393

394

395
396
397
398
399
400

401
402
403
404
405
406
407
408
409

410
411
412
413
414

415
416
417
418
419
420

421

422
423
424
425
426
427
428
429

A Appendix

A.1 Model details and hyperparameters

General hyperparameters All models were trained in PyTorch [26]. For Fashion-MNIST, SVHN,
CIFAR-10, and CIFAR-100, batch sizes of 512 parallelized across 2 GPUs were used. For ImageNet
and Places365, batch sizes of 512 parallelized across 16 GPUs were used and trained using syn-
chronous distributed training. For models trained with SGD, a learning rate of 0.1 was used with
momentum of 0.9 and weight decay of 0.0001. For models trained with Adam, a learning rate of
0.0003 was used with betas of 0.9 and 0.999 and weight decay of 0.0001.

VGG19 VGGI9 was implemented as in [30], except all fully-connected layers were removed
and replaced with an average pool layer, as in [7, 8]. Precisely, filter sizes were as follows: {64,
64, max-pool, 128, 128, max-pool, 256, 256, 256, 256, max-pool, 512, 512, 512, 512, max-pool,
512,512, 512, 512, global-average-pool}. ReLU non-linearities were applied throughout and batch
normalization was applied after each convolutional layer. For all convolutional layers, kernel sizes
of 3 with padding of 1 were used, and all convolutional layers were initialized using the Xavier
normal initialization with biases initialized to 0, and batch normalization weight and bias parameters
initialized to 1 and O, respectively. All VGG19 models were trained for 160 epochs. Learning rates
were annealed by a factor of 10 at 80 and 120 epochs.

ResNet50 ResNet50 was implemented as in [15]. Precisely, blocks were structured as follows
(stride, filter sizes, output channels): (1x1, 64, 64, 256) x 3, (2x2, 128, 128, 512) x 4, (2x2, 256, 256,
1024) x 6, (2x2, 512, 512, 2048) x 3, followed by an average pool layer and a linear classification
layer. All ResNet50 models were trained for 90 epochs. Learning rates were annealed by a factor of
10 at 50, 65, and 80 epochs.

Pruning parameters For all models, an iterative pruning rate of 0.2 was used and 30 pruning
iterations were performed. Following the sixth pruning iteration, model performance was evaluated
every third pruning iteration. Pruning was performed using magnitude pruning, such that the smallest
magnitude weights were removed first, as in [12, 19]. For Fashion-MNIST, SVHN, CIFAR-10 and
CIFAR-100 winning tickets, late resetting of 1 epoch was used. For ImageNet and Places365 winning
tickets, late resetting of 3 epochs was used.

A.2 Randomized masks

0.94

0.92
0.90

0.88
Ticket type
— Winning ticket
0.84 = Preserved mask
Globally permute mask
— Locally permute mask

0'800000(2 0000&0

o 0,0 0©0_0
0 O O Ry Op G Dy O 19y "0y Oy 9y Dp 9 ‘9,
6 TGy N9 192573 %G5 R, 0y s %0, 0570 0y
Fraction of weights pruned

o
=]
o

at convergence

CIFAR-10 test accuracy
o
o]

Figure A1: Comparison of different random masks. Performance of various random masks on CIFAR-10.
Error bars represent mean =+ standard deviation across six random seeds.

When models are pruned in an unstructured manner, there are two aspects of the final pruned model
that may be informative: the values of the weights themselves and the structure of the mask used
for pruning. In the original lottery ticket study [7], bad tickets were compared with randomly
drawn values, but the preserved winning ticket mask. This has the unintended consequence of
transferring information from the winning ticket to the bad ticket, potentially inflating bad ticket
performance. This issue seems particularly relevant given that we observed that global pruning
results in substantially better performance and noticeably different layerwise pruning ratios relative to
layerwise pruning (Figure 1), suggesting that the mask statistics likely contain important information.

12



430
431
432
433
434
435

436
437
438
439
440
441
442

To test this, we evaluated three types of masks: preserved masks, globally permuted masks, and
locally permuted masks. In the preserved mask case, the same mask found by the winning ticket is
used for the random ticket. In the locally permuted case, the mask is permuted within each layer,
such that the exact structure of the mask is broken, but the layerwise statistics remain intact. Finally,
in the globally permuted case, the mask is permuted across all layers, such that no information should
be passed between the winning ticket and the bad ticket.

Consistent with the lottery ticket hypotehsis, we found that the winning ticket outperformed all
random tickets (Figure A1l). Interestingly, we found that while locally permuting masks damaged
performance somewhat (blue vs. green), globally permuting the mask results in dramatically worse
performance (blue/green vs. yellow), suggesting that the layerwise statistics derived from training the
over-parameterized model are very informative. As this information would not be available without
going through the process of generating a winning ticket, we consider the purely random mask to be
the most relevant comparison to training an equivalently parameterized model from scratch.

13



