aLH 9< z": 0< ) an Z":i L (6(F)) ivm acl,,'w])7

Jj=Ho
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we have
82LH(0(H)) ‘
8b8b ot ={"

L Pl w;)
v J
+ Z Z 82,, m Zo Ugm 8wj8wj

" 0%,(007) Op(®y; Wy ) OP(Ey; Uity )
= Z(CHO *  a_ao_ HO *)

8’&]-[0 6UHO

o ={")

_’_i 8€V(0(H)) Op(xy;um, «)

Ho,*
8ZV ° a’l,LHO'uH0

v=1
0Ly, (047)

8uHO 3UH0

(iv) Finally, it is similarly proved that for s; = v; orw; (1 <7 < Hy — 1)

6QLH(‘9(HL)‘ _ 9L, (88™)

0aods; o =" o 0Cr,0si

82LH(0(H)) ‘ B aQLHO (aiHo))
ObIs; o=  Oupg,08;

This completes the proof.

D.3 Proof of Theorem 5

Let I := (AAAT) ® F and G := (AAAT) ® G. Since \; # 0 (V5) and A is of full rank, (AAAT)
is of full rank. (i) Under the assumption, G is invertible. Then, the lower-right four blocks of the
Hessian has the expression

I —FG'Y\ (O F I O\ _(-F'G™'F O 37
o I FT G)\-FG' 1)~ %) G 37

If G is positive definite, so is C;’, and thus —FTG~1F has negative eigenvalues for F' # O. The

Hessian of Ly at 0§\H) has both of positive and negative eigenvalues, which implies O&H) is a saddle
point. The case of negative definite G is similar. (ii) If G has positive and negative definite, so does

G. This means that the Hessian of Ly at OS\H) has positive and negative eigenvalues. O

Remark. If F is of full rank, which is 7 = (H — H) min{D, M}, then the matrix F”G~'F has
positive eigenvalues. Thus, the number of positive and negative eigenvalues of the matrix in Eq. (37)
are (H — Hy) x D and r, respectively. When F' has positive and negative engenvalues, the index

depends on the eigenvectors of F and G, and not easy to tell.

E Local minima for smooth networks of 1-dimensional output

The special property of M = 1 is caused by vanishing F in the Hessian. In fact, the stationarity

AL, (0470))

condition Durg = (0 implies

=0.

90,0579 (@, iy
e 3 OeO) Dy

it 82,/ 8uHO
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Note that (g7, is a scalar, and if we assume (g, # 0, the above condition implies ' = 0. Then the
corresponding part of the Hessian takes the form

(6 ¢)

which does not have negative eigenvalues if G is non-negetive definite. The zero blocks of the

Hessian correspond to the directions &, (¢ = Hyg + 1,. .., H), which make an affine subspace of
Hrepl(H;HO)) having the same value Ly (0()) = Ly, (0£H°)). Therefore, only the Hessian in the

directions (@, b, N, +1, - - - , Ngr) matters to determine if BE\H) is a minimum or saddle point. Note
also that for M > 2 the stationarity condition gives

n M

3oy MO Bplwsium)

v—1m=1 azv,m auHo

which does not necessary mean F' = O.

The following theorem is a slight extension of Fukumizu and Amari [2, Theorem 3], in which only
the case H = Hy + 1 is discussed.

(Ho)

Theorem 11. Suppose that the dimension of the output is 1 and 0 is a minimum of Ly, with

positive definite Hessian matrix. In the following, the matrix G and the parameter 0& ) are used in
the same meaning as in Lemma 4.

(1) Assume that the matrix G is positive definite.

(a) H&H) with ZJH:HO Aj = land A; > 0 (V) is a minimum of L.

(b) H&H) with ZJH:HO A; = land \; < 0 for some j is a saddle point of L.
(2) Assume that the matrix G is negative definite.

(a) Ifo:HO A; = 1 and there is only one iy such that \;; > 0 and A\; < 0 (V5 # i),
0\ is a minimum of L
A H-

(b) Ifo:HO Aj = land \; > 0 for at least two indices, 0§‘H) is a saddle point of L.

(3) If the matrix G has both of positive and negative eigenvalues, B&H) is a saddle point for any
Awith S0 0 Xo = 1and A, # 0 (Ya).

Proof. For notational simplicity, the proof is given only for Hy = 1; ¢; and w; are written by ¢ and
u, respectively. Extension to a general Hy is easy and we omit it. In the proof, let AT := (15 AT),
which is invertible by assumption. Note also that ¢, v; are scalar parameters in the case of M = 1.

a2 (H)
(1-a). We first show that if G is positive definite, the lower-right block of the Hessian, % =

(AAAT) ® G, is positive definite. This can be proved if AAAT is positive definite, since the
eigenvalues of the tensor product is given by the products of respective eigenvalues of AAA” and
G. By the assumptions, AAA” is non-negative definite. Suppose AAAT's = 0 for s € R¥~1\{0}.

Then, A”s = 0, and this implies A”8 = 0 for 5 = (s”,0)” € R¥. This is impossible by the
invertible assumption of A.

Now consider the Hessian V2L H(O&H)) in Lemma 4. It is obvious that this Hessian is non-negative
definite, but not positive definite, as the blocks corresponding to (§;) fzg are zero. Let ITx,) be the

(H — 1) dimensional affine plane in the parameter space of Ny such that
HgiHO) = {(a,&w-~75H§b77727~-~,77H) ‘ a = C*7b:u*an2 = =MNH :O}

This plane includes BE\H), and is parallel to the subspace spanned by ; axes. The function L takes

the same value as L; (0£1)) on the whole of H0<HO). Thus, OE\H) is a minimum of Ly if the Hessian

17



The set of stationary points

/ givenby (4): X%, 4 =1

N={6"|a=¢ b=u n.=0}

Figure 4: All the parameters on the affine subspace II has the same function as (%) (x; H&H)), and

the affine subspace (in red) is a set of stationary points of L (8(*)). The local behavior of L

)

around O&H is determined by the second derivative along the a, b, 1. directions.

is positive definite along the directions compliment to II o(Ho) (see Figure 4). From Lemma 4, the
Hessian at GE\H) along the directions (a, b, n;) is given by

2L, (01
e © ,
(0] (AANAT) 2 G

which is positive definite. This completes the proof of (1-a).

(1-b) From A\ = 0, it is easy to see that
<o (1 0
ANT = (OT AAAT ) -

Thus, the eigenvalues of AAA7 is the eigenvalues of AAAT and 1. By Sylvester’s law of inertia,
the signature (the pair of the number of positive eigenvalues and that of negative ones) of AAA
coincides with the signature of A. Since some ); are negative by the assumption, AAA” has a
negative eigenvalue. Thus, under the assumption that G is positive definite, (AAAT) ® G has a

. . . BQLH(GiH)) . ‘e . . (H) (H) _ p(H)
negative eigenvalue. Since —_2— is positive definite, the Hessian of Lz (6'7)) at 8'7) = 6

has positive and negative eigenvalues, which means B&H) is a saddle point.
(2-a) It suffices to show that AAAT is negative definite. Then, (AAAT) ® @ is positive definite, and

the assertion is proved by the same argument as (1-a). Without loss of generality, we can assume that
Aj <0forl <j<H-—1and Ay > 0.Let A= (Ag, h) where Ay is an invertible matrix of size

H —1,and let AT = (AL, \gy) with Ay € R ~1. The elements of X are all negative by assumption.
It follows that

H
Ao + Ah = 0, ZAj =1

j=1

A simple computation using h = —iAO)\O provides
1
ANAT = Ao (Ao + )\—AOAOT)AOT,
H

18



where Ag = Diag(A1,..., Ag—_1). Itis then sufficient to show that By := Ag + ﬁ)\o)\oT is negative
definite. If s € R ~1\{0} is orthogonal to Ay, we have s” Bys = sTAgs < 0. Additionally,

)\TB)\ _ 1)\3 1 H_l)\Q 2
0 Bo 0_; ]+AH(; ])
) H-1 H-1 H-1
=5, =X (2 X) + (%)}
j=1 j=1 J=1
H-1
A e po
H-1
() )
1 H-1 1
:E{< ,\f) =D NN AJ)Q},
=1 i

which is negative as well. This proves the assertion.

(2-b) If there are two positive eigenvalues, the corresponding eigenspaces of at least two dimensions
must intersects with the H — 1 dimensional subspace spanned by the row vectors of A. Thus, AAAT
has at least one positive eigenvalue, which means (AAA”) ® G has negative eigenvalues. The
remaining proof is similar to (1-b).

(3) AAAT is of full rank, and thus (AAAT) ® G has both of positive and negative eigenvalues. The
assertion is proved by the same argument as the case (1-b). O

F Proof of Proposition 8 and Theorem 10 in Section 4

F.1 Proof of Proposition 8

First, note that, from uﬁo*wy # 0(Vv), there is § > 0 such that for each x,, the sign of (uz, . +
Zf:HoH acjne) Tz, equals to that of ugm*my for any j = Hy, ..., H and ('r7c)£1':H[)_Irl such that
H(nHo-i-l? e anH)H <o

Fix x,,, and assume first wj; @, > 0. Then, (wg, . + Zf:HOH acjne) @, > 0 holds for (n,).
with || (n.).|| < d. With the notation

Fr, = Z vip(T,; w;) = Z Cintp(Tos Us 4 ), (38)

for any 01 € BY (OEYHB)) we have

H H
T
FU) (my;e(H)) = Fu, + Z V5 C g, % go(ﬁj (UHO,* + Z acjnc) :nl,)
j=Ho c=Ho+1
H H T
= —FHO + Z ’VjCHO,* Bj ('UJHO,* + Z acjnc) Ty
j=Ho c=Hy+1
H H H
= ]:Hg + Z ’YjﬂjCHo,*UEO,*fBu + CHO,* Z Z achjﬂjanu
j=Ho c=Ho+1j=Hy

T
= FHy + CHo,«Upy T

- f(H")(:El,;B,(FH”)),
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where we used » ;v 8; = 1and >, acjv;8; = 0.

Next, if uﬁg’*wy < 0, we have
P (@, 0) = Fir,,

and
H H .
0@ 0) = Fay + 3 € (65 (0o + D acme) @) = Fi,
j=Ho c=Ho+1
which completes the proof.
F.2 Proof of Theorem 10
We use the same reparameterization (v1, ..., Vi,—1, @, Wi, ..., Wr,—1,0,&my41, - -, EH, MH+15 - - -

as in Section 4.1 with Ay = 0. We focus on the behavior of Ly for a change of &., n. with the
others fixed at the values of H(VH). Note that, by the assumption u:’h}owy # 0 for any v, Ly (0)) is

differrentiable at 0,(7H) with respect to &., 1. By the same manner as Lemma 3, we have
Ly (0W)) _ Ly (01)) _0
e leun=eyn 0. leun=e( '
which means Ly is stationary at HSH) as a function of 7. and &_.

From Lemma 4, we have

0*Ly (0'D) ‘ —0
D€.0€ oot~
and &)
O?Ly () 00, (057)
2 =ZaNT ) — (AAAT el e SRV
Geoma loom—gpn™ AAADe B, Tore
u:uHo*ml,>0
Using the fact M = 0, we have
uHouHO
82LH(0(H))

=0
on.0ng ‘9<H>:9§H’

Therefore, the Hessian of L at OS,H) with respect to &,, 1, is given by

(& 0)

where F = (AAAT)®F. Under the assumption that ' # O, the eigenvalues of the above Hessian are
{8:, —6;}7_,, where {d;}!_, is the singular values of F'. This means there are increasing directions

and decreasing directions of L g around O(VH), and thus it is a saddle point.

G PAC-Bayesian bound of generalization

G.1 Brief summary of general PAC-Bayes bound

The PAC-Bayesian framework [6, 7] has been developed for bounding generalization performance of
learning models. It has been recently applied also to analysis of generalization of neural networks [8].
The following form of the bound is taken from [6].

Let f(x; @) be a real-valued function of & with parameter 8 € ©. We consider the case that the loss
function £(y; z) is bounded, and without loss of generality assume £(y, z) € [0, 1]. Training data
(£1,91),...,(®n, yn) is an i.i.d. sample from a distribution D on (x, y). Given function f(x;8),
the training error (or empirical risk) is evaluated by

L(0) = 13 f(.0),3.)
v=1

20
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and the generalization error (or risk) is defined by

In PAC-Bayes bound, we introduce a "prior" distribution P on the parameter space with an assumption
that P does not depend on the training sample, and an arbitrary probability distribution ¢) on ©. The
distribution ) may depend on the training sample. Then, for any & > 0, the inequality

2(KL(Q||P)+1n%)
n—1

EQ[L(6)] < Eq[L(6)] + 2\/ (39)

holds for sufficiently large n with probability greater than 1 — 4.

First, we can see that, if the distribution of () is concentrated on a parameter set that gives very close
values to L(8) or L(0) at a parameter @ obtained by learning, then we have

EQ[L(0)] ~ L(B),  EqlL(6)] ~ L(8).

In such cases, Eq. (39) shows the behavior of generalization error by its upper bound involving the
approximate training error and the complexity term, which is expressed by the KL-divergence.

G.2 Generalization error bounds of embedded networks

The difference of the semi-flatness between networks of the smooth and ReLLU activation can be
related to the different generalization abilities of these models trough the PAC-Bayes bound Eq. (39).

G.2.1 Choice in general cases

First we consider the general problem of choosing P and () appropriately when the minimum of
L(0) is sharp (non-flat) and can be approximated locally by a quadratic function around 6, which

is a minimum of IAJ(O(H )). The prior P should be non-informative, and thus if © = R, a normal
distribution N (0, 021;) with a large o is a reasonable choice. To relate the PAC-Bayes bound Eq. (39)

to the generalization error at 8, the distribution @ (posterior) should distribute on parameters that do
not change the empirical risk values so much from the values given by 6. Under the assumption that
L(8) is well approximated by a quardatic function, We set ( by a normal distribution N (0, 72H 1)
where H is the Hessian o
H = V2L(0)

with a small value of 7. Using the variance-covariance matrices based on the inverse Hessian is
confirmed as follows. Suppose we set (Q by N (é, ) with a general ¥ such that X < 2. Then, the
Taylor series approximation of L(60(H)) gives

Eo|L(0")] ~ L") + %Tr[HE],

and thus the right hand side of Eq. (39) is approximated by

o 2AKL(QIIP) +1n %)

L(OW) + %T&[”HZ] + 2\/ (40)

n—1
It is well known that K L(Q||P) with P and Q) normal distributions is given by

1
)

|0’2Id|

KL(QIIP) 5]

ogq, 617
log + Trlo 8] + —5- —d
o

To minimize Eq. (40) with respect to %, the differentiation provides the stationary condition
H4+A-S"+07%1y) =0
with some positive constant A. From the assumption o2 >> %, by neglecting o~ 21, an approximate

solution is given by
o 2941
Zopt ~ T 7‘[ 5
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where 7 > 0 is a scalar. Plugging this to Eq. (40) provides

A A 7'2
LOW) + Sd+2

The second term is linear to 72, and the main factor in the third term is (d log ‘;—2)1/ 2n~1/2 when
o> land7 < 1.

2{dlog % +logdet H + ZaTr[H—1] + 102 _ 4} 4 o1 2
n—1 '

G.2.2 The case of inactive units

We now discuss the embedding of the smooth and ReL U networks by inactive units when the training
error achieves zero error. As discussed in Section 5.1, some of the parameters give flat-directions,
which requires some modification of the arguments in Section G.2.1.

As notations, 025) € R%sm and HgI) € R are used for the parameters of networks with smooth

and ReL.U activation, respectively, and they are decomposed as o) = (0%?0, ng?l, 0;?2) and
o' — (05,%, Hﬁflf , 07{11{2) ). corresponding to the components of a copy of 800, (v;)IL, .
and (w;) JHZ Hy+1- Note that the both models have the same number of surplus parameters, i.e.

dim(0') ) = dim(6'""),)) =: d; and dim(0'"")) = dim(6'")) =: ds. Different choices of P and Q

sm,1 sm,2 rl,1 rl,2
are employed in the smooth and ReLU networks: we use Pk, Qs for the smooth networks and
P, Q,; for the ReLU case.

For the smooth activation, as in Section G.2.1, a non-informative prior
Pon: N(0,0%1)

is used with o >> 1. For the distribution Q),,, we reflect the Hessian at the embedding by inactive
units. By the definition, the directions of (vj)f: 1,1 give flat surface to L. The Hessian with

respect to (v;, w;)L 1) is thus given in the form

6 %)

where S is an (H — Hy) x D dimensional symmetric matrix given by

Sik =

"L 20%,(0)  dp(m,; w®) dp(w,; w®) "L 90,(0)  9%p(x,; w®)
T v vy 28] i v . v
Yi 9202 *T ow, dwe 53’“; 9z U owown

v=

For the flat directions of ('uj)f: H,+1- the same distribution as P is optimal for the upper bound.
Reflecting this, we set

Qem : NO 72221 x N0, 521,) x N6, 72571,

sm,0? sm,1? sm,2?

where égﬁ) is the embedded point and H,, = V2L Ho (0&%%) is the Hessian of the narrower
network.

For the ReLU networks, we first fix X > 1 as a constant. Since in the direction of (w;) fz Ho+1 W€
can presume the existence of the bonded flat subset Bf{I ~Ho e define the prior P,; by
Pu: N(0,0%I) x N(0,0%I;1) x Unif s
Reflecting the flat directions, the posterior ), is defined by
Qu: NOGY M x N6, o2Ia) Unif s,
where H,; := V?Lp, (Bih;‘l’)) is the Hessian of the narrower network.

With these choices, the KL divergence of the smooth case is given by

1 2 2
K L(Qunl[Pom) = 5 4 log % +d'log % 1 log det Hypm + log det S

2 ésm 2
+Tr {;(H;}L + S—l)} + u —d2, + dl},
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while in the case of ReLU networks,

T2 7)
KL(Qn||Pn) = [drl log = + log det H,; + Tr [ 5 M, } + ”;71” d?l

With o > 1 and 7 < 1, the major difference between these divergences comes from the term
2
1 o
d" log =2
in the smooth networks. This suggests the advantage of the ReLU network in the overparameterized

realization of zero training error in terms of the PAC-Bayesian upper bound of generalization error.

G.2.3 The Hessian for the zero error cases

We summarize the Hessian matrix for the embedding of a global minimum that attains zero training
error. For simplicity, we write only the four blocks corresponding to the surplus units.

Smooth activation

(I) Unit replication: As discussed in Sections 3.2 and 5.1, the the part of the Hessian is given by

O O
( 0 G) @n
(IT) Inactive units: The part of the Hessian is given by
O O
(O sa) : (42)
where
(S1)jk azLH i 70°,(6 830(131/? w(o)) Io(xy; w(o))T
1)k ~ dw;0wy, 8wk Y 8zl,8z,, ow ow
_ 2o(z,;w )
0 Z YT wow
(IIT) Inactive propagations: The part of the Hessian is given by
Sy O
(02 O> : (43)
where
0?Ly( 020, (
(SQ)j - a,v]avk Z azljazy $V7w])@($l/7wk?)'

We see that in all of the three cases the part of the Hessian for the surplus parameters contains a
non-zero block.

ReLLU

(D g Unit replication: As discussed in Sections 4.2, the the part of the Hessian is given by ( 9 g )

Since the embedded point must not be a saddle, we have F=0.Asa result, the part of the Hessian
is constant zero.

(IT) g Inactive units: As discussed in Section 5.1, the part of the Hessian is zero.

(IIT)  Inactive propagations: In this case, the part of the Hessian is given by

S3 O
(03 O> , (44)
where
82LH 82€
(SQ)J - a,vjaka Z 8ZV8ZV xl/?’u‘)j)gp(xl/?wk)

which is not necessarily zero unless p(x,; wj) = 0 for all v.

We can see that the embedding by inactive units and unit replication give zero matrix for the part of
Hessian, while the inactive propagation does not necessarily has zero matrix.
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