
A Experimental setup

All game frames were subjected to the same preprocessing steps described in [25]. We converted images to
grayscale and downsized them to 84× 84 pixels. Rewards were clipped to {−1, 0,+1}. For equal comparison,
we used the same convolutional neural network from [25] for all agents: three convolutional layers followed
by two fully connected layers. During training, ε-greedy exploration was linearly annealed from 1 to 0.1 over
the first one million timesteps and then held constant. We trained the neural networks using Adam [14] with
α = 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−4.

Our chosen hyperparameters are shown in Table 1. The table is divided into two portions; the upper section
contains hyperparameters that are identical to those in [25] (although possibly denoted by a different symbol),
while the lower section contains new hyperparameters introduced in our work.

Table 1: Hyperparameters for DQN(λ)

Hyperparameter Symbol Value Description

minibatch size M 32 Number of samples used to compute a single gradient de-
scent step.

replay memory size 1000000 Maximum number of samples that can be stored in the replay
memory before old samples are discarded.

agent history length 4 Number of recent observations (game frames) simultane-
ously fed as input to the neural network.

refresh frequency F 10000 Frequency, measured in timesteps, at which the target net-
work is updated for DQN or the cache is rebuilt for DQN(λ).

discount factor γ 0.99 Weighting coefficient that influences the importance of future
rewards.

replay start size N 50000 Number of timesteps for which to initially execute a uniform
random policy and pre-populate the replay memory.

cache size S 80000 Number of samples used to build the cache upon refresh.

block size B 100 Atomic length of the sampled sequences that are promoted
into the cache upon refresh.

When sizing the cache for DQN(λ), we made sure that the number of minibatches per timestep (1:4 ratio) was
preserved for fair comparison. Specifically,

10000 timesteps

1 refresh
× 1 minibatch

4 timesteps
× 32 samples

1 minibatch
=

80000 samples

1 refresh

Hence, we used S = 80000 for all experiments. To help reduce bias when building the cache, we permitted
overlapping blocks. That is, we did not check for boundary constraints of nearby blocks, nor did we align
blocks to a fixed grid (in contrast to a real CPU cache). This meant that multiple copies of the same experience
might have existed in the cache simultaneously, but each experience therefore had the same probability of being
promoted.

11

B Algorithm

The standard implementation of DQN(λ) is given below in Algorithm 1. For clarity, enhancements such as
prioritized experience replay and dynamic λ selection are not shown.

Algorithm 1 DQN(λ)
function BUILD-CACHE(D)

Initialize empty list C
for 1, 2, . . . , SB do

Sample block (ŝk, ak, rk, ŝk+1), . . . , (ŝk+B−1, ak+B−1, rk+B−1, ŝk+B) from D
Rλ ← maxa′∈AQ(ŝk+B , a

′; θ)
for i ∈ {k +B − 1, k +B − 2, . . . , k} do

Rλ ←
{
ri if terminal(ŝi+1)

ri + γ[λRλ + (1− λ) maxa′∈AQ(ŝi+1, a
′; θ)] otherwise

Append tuple (ŝi, ai, R
λ) to C

end for
end for
return C

end function

Initialize replay memory D with N experiences
Initialize parameter vector θ randomly
Initialize state ŝ0 = φ(o0)

for t ∈ {0, 1, . . . , T − 1} do
if t ≡ 0 mod F then

C ← BUILD-CACHE(D)
for 1, 2, . . . , SM do

Sample minibatch (ŝj , aj , R
λ
j) from C

Perform gradient descent step on
[
Rλj −Q(ŝj , aj ; θ)

]2
with respect to θ

end for
end if

Execute at =

{
a ∼ U(A) with probability ε
argmaxa′∈AQ(ŝt, a

′; θ) otherwise
Receive reward rt and new observation ot+1

Approximate state ŝt+1 = φ(o0, . . . , ot+1)
Store transition (ŝt, at, rt, ŝt+1) in D

end for

12

C Dynamic λ selection with bounded TD error

We experimented with an alternative dynamic λ selection method that bounds the mean absolute TD error of
each block when refreshing the cache. The squared error loss of DQN is known to be susceptible to large and
potentially destructive gradients; this originally motivated reward clipping when playing Atari 2600 games in
[25]. We hypothesized that bounding the error with dynamically selected λ-values would help prevent learning
instability and improve sample efficiency.

Let δ̄ be our error bound (a hyperparameter), and let L(λ) = 1
B

∑B−1
i=0 |R

λ
i −Q(ŝi, ai; θ)| be the mean absolute

TD error of the cache block being refreshed. Assuming that L(λ) increases monotonically with λ, our target
λ-value can be defined as the following:

λ∗ = argmax
λ

L(λ) subject to L(λ) ≤ δ̄ and 0 ≤ λ ≤ 1

In practice, to efficiently find a λ-value that approximately solves this equation, we conducted a binary search
with a maximum depth of 7. We also tested the extreme λ-values (i.e. λ = 0 and λ = 1) prior to the binary
search because we found that these often exceeded or satisfied the δ̄ constraint, respectively. This allowed our
procedure to sometimes return early and reduce the average runtime.

The results are given in Figure 5. While the final scores on Breakout and Space Invaders were improved over the
3-step baseline, performance also decreased significantly on Beam Rider, Q*Bert, and Seaquest. For this reason,
we recommend the use of median-based dynamic λ selection instead.

0 10M0

1000

2000

3000

4000

5000

6000

Beam Rider
3-step DQN
DQN() (= 0.025)

0 10M0

20

40

60

80

100

Breakout
3-step DQN
DQN() (= 0.025)

0 10M

20

15

10

5

0

5

10

15

20
Pong

3-step DQN
DQN() (= 0.025)

0 10M0

2000

4000

6000

8000

10000
Q*Bert

3-step DQN
DQN() (= 0.025)

0 10M0

1000

2000

3000

4000

5000
Seaquest

3-step DQN
DQN() (= 0.025)

0 10M0

100

200

300

400

500

600

Space Invaders
3-step DQN
DQN() (= 0.025)

Figure 5: Sample efficiency comparison of DQN(λ) with prioritization p = 0.1 and error-based
dynamic λ selection against 3-step DQN on six Atari games. The mean absolute TD error of each
block was roughly bounded by δ̄ = 0.025 during the refresh procedure.

13

D Derivation of recursive λ-return calculation

Suppose the agent experiences the finite trajectory ŝt, at, rt, . . . , ŝT−1, aT−1, rT−1, ŝT . We wish to write Rλt
as a function of Rλt+1. First, note the general recursive relationship between n-step returns:

R
(n)
k = rk + γR

(n−1)
k+1 (4)

Let N = T − t. Starting with the definition of the λ-return,

Rλt =

[
(1− λ)

N−1∑
n=1

λn−1R
(n)
t + λN−1R

(N)
t

]

= (1− λ)R
(1)
t +

[
(1− λ)

N−1∑
n=2

λn−1R
(n)
t + λN−1R

(N)
t

]

= (1− λ)R
(1)
t +

[
(1− λ)

N−1∑
n=2

λn−1
(
rt + γR

(n−1)
t+1

)
+ λN−1

(
rt + γR

(N−1)
t+1

)]
(5)

= (1− λ)R
(1)
t + λrt + γλ

[
(1− λ)

N−1∑
n=2

λn−2R
(n−1)
t+1 + λN−2R

(N−1)
t+1

]
(6)

= (1− λ)R
(1)
t + λrt + γλ

[
(1− λ)

N−2∑
n′=1

λn
′−1R

(n′)
t+1 + λN−2R

(N−1)
t+1

]
(7)

= (1− λ)R
(1)
t + λrt + γλRλt+1

= R
(1)
t − λR

(1)
t + λrt + γλRλt+1

= R
(1)
t − λ

(
rt + γ max

a′∈A
Q(ŝt+1, a

′)
)

+ λrt + γλRλt+1

= R
(1)
t + γλ

[
Rλt+1 −max

a′∈A
Q(ŝt+1, a

′)
]

(8)

Equation (5) follows from the recursive relationship in Equation (4). Equation (6) follows from the telescoping
identity λ = (1 − λ)λ + (1 − λ)λ2 + · · · + (1 − λ)λN−2 + λN−1. In Equation (7), we let n′ = n − 1 to
obtain an expression for Rλt+1. A sequence of λ-returns can be generated efficiently by repeatedly applying
Equation (8). The recursion can be initialized using the fact that RλT = maxa′∈AQ(ŝT , a

′). If ŝT is terminal,
then maxa′∈AQ(ŝT , a

′) = 0 by definition.

14

E Watkin’s Q(λ)

Watkin’s Q(λ) is the simplest form of bias correction for Q-Learning with λ-returns. Whenever a non-greedy
action is taken, λ is set to 0, effectively performing a standard 1-step backup at the current timestep. This is
apparent from substituting λ = 0 into Equation (3).

Watkin’s Q(λ) ensures that backups are conducted using greedy actions with respect to the Q-function, and
therefore all updates are on-policy. In theory, we would expect this to improve performance by increasing the
accuracy of return estimation, but our experiments in Figure 6 indicated otherwise. Although cutting traces to
correct bias is well motivated, the overall performance was still significantly hampered compared to Peng’s Q(λ)
(which ignores bias correction). This suggests that long-term credit assignment is more important than bias
correction for the six games we tested.

0 10M0

1000

2000

3000

4000

5000

6000

Beam Rider

3-step DQN
DQN(0.25)
DQN(0.5)
DQN(0.75)
DQN(1)

0 10M0

50

100

150

200

Breakout
3-step DQN
DQN(0.25)
DQN(0.5)
DQN(0.75)
DQN(1)

0 10M

20

15

10

5

0

5

10

15

20
Pong

3-step DQN
DQN(0.25)
DQN(0.5)
DQN(0.75)
DQN(1)

0 10M0

2000

4000

6000

8000

10000
Q*Bert

3-step DQN
DQN(0.25)
DQN(0.5)
DQN(0.75)
DQN(1)

0 10M0

1000

2000

3000

4000

5000
Seaquest

3-step DQN
DQN(0.25)
DQN(0.5)
DQN(0.75)
DQN(1)

0 10M0

100

200

300

400

500

600

Space Invaders
3-step DQN
DQN(0.25)
DQN(0.5)
DQN(0.75)
DQN(1)

Figure 6: Comparison of DQN(λ) with λ ∈ {0.25, 0.5, 0.75, 1} against 3-step DQN on six Atari
games. The λ-returns were formulated as Watkin’s Q(λ).

15

F Partial observability

Atari 2600 games are partially observable given a single game frame because the velocities of moving objects
cannot be deduced. We repeated our median-based dynamic λ experiments under this condition (Figure 7). In
this case, λ-returns can theoretically help resolve state uncertainty by integrating information across multiple
n-step returns. The agents performed worse, as expected, but the relative results were qualitatively similar to
those of the fully observed experiments.

0 10M0

1000

2000

3000

4000

5000

6000
Beam Rider

3-step DQN
DQN() (median)

0 10M0

5

10

15

20

Breakout

3-step DQN
DQN() (median)

0 10M

20

15

10

5

0

5

10

15

Pong

3-step DQN
DQN() (median)

0 10M0

1000

2000

3000

4000

5000

6000

7000

8000

Q*Bert
3-step DQN
DQN() (median)

0 10M0

1000

2000

3000

4000

5000

Seaquest
3-step DQN
DQN() (median)

0 10M0

100

200

300

400

500

600

Space Invaders
3-step DQN
DQN() (median)

Figure 7: Sample efficiency comparison of DQN(λ) with prioritization p = 0.1 and median-based
dynamic λ selection against 3-step DQN on six Atari games. Only a single frame at a time was
presented to the agent to make the games partially observable.

16

G Real-time sample efficiency

We compared DQN(λ) using each game’s best tested λ-value against the 3-step DQN baseline and plotted
the results as a function of elapsed time in hours (Figure 8). DQN(λ) and its cache-based sampling method
completed training faster than DQN on five of the six games, likely because the block size B = 100 is larger
than the minibatch size M = 32 and can be more efficiently executed on a GPU.

0 5 10 15 20 25 300

1000

2000

3000

4000

5000

6000

7000
Beam Rider

3-step DQN
DQN(0.5)

0 5 10 15 20 25 300

50

100

150

200

Breakout
3-step DQN
DQN(0.25)

0 5 10 15 20 25 30

20

15

10

5

0

5

10

15

20
Pong

3-step DQN
DQN(0.75)

0 5 10 15 20 250

2000

4000

6000

8000

10000

Q*Bert
3-step DQN
DQN(0.5)

0 5 10 15 20 250

1000

2000

3000

4000

5000

Seaquest
3-step DQN
DQN(0.5)

0 5 10 15 20 250

100

200

300

400

500

600

700

Space Invaders
3-step DQN
DQN(0.25)

Figure 8: Real-time sample efficiency comparison of DQN(λ) with the best λ-value in
{0.25, 0.5, 0.75, 1} against 3-step DQN on six Atari games. The horizontal axis indicates wall-
clock time in hours.

17

