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Abstract
Jaccard similarity is widely used as a distance measure in many machine learning
and search applications. Typically, hashing methods are essential for the use of
Jaccard similarity to be practical in large-scale settings. For hashing binary (0/1)
data, the idea of one permutation hashing (OPH) with densification significantly
accelerates traditional minwise hashing algorithms while providing unbiased and
accurate estimates. In this paper, we propose a “re-randomization” strategy in the
process of densification and we show that it achieves the smallest variance among
existing densification schemes. The success of this idea inspires us to generalize one
permutation hashing to weighted (non-binary) data, resulting in the so-called “bin-
wise consistent weighted sampling (BCWS)” algorithm. We analyze the behavior of
BCWS and compare it with a recent alternative. Experiments on a range of datasets
and tasks confirm the effectiveness of proposed methods. We expect that BCWS
will be adopted in practice for training kernel machines and fast similarity search.

1 Introduction
In recent years, there has been a surge of interest in studying the following measure of similarity for
nonnegative data [17, 6, 12, 26, 14, 20, 29, 21, 22]:

J(S, T ) =

∑D
i=1 min(Si, Ti)∑D
i=1 max(Si, Ti)

(1)

where S, T ∈ RD are two D-dimensional data vectors with only nonnegative entries. This “min-max”
measure is a generalization of the “Jaccard similarity” in binary (0/1) data. For simplicity, in this paper,
we will use “Jaccard” regardless whether the data are binary or non-binary. We should also mention
that J(S, T ) has been successfully extended to include data with negative entries [21, 22]. In fact,

under a fairly general distributional assumption, J → 1−
√

(1−ρ)/2
1+
√

(1−ρ)/2
, where ρ is the correlation [25].

While J(S, T ) in Eq. (1) appears deceivingly simple, the work of [20, 21, 22] demonstrated that,
through extensive empirical studies, this measure of similarity is surprisingly effective when it is
used as a kernel for classification (e.g., SVM and logistic regression). In many public datasets, using
this (tuning-free) kernel resulted in a substantial increase in classification accuracy, compared to the
(best-tuned) radial basis function (RBF) kernel. Furthermore, the “tunable” version [22] of J(S, T )
is even able to achieve classification accuracy comparable to boosted trees (and deep nets) [18, 19].

Since J(S, T ) is a type of nonlinear kernels. In order to use it for mere medium-scale datasets, we
must be able to “linearize” this kernel. Scaling nonlinear kernel machines is a known non-trivial
task [2]. For example, we cannot even store a kernel matrix in the memory for a dataset with only
1,000,000 training samples, which has 1012 ≈ 240 entries and will need multiple terabyptes of storage.
∗The work of Xiaoyun Li was conducted during the internship at Baidu Research.
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1.1 Consistent Weighted Sampling (CWS)

The method of consistent weighted sampling (CWS) [12, 26, 14] is the standard strategy for efficiently
computing the Jaccard similarity in Eq. (1). This algorithm is summarized in Algorithm 1, for hashing
the vector S as an example. For all other data vectors (e.g., T ), we apply the same randomization,
i.e., using the same random numbers (ri, ci, βi) in Algorithm 1. For vectors S and T , we denote the
outputs as (i∗S , t

∗
S) and (i∗T , t

∗
T ), respectively. Then the following interesting probability result holds:

Pr (i∗S = i∗T and t∗S = t∗T ) = J(S, T ) (2)

Algorithm 1: Consistent Weighted Sampling (CWS).
1 Input: (Non-negative) Data vector Si, i = 1 to D
2 Output: Consistent uniform sample (i∗, t∗)

3 For every nonzero Si
4 ri ∼ Gamma(2, 1), ci ∼ Gamma(2, 1), βi ∼ Uniform(0, 1)

5 ti ← b logSi

ri
+ βic, ai ← log(ci)− ri(ti + 1− βi)

6 End For
7 i∗ ← argmini ai, t∗ ← ti∗

After repeating the randomization M times, one can then estimate the similarity as

Ĵ =
1

M

M∑
j=1

1
{
i∗S,j = i∗T,j and t∗S,j = t∗T,j

}
(3)

E(Ĵ) = J, V ar(Ĵ) =
1

M
J(1− J) (4)

Note that this estimate Ĵ is actually a linear (inner product) kernel in a (sparse) high-dimensional
space. Basically there will be only exactly M 1’s if we expand the samples into one sparse vector.
The prior work [20, 21, 22] already demonstrated the effectiveness of CWS for training kernel SVMs.

1.2 The Computational Bottleneck of CWS

CWS as presented in Algorithm 1 is fairly complex. Also, it needs O(f̄M) computations to process
one data vector, where f̄ is the average number of nonzero entries in the data vector. For many
important applications, f̄ � D, especially when D is large (i.e., high-dimensional data). This cost is
actually very expensive and can be the bottleneck if engineers hope to use CWS in practice. It would
be highly desirable if the computational cost (per data vector) can be reduced to O(f̄). Note that
since we anyway have to touch each data entry (at least) once, O(f̄) is the minimal possible cost.

1.3 Bin-wise CWS (BCWS)

Bin-wise CWS (or BCWS) appears to be a natural idea, although it has taken us a fairly long journey
to get it into the current form as presented in this paper. We will elaborate on the algorithm in details
and explain other attempts we had tried which did not lead to satisfactory results.

With BCWS, we first conduct a random permutation on the columns of the data matrix, then we
group the columns into equal-sized bins and perform CWS on each bin separately. Suppose we break
the columns into K = M bins and each bin contributes one sample, then the processing cost would
be only O(f̄) (where f̄ is the average number of nonzero entries). Intuitively, this strategy should
work well if D is large and the data entries are “well-behaved” (e.g., entries follow a Gaussian or
more generally a non-heavy-tailed distribution). This is because, when D is large and K is not too
large, each bin with D/K entries would still be a good representative sample of the original data.

The real world is typically not this ideal. When D is large, the real data often tend to be (highly)
sparse, which means some bins may have only a small number of nonzero entries or even empty.
Therefore, we must be able to deal with empty bins. Algorithm 2 is a generic description of BCWS.
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Algorithm 2: A generic description of BCWS.
1 Randomly group a dataset of D columns evenly into K bins.
2 For each data vector.
3 For j = 1 to M
4 Pick one non-empty bin.
5 Generate one CWS sample. /* In fact, we can replace CWS with other methods, e.g., [6, 29]. */
6 End For
7 End For

This is just the beginning of the story. Next, we need to develop strategies to implement lines 4 and 5.

1. How to pick a non-empty bin? We present the results on two strategies.
(a) The first strategy is to treat, for each data vector, the bins as a K-dimensional binary

data vector and apply classical min-wise hashing [4, 3] to choose a non-empty bin. We
denote this strategy as Rs (random select).

(b) A better strategy is to apply the idea of “one permutation hashing” [24] and densifica-
tion [30]. Instead of always (randomly) selecting a non-empty bin, we focus only on the
empty bins. If a bin is empty, then we select a bin from the non-empty ones according to
some strategy. It was shown in [30] that a good strategy is to fully randomly select from
all bins and stop till a non-empty bin is reached. We denote it as Den (densification)
and will describe this strategy in more details.

2. How to generate a CWS sample from a non-empty bin? We also present two strategies.
(a) For one non-empty bin, we generate one CWS sample and always output this sample

whenever this bin is picked.
(b) We always generate a new CWS sample whenever this bin is picked.

Therefore, we will present in total four variants of BCWS. Quite a few years back, when we started to
study this problem, we had tried various other proposals for picking the non-empty bins. One intuitive
strategy, which initially appeared very reasonable, is to pick the bins with probabilities proportional to
the sums of the elements in all bins. However, after many unsuccessful attempts, we have eventually
realized that we should just focus on whether bins are empty or non-empty, i.e., our Algorithm 2.

Note that, for binary data, the CWS algorithm generates statistically equivalent samples as the
classical minwise hashing. Thus, to use BCWS on binary data, we just need to apply the standard
minwise hashing method (instead of CWS), whenever a non-empty bin is picked. In other words,
for binary data, our study of BCWS actually leads to a new densification scheme. In the next two
sections, after we first review minwise hashing, one permutation hashing, and densification, we will
illustrate how our work actually improves over the existing densification schemes for binary data.

2 Minwise Hashing, One Permutation Hashing, and Densification

Minwise hashing (minhash) [4, 3] was initially developed for efficiently computing data Jaccard
similarities (a.k.a. resemblances) for the task of duplicate web page removal. Then the technique has
been widely applied for numerous practical tasks, e.g., [10, 28, 11, 7, 8, 13, 9, 27, 16, 32, 15, 5, 1].

Consider two sets S, T ⊆ Ω = {1, 2, 3, ..., D}. Suppose a random permutation π is performed on Ω:
π : Ω −→ Ω. An elementary probability argument shows that

Pr (min(π(S)) = min(π(T ))) =
|S ∩ T |
|S ∪ T |

= J(S, T ). (5)

For the sake of simplicity, with a slight abuse of notation, we use J(S, T ) to denote the Jaccard
similarity between two sets S and T , and J(S, T ) to denote the generalized Jaccard similarity between
two vectors S and T . In order to estimate J , one will need to repeat the permutations M times. This
computational burden has been resolved by the idea of “one permutation hashing” [24]. As illustrated
in Figure 1, after applying one permutation on the columns, we break the column space evenly into
K bins (where K = M in [24]) and then use the locations of the first nonzero entries in all bins as
the hashed data. This substantially reduces the processing time and makes minwise hashing truly
practical. However, new problems arise as there will inevitably be empty bins in sparse data.
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Figure 1: Demonstration of one permutation
hashing. For example, for S1, the hashed values
are [∗, 5, 11, 14] with the first bin being empty.

To deal with empty bins, [31] proposed a strategy
by directly borrowing hashed data from neigh-
boring bins. The work [30] proposed an im-
provement by selecting non-empty bins randomly
from all bins. Basically, we can understand the
strategy in [30] as using a random permutation
π′ : {1, 2, ...,K} −→ {1, 2, ...,K}. If one bin
is empty, one then follows the permutation π′ till
one non-empty bin is found. [30] also used an
argument based on “universal hashing” to claim
that cycling can be avoided.

Through an elegant analysis, [30] claimed that it
achieved the smallest (optimal) variance. Interest-
ingly, the performance of the densification scheme
in [30] can still be improved, in the sense that,
given a fixed budget of storage (i.e., sample size M ), the variance can be further reduced via
re-randomization on each selected non-empty bin. This finding is useful, practically and theoretically.

3 Binary Data: Densification with Re-randomization

We continue to use the example in Figure 1. After one permutation and binning, the non-empty bins
for each set constitute a set: IS1 = {1, 2, 3} for S1, IS2 = {1, 2, 4} for S2, and IS3 = {1, 3, 4} for
S3, respectively. As briefly mentioned in Introduction, there are four strategies to generate samples.
Suppose we first group the data matrix columns into K bins and we hope to obtain M samples.

1. Rs: For the original set Si, we randomly select a non-empty bin using minwise hashing
on the set ISi

. For each non-empty bin, we have already generated a hashed value from
minhash within the bin. Once a non-empty bin is selected, we return its hashed value.

2. RsRe: For the original set Si, we randomly select a non-empty bin using minwise hashing
on the set ISi

. Once a non-empty bin is selected, we perform a minwise hashing within the
bin and return the hashed value.

For Rs and RsRe, we repeat the procedure M times to obtain M samples, regardless of K,
the number of bins. It is often the case that we use M = K, but we do not have to.

3. Den: After we group the data matrix columns into K bins, we “densify” (fill in) the empty
bins from the beginning of the bins using the “optimal” densification strategy described
in [30]. For each non-empty bin, we have already generated a sample by a minwise hashing
within the bin. If M < K, then we stop till we have collected M samples.

4. DenRe (Densification with Re-randomization): For each empty bin, after we fill it in with
one non-empty bin, we re-do a minwise hashing within that bin and output a sample.

Here we will repeat the procedure for “optimal densification” as described in the nice work of [30].
Conceptually, we have another random permutation π′ : {1, 2, ...,K} −→ {1, 2, ...,K}. If one bin
is empty, one then follows the permutation π′ till a non-empty bin is found. Based on the “universal
hashing” argument, [30] claimed that cycling can be avoided. The actual implementation is slightly
more sophisticated than just using a random permutation. We refer readers to [30] for more details.

Note that, for binary data, Den is basically the scheme in [30]. Even though it is called “optimal
densification” in [30], in this paper we will show that the variance can actually be further reduced by
a re-randomization (Re) step, through a careful analysis. Also, note that while [24, 31, 30] always let
M = K, in this study we have relaxed this constraint by providing more general theoretical results.

3.1 Theoretical Results

In the original minwise hashing, we have an (unbiased) estimator Ĵ of the Jaccard similarity (anal-
ogous to Eq. (3)) with a variance 1

M J(1 − J) in order to generate M samples. With the four
densification schemes described above, we now have four more (unbiased) estimators, which are re-
spectively denoted by ĴMRs, Ĵ

M
RsRe, Ĵ

M
Den, and ĴMDenRe. Here, we use the superscript M to emphasize

the sample size. The following lemma gives an important quantity in the re-randomization process.
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Lemma 1. Let d = D
K be an integer. Assume B is the index set of a simultaneously non-empty bin.

Let f = |S ∪ T |. Denote f̃ =
∑
i∈IB max(Si, Ti) the number of nonzeros in bin B. Then we have

E0 , E[
1

f̃
|Iemp,B 6= 0] =

∑min(d,f)
j=max(1,d+f−D)

1
j

(
f
j

)(
D−f
d−j

)(
D
d

)
− I{d+f−D≤0}

(
D−f
d

) , (6)

where Iemp,B denotes the indicator of event that bin B is empty. Conditional on the event that there
are m simultaneously non-empty bins, we have

Ẽ0(m) , E[
1

f̃
|Iemp,B 6= 0,m] =

d∧(f−m+1)∑
j=1∨[f−(m−1)d]

1

j

(
d
j

)
H(m− 1, f − j|d)

H(m, f |s)
, (7)

where the following recursion holds for ∀k ≤ K,

H(k, n|d) =

min{d,n−k+1}∑
j=max{1,n−(k−1)d}

(
d

j

)
H(k − 1, n− j|d), H(1, n|d) =

(
d

n

)
.

A careful analysis derives the following theory for the variances of the proposed four estimators.

Theorem 1. Let Ẽ0(m) be defined in Lemma 1. Let f1 = |S|, f2 = |T |, a = |S∩T |, f = |S∪T | =
f1 + f2 − a, and J = a

f , J̃ = a−1
f−1 . NM

emp is the number of empty bins out of first M ≤ K bins. If
M > K, then NM

emp = NK
emp. We have

V ar
(
ĴM
Rs

)
=

J

M
+

M − 1

M
E1 − J2,

V ar
(
ĴM
RsRe

)
=

J

M
+

M − 1

M
E2 − J2.

If M ≤ K, then

V ar
(
ĴM
Den

)
=

J

M
+

1

M2
E[(M −NM

emp)(M −NM
emp − 1)JJ̃ ] +

1

M2
E[NM

emp(2M −NM
emp − 1)]E1 − J2,

V ar
(
ĴM
DenRe

)
=

J

M
+

1

M2
E[(M −NM

emp)(M −NM
emp − 1)JJ̃ ] +

1

M2
E[NM

emp(2M −NM
emp − 1)]E2 − J2,

If M > K, then

V ar
(
ĴM
Den

)
=

1

M2
[K2(V ar

(
ĴK
Den

)
+ J2) + (M −K)(M +K − 1)E1 + (M −K)J ]− J2,

V ar
(
ĴM
DenRe

)
=

1

M2
[K2(V ar

(
ĴK
DenRe

)
+ J2) + (M −K)(M +K − 1)E2 + (M −K)J ]− J2,

where E1 = E[ J
K−NK

emp
+(1− 1

K−NK
emp

)JJ̃ ] and E2 = E[
Ẽ0(K−NK

emp)

K−NK
emp

J+(1− Ẽ0(K−NK
emp)

K−NK
emp

)JJ̃ ].

Note that the above theorem involves the probability distribution of NM
emp, where M ≤ K. [24]

derived this probability for a simpler case. Here, we provide the general result.
Theorem 2. The distribution of NM

emp, where M ≤ K, is given by

Pr

{
NM
emp = j

}
=

M−j∑
`=0

(−1)`
(
M

j

)(
M − j
`

)(
D(1− (j + `)/K)

f

)/(
D

f

)
.

We also have the asymptotic convergence as the following Theorem.
Theorem 3. Suppose K is finite and fixed, then as M →∞,

lim
M→∞

V ar
(
ĴMDen

)
= lim
M→∞

V ar
(
ĴMRs

)
= E1 − J2,

lim
M→∞

V ar
(
ĴMDenRe

)
= lim
M→∞

V ar
(
ĴMRsRe

)
= E2 − J2.

Proof. The results simply follows by taking M →∞ in Theorem 1.
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Figure 2: Verification of theoretical results in Theorem 1 for estimating Jaccard similarity between
two binary vectors (“HONG” and ”KONG”). We report the empirical MSEs (solid curves), which
overlap the theoretical variances (dashed curves). Note that it is possible DenRe can have smaller
variance than the original minwise hashing. (Bottom panels are zoomed-in versions of upper panels.)

3.2 Sanity Check: An Empirical Study to Verify the Theoretical Results

Figure 2 presents a sanity check of our theoretical results, from 105 simulations, for estimating the
Jaccard similarity between two word vectors: “HONG” and “KONG”. Basically, “HONG” denotes
the vector of occurrence (0/1) of the word “HONG” in a repository of D = 216 documents. As
expected, the data are highly sparse and reflect the real-world situation. This dataset (named “Words”)
has been used in a few previous papers on hashing and sketching, as early as in 2005 [23]. From
Figure 2, we can see that the empirical MSEs (mean square error (= V ar+Bias2), solid curves)
overlap the (dashed) theoretical curves very well, confirming the theoretical results in Theorem 1.

In Theorem 1, since E0 ≤ 1 and J̃ < J , we always have E2 ≤ E1 and thus V ar(ĴMDenRe) ≤
V ar(ĴMDen) and V ar(ĴMRsRe) ≤ V ar(ĴMRs) always hold for positive M . We can see that the equality
is attained only when |S ∪ T | = 1, i.e., each data vector contains at most 1 nonzero entry. Hence, in
essentially all cases, the variance of re-randomized approaches (RsRe, DenRe) is smaller than that
of the corresponding counterparts (Rs, Den), and the improvement can be substantial in some cases.

In fact, this re-randomized densification procedure achieves the smallest variance among all existing
OPH variants, since maximum randomness is introduced in both bin selection and hash reassignment
steps. Thus, our proposed DenRe approach is able to generate the most accurate estimator under the
efficient OPH scheme. We also remark that under the setting by [30] where asymptotic analysis is in
the sense of K = M →∞, the variance of ĴMDenRe is always the smallest and converges to zero.

Running time. Let f̄ be the average number of nonzero entries of all sets. To generate M
samples for each set, the vanilla minwise hashing algorithm has a running time of O(Mf̄). Clearly,
one permutation hashing + densification schemes is able to dramatically reduce the processing time.

For simplicity, consider M = K. The running time of Den scheme is O(f̄ + 2K + K
K−NK

emp
NK
emp).

The re-randomized approach DenRe takes O(f̄ + 2K + K
K−NK

emp
NK
emp + f̄

KN
K
emp), where the

additional cost comes from re-doing minwise hashing for each empty bin. This additional cost
f̄
KN

K
emp is in general minimal. One can also see that, as the number of empty bins NK

emp becomes
larger, the variance reduction effect due to re-randomization would be even more substantial.

Next, we will generalize our densification scheme to non-binary data, i.e., the BCWS algorithm.
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4 Weighted data: Bin-wise Consistent Weighted Sampling (BCWS)
We have provided a comprehensive analysis on densification schemes for one permutation hashing.
However, these methods are constrained to binary data. Given the significant acceleration of bin-wise
type algorithms, one may ask: can we extend one permutation hashing, which is designed specifically
for binary sets, to weighted sets? The main concern is that, unlike in the binary case, different weights
are assigned to entries which intrinsically give bins different amount of information. Using the same
strategy as in one permutation hashing could no longer provide unbiasedness. In the next, we show
that applying bin-wise CWS is also theoretically plausible with moderate number of bins K, and it
provides significant speedup and very similar empirical performance to the original CWS procedure.

4.1 Concentration of BCWS Estimates

Consider two non-negative real-valued data vectors S, T ∈ RD. For simplicity, we assume M = K.
Intuitively, one may expect that the BCWS estimator is “nearly unbiased” if the data is “reason-
ably behaved”, in the sense that information is approximately uniformly distributed among the entries.

Theorem 4. Consider two non-negative real-valued vectors S, T ∈ RD. Denote µ1, µ2 and µ3 as
the average of S, T and S ∨ T , and σ1, σ2 and σ3 be corresponding standard deviations. Further
assume that DK is an integer. After applying random permutation π, hk(·) is the hash tuple generated
in bin k. Denote ĴBCWS(π) = 1

K

∑K
k=1 I{hk(S) = hk(T )|π} the estimator given by BCWS. For

any t > 0, when K ≤ min
i

µi
σi

√
D

t
, we have

P

{
1−K(δ1(t) ∨ δ2(t))

1 +Kδ3(t)
J − K(δ3(t) + (δ1(t) ∨ δ2(t)))

1 +Kδ3(t)
≤ E[ĴBCWS(π)]

≤ 1 +K(δ1(t) ∨ δ2(t))

1−Kδ3(t)
J +

K(δ3(t) + (δ1(t) ∨ δ2(t)))

1−Kδ3(t)

}
≥ 1− 6K

p1
e−t +

3p0K

p1
,

with δi(t) = σi

µi

√
t
D for i = 1, 2, 3, p0 =

(
D−f
D/K

)
/
(
D

D/K

)
, p1 = 1 − p0, and f = |{i : Si >

0 or Ti > 0}|.

4.2 Experiment: MSEs for Estimating Jaccard in Real-valued Word-Vectors

We again use the word occurrence data (such as “HONG” and “KONG”) form the “Words” dataset.
This time, we record the actual numbers of occurrences instead of just the presence/absence informa-
tion. We have conducted a large number of simulations for estimating the Jaccard similarity between
two vectors. The patterns are essentially similar and hence we only present the results for three
word-vector-pairs, in Figure 3. More details about the datasets and the experiments are available in
the supplementary material, which also contains the proofs of the theorems presented in this paper.

As expected, as shown in Figure 3, DenRe outperforms Den (and two other estimates) in terms
of MSEs. We remark that when K is smaller, the curves of CWS, Den and DenRe are usually
indistinguishable (if M < K) and hence we just report results with relatively larger K values.

4.3 The “R-G” Algorithm for Estimating Jaccard

To demonstrate the advantage of our proposed method for estimating Jaccard similarity with nonneg-
ative real-valued data, here we introduce another interesting algorithm [17, 6, 29] which in this paper
we refer to as the “R-G” method. They showed that when data are dense, “R-G” speeds up CWS,
typically by a substantial factor.

Figure 4: Illustration of R-G algorithm in [29].

Figure 4 is an example where two vectors
S = [S1, S2, S3, S4] and T = [T1, T2, 0, T4].
The algorithm needs prior fixed feature-wise
upper bound mi, i = 1, ..., D. The green
region represents the data entries. Denote
m̃j =

∑j
i=1mi. They repeatedly choose a

point at random on [0, m̃D] until it falls into the green region. The hash values are set to be the
number of tries before success. This simple strategy also yields an unbiased estimator of Jaccard
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Figure 3: Empirical MSEs of four BCWS schemes for estimating Jaccard similarity on weighted
datasets, for three word-vector-pairs. The bottom panels are zoomed-in versions of the upper panels.

similarity J and same variance as CWS. The running time of R-G method is O(f̄ +K 1
s ) of a set S

with f̄ nonzero entries, where s =
∑D

i=1 Si

m̃D
is the effective sparsity. Note that s = f

D when data are
binary. Therefore it should be obvious that the R-G algorithm would perform poorly in binary data
and also poorly in sparse data.

Recall that, for BCWS using DenRe (consider only M = K), the running time is O(f̄ + 2K +
K

K−NK
emp

NK
emp + f̄

KN
K
emp). Roughly speaking, in a typical situation, we can say that the cost for

generating K samples using R-G is O(K/s) and for BCWS is O(f̄). Therefore, we can use K
sf̄

as an
indicator for the improvement of BCWS compared to R-G.

Through a careful study of the literature, the history of the “R-G” algorithm can be traced to [17, 6].
The recent work [29] developed an effective column-wise preprocessing scheme which made the
algorithm practical (in dense data). [29] also provided an elegant theoretical analysis to clearly reveal
the advantage of the method in dense data (and its disadvantage in sparse data).

In Figure 5, we present the empirical comparisons between R-G and BCWS on two datasets: (i)
“Words” ( 1

sf̄
≈ 1); (ii) “20 NewsGroup” ( 1

sf̄
≈ 14 ∼ 150). There is an important (hidden) detail in

the R-G algorithm that its performance largely depends on the properly chosen scaling factor. For the
original 20 Newsgroup dataset, 1

sf̄
≈ 150, but if we scale the data properly, this value can be reduced

substantially to 14. We will explain the R-G algorithm in more details in the supplementary material.
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Figure 5: Average absolute estimation error of Jaccard similarity and running time comparison.
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The “Words” dataset [23] consists of 2, 702 word-vectors (e.g., “HONG” and “KONG”) from a
repository of D = 216 documents, for a total of 3,649,051 word-pairs. The left panel of Figure 5
reports the averaged absolute errors (among over 3 million pairs). Similarly we present the errors
for 20 NewsGroup, for both R-G and BCWS-DenRe. We also include the time comparisons in the
right panel of Figure 5. Basically, for k = 256, R-G needs 200 times more time than BCWS. This is
largely consistent with what theoretical results would predict. For 20 NewsGroup, we observe that
the improvement in efficiency by using BCWS would be even much more substantial.

Finally, we should add that one can combine the idea of BCWS and R-G to significantly speed up
the R-G algorithm as suggested in Line 5 of Algorithm 2. We can perhaps name this new method
as “B-R-G”. Its computational cost would be merely O

(
f̄ + 1

s

)
as opposed to O

(
f̄ +K 1

s

)
for R-G.

This new method would be very useful for hashing Jaccard similarity in dense high-dimensional data.

4.4 Classification Experiment

[20, 21, 22] already conducted extensive experiments on many classification tasks using the min-max
kernel (and other kernels) and linearized min-max kernels by CWS hashing.
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Figure 6: Using linear SVM on the original data
achieves only a 77% accuracy. After we hash
the data via CWS and use linear SVM on top of
hashed data (dashed curve), the accuracy reaches
99%. Using BCWS with K ranging from 16 to
128 (solid curves) still attain similar accuracies.

Here, we report additional experiments on the
UCI-Dailysports dataset. When a classifier based
on linear SVM is used on the original data, the
test accuracy is only 77%. However, with the min-
max kernel, the accuracy becomes 99%. This is a
good example to show that min-max kernel (and
linearization by CWS hashing) might be very use-
ful in practice. Figure 6 shows that for BCWS
with K ∈ {16, 32, 64, 128}, using linear SVM
and hashed data by BCWS achieves good classifi-
cation accuracy. Compared to CWS, the accuracy
of BCWS is similar or even slightly better. Note
that the dimension of the dataset is only 5,625. For
example, when K = 128 and the desired number
of (nonzero) features is 210 (x-axis), we have to
repeat BCWS 1024/128 = 8 times. Nevertheless,
we can still achieve a cost reduction by a factor of
128 without losing accuracy.

This is a significant part of the contribution in this
paper for machine learning. That is, we are able
to achieve good accuracy of nonlinear kernels at the cost similar to that of linear classifiers, and the
preprocessing (hashing) cost is no longer the bottleneck, unlike the original CWS hashing method.

5 Conclusion

We expect BCWS would be adopted in practice for large-scale similarity search and machine learning
tasks, given its simplicity and effectiveness. The prior work [20] showed that the min-max kernel,
even though it appears simple, could be a good choice of nonlinear kernels for many classification
tasks. The more recent work [21] extended the min-max kernel to data vectors with negative entries.
In addition, the min-max kernel can be modified to admit tuning parameters [22] for potentially
achieving even better performance. The work [22] compared “tunable” min-max kernels with boosted
trees and deep nets and presented surprising results. Nevertheless, the processing (hashing) cost of the
original CWS algorithm makes it difficult for min-max kernel (and variants) and CWS to be adopted
in practice. This study fills in this gap by developing the Bin-Wise CWS (BCWS) algorithm and
providing the theoretical analysis. For binary (0/1) data, our results are also interesting and practically
useful, in that we provide a scheme that, under the same storage budget, can achieve the provably
smallest variance among all existing densification methods for one permutation hashing (OPH).
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