
(Supplementary Material)
Nonparametric Regressive Point Processes Based on

Conditional Gaussian Processes

Siqi Liu
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15213

siqiliu@cs.pitt.edu

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15213
milos@pitt.edu

A Proof of Theorem 1

Proof. Given any event sequence y = {(ti, ui)}|y|i , the CIF λũ(t) at any time t may only depend
on the subset of events {(ti, ui) ∈ y : 0 < t− ti ≤ ∆Tui

}, according to Assumption 1. Focusing
on a specific type u, the subset of events that λũ(t) may depend on is {(ti, ui) ∈ y : 0 < t −
ti ≤ ∆Tu, ui = u}. Notice that all of these events occur within the time interval [t − ∆Tu, t),
which is a bounded interval, since ∆Tu < ∞. Therefore, from Assumption 2, we have Nu([t −
∆Tu, t)) ≤ Mu(∆Tu) < ∞ for some Mu, which holds for any time t. That is, λũ(t) depends
on at most the last Mu(∆Tu) events of type u at any time t. To complete the proof, let Q =
maxu=1,...,U Mu(∆Tu).

B Definitions of ψ and Ψ

Define vd,n,m = tn − sd(tm), where sd(t) is the qd-th (from last) point of type ud before t (qd and
ud are determined by the dimension d). Then for any z, z′ ∈ Z

ψn(z) =

D∑
d=1

I [zd] I [sd(tn)] γd

√
παd√

2

[
erf
(
vd,n,n − zd√

2αd

)
− erf

(
vd,n−1,n − zd√

2αd

)]
(15)

Ψn(z, z′) =

D∑
i,j

I [zi] I
[
z′j
]
I [si(tn)] I [sj(tn)] γiγj

√
παiαj√

2(αi + αj)

exp

(
−

(zi + si(tn)− z′j − sj(tn))2

2(αi + αj)

)
[

erf

(
αi(vj,n,n − z′j) + αj(vi,n,n − zi)√

2αiαj(αi + αj)

)

−erf

(
αi(vj,n−1,n − z′j) + αj(vi,n−1,n − zi)√

2αiαj(αi + αj)

)]
(16)

C Efficient computation of ψ and Ψ

We note that both
∑
n ψn and

∑
n Ψn can be combined to improve efficiency. A straightforward

implementation would cost O(ND2), where N is the total number of points. The key thing to notice

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

is that for fixed dimensions d, i, j, the types of points that matter are only the ones related to the
dimensions, while we can integrate over the other types of points in closed form. Specifically,∑

n

ψn(z) =

D∑
d=1

I [zd] γd

√
παd√

2
gd (17)

∑
n

Ψn(z, z′) =

D∑
i,j

I [zi] I
[
z′j
]
γiγj

√
παiαj√

2(αi + αj)
Gij (18)

where

gd =

Nud
+1∑

k=bd

[
erf
(
vd,(k),(k) − zd√

2αd

)
− erf

(
vd,(k−1),(k) − zd√

2αd

)]

Gij =

Nui,uj
+1∑

k=bij

exp

(
−

(zi + si(t(k))− z′j − sj(t(k)))2

2(αi + αj)

)
[

erf

(
αi(vj,(k),(k) − z′j) + αj(vi,(k),(k) − zi)√

2αiαj(αi + αj)

)

−erf

(
αi(vj,(k−1),(k) − z′j) + αj(vi,(k−1),(k) − zi)√

2αiαj(αi + αj)

)]
For gd, Nud

is the number of points of type ud, t(k) is the time of the k-th such point (i.e., (k) maps
the index k in the sub-sequence of type ud to the index of the same point in the full sequence), bd is
the index of the first such point with at least qd points of type ud before it, and t(Nud

+1) = T . For
Gij , Nui,uj = Nui +Nuj is the number of points in the combined sequence of points of both type
ui and type uj , t(k) is the time of the k-th such point, bij is the index of the first such point with at
least qi points of type ui and qj points of type uj before it, and t(Nui,uj

+1) = T .

In this way, the calculation of
∑
n ψn(z) and

∑
n Ψn(z, z′) can be done in O(NDQ) if we share

the same Q across all types u. If we only set Q > 1 for one type, e.g., for u = 1, and set Q = 1
for the other types, and if N1Q1 = O(N), then the bound becomes O(ND). Either way, it is an
improvement compared with O(ND2) for a straightforward implementation. A proof is in the next
section. Empirically, we can improve the performance even further by pre-calculating once and
storing the values of v and si − sj at the beginning.

D Proof of Ψ computational complexity

Proof. We only prove the bound for
∑
n Ψn(z, z′), since

∑
n ψn(z) is more efficient to compute. To

compute
∑
n Ψn(z, z′), we need to sum over all pairs of dimensions i, j = 1, . . . , D. However, for

each pair of (i, j), we only need to sum over at most Nui
+Nuj

items, where Nu is the number of
points of type u, and ui, uj are the types for dimension i, j. The reason is that the points of the other
types in the middle can be integrated over in closed-form. Therefore, the total number of items to
sum over is at most

D∑
i=1

D∑
j=1

(Nui
+Nuj

) = 2D

U∑
u=1

NuQu

where Qu is the regression hyper-parameter Q for type u.

In summary, in the most general case, the complexity is O(D
∑
uNuQu). If we use the same Q

for all types, then it becomes O(NDQ). If we use Q > 1 for only one type, say u = 1, and
N1Q1 = O(N), then it becomes O(ND). In practice, we can use the symmetric property of the sum
and almost halve the amount of computation.

In the most general case when each conditional point can have D active dimensions, we need to do
the above computation for each pair of (z, z′). The total complexity is O(M2NDQ), where M is
the total number of conditional points. However, if we set each conditional point active on only one
dimension, then the complexity becomes O(M2NQ). Additionally, if we set Q > 1 for only one
type, say u = 1, and N1Q1 = O(N), then it becomes O(M2N).

2

E Time prediction

For predicting the time of the next target event, given the history up to a time point t, we compute the
expected time for the next target event given the CIF λũ

E [sũ|λũ] =

∫ ∞
t

sũλũ(sũ) exp

(
−
∫ sũ

t

λũ(v)dv

)
dsũ (19)

for sũ ∈ (t,∞), where λũ depends on the historyHt and fx. That is

E [sũ|λũ] = E [sũ|Ht, fx] =

∫ ∞
t

sũf(x(sũ))2 exp

(
−
∫ sũ

t

f(x(v))2dv

)
dsũ (20)

From here, we can take expectation w.r.t. fx using the conditional-point approximation. In the end,
the prediction is

E [sũ|Ht] =

∫∫
E [sũ|Ht, fx] p(fx|m∗Z , εZ)p(εZ |S∗ε)dfxdεZ

=

∫
E [sũ|Ht, fx] p(fx|m∗Z , S∗ε)dfx

(21)

wherem∗Z and S∗ε are part of the hyper-parameters Θ∗ learned from the training data. The expectation
w.r.t. fx is evaluated using Monte-Carlo sampling, and E [s|Ht, fx] is evaluated by sampling the
point process through Ogata’s modified thinning algorithm [Ogata, 1981].

An alternative approach, which is more efficient, is to use the mean CIF

λ∗ũ(sũ) = E [λũ(sũ)|Θ∗] = E [f(x(sũ))|Θ∗]2 + Var [f(x(sũ))|Θ∗] , sũ ∈ (t,∞) (22)

to predict the events without sampling fx. That is, we estimate λ∗ũ using the learned hyper-parameters
Θ∗ and the historyHt, and plug λ∗ũ into Eq. 19 to estimate the time to the next event. We used this
approach in the experiments and found it to be effective.

F Conditional GP vs. variational sparse GP

We compare the performance of GPRPP based on variational sparse GP with inducing points [Lloyd
et al., 2015] and CGPRPP based on conditional GP with conditional points. Figure 4 shows the test
log-likelihood of GPRPP and CGPRPP with Q = 1, 5, 10, 20, 40 on the second synthetic dataset.
Conditional-GP-based model outperforms variational-sparse-GP-based model in all cases, showing
that conditional GP can capture the dependencies between events better.

G Effect of varying Q

Figure 4 shows the test log-likelihood of CGPRPP with Q = 1, 5, 10, 20, 40 on the second synthetic
dataset. We notice that Q does affect the performance of CGPRPP, especially when it is small and
the model is a mismatch for the data. However, as Q increases, the performance tends to stabilize.
For data generated through Hawkes processes, it is beneficial to have Q large enough so the model is
capable of approximating the compound influences from all the past events. However, in general, for
data generated through processes other than Hawkes processes, an optimal Q may need to be neither
too small nor too large, and therefore selecting Q may be necessary. In the experiments, we simply
use the training likelihood to select Q, which turns out to be effective in most cases. A potential
improvement is to use cross-validation, which we do not explore in this work.

H Details of the IPTV dataset

The IPTV dataset consists of TV viewing records of users over 11 months [Luo et al., 2014, Xu et al.,
2016]. The dataset we use is extracted from THAP [Xu and Zha, 2017] that is publicly available1.

1https://github.com/HongtengXu/Hawkes-Process-Toolkit

3

https://github.com/HongtengXu/Hawkes-Process-Toolkit

Q

0 20 40

lo
g
-l
ik

e
lih

o
o
d

-4300

-4200

-4100

-4000

CGPRPP

GPRPP

Figure 4: The test log-likelihood of GPRPP based on variational sparse GP (GPRPP) and conditional
GP (CGPRPP) with Q = 1, 5, 10, 20, 40.

The original dataset contains 302 users and 16 different types of events (genres of TV programs).
Table 4 shows the counts of these different types of events. For efficiency, we randomly sampled 200
users and used 100 users for training and the others for testing. We removed the last two types of
programs, “education” and “ads”, due to extremely low counts.

We used data in March for training and the following months for testing (on separate users). We
picked March a priori, because it has fewer irregularities such as holidays than the first two months.

Table 4: IPTV event types and counts.

Type Count

drama 284092
news 190584
entertainment 122773
others 116449
sports 74502
kids 39712
movie 33437
daily life 33225
economy 23985
law 13636
music 12456
documentary 11162
military 10007
science 6790
education 798
ads 390

I Details of the MIMIC datasets

In the MIMIC dataset, there are labs that tend to occur together. We collect these labs into groups,
which we call lab classes. These classes are built using the following procedure. First, we collect the
occurrences of all the labs. Then, we calculate the Intersection over Union (IoU) for each pair of labs
based on their occurrence timestamps. That is, if two labs always co-occur, then their IoU will be 1.
In contrast, if they never co-occur, then it will be 0. Finally, we put two labs into the same class, if
their IoU is above 0.95.

In the experiments, we focus on patients that have been admitted to the hospital. Within these patients,
we have 710 types of labs. After grouping them, we get 598 classes. We pick the most frequent
20 classes as our targets, which are shown in Table 5. The labels of the labs in the same class are
separated by semicolons. For each class, the labs all share the same property (without forcing it) in
terms of “fluid” and “category”, confirming that our grouping algorithm is reasonable.

To build the predictors for each target lab class, we find 10 different lab classes using heuristics.
First, we find the admissions that have at least one occurrence of the target. Then, we calculate the

4

Table 5: Target lab classes used for experiments.

Class ID Lab labels Fluid Category Count

355 Hemoglobin; MCH; MCHC; MCV; Platelet
Count; RDW; Red Blood Cells; White
Blood Cells

Blood Hematology 4619733

60 Anion Gap; Bicarbonate; Chloride; Sodium Blood Chemistry 2500535
3 Base Excess; Calculated Total CO2; pCO2;

pO2
Blood Blood Gas 1942338

95 Creatinine; Urea Nitrogen Blood Chemistry 1236906
368 INR(PT); PT Blood Hematology 756797
354 Hematocrit Blood Hematology 693788
151 Potassium Blood Chemistry 669880
550 Bilirubin; Blood; Glucose; Ketone; Leuko-

cytes; Nitrite; Urine Appearance; Urine
Color; Urobilinogen

Urine Hematology 598026

113 Glucose Blood Chemistry 595635
140 Magnesium Blood Chemistry 559517
294 Basophils; Eosinophils; Lymphocytes;

Monocytes; Neutrophils
Blood Hematology 547408

17 pH Blood Blood Gas 524600
150 Phosphate Blood Chemistry 489990
80 Calcium, Total Blood Chemistry 484701
394 PTT Blood Hematology 403567
1 Specimen Type Blood Blood Gas 398697
53 Alanine Aminotransferase (ALT); Asparate

Aminotransferase (AST)
Blood Chemistry 296876

7 Free Calcium Blood Blood Gas 246208
8 Glucose Blood Blood Gas 193253
18 Potassium, Whole Blood Blood Blood Gas 187020

event-wise probability of occurrence and admission-wise probability of occurrence for each class.
The former is defined as the number of occurrences for the class divided by the total number of
occurrences for all classes. The latter is defined as the number of admissions having at least one
occurrence of the class divided by the total number of admissions. The difference between the two
is that the former puts the frequency of the class over time into consideration, while the latter only
considers the “popularity” of the class among the admissions.

After calculating the two probabilities, we keep only the classes that have an admission-wise prob-
ability greater than 0.5. Then we rank these classes by the ratio of the event-wise probabilities of
occurrence between the subpopulation of admissions containing at least one target and the whole
population, and pick the top 10. The intuition is that the latter probability can be seen as a prior
probability of the event occurring, while the former as a posterior probability conditioned on that the
target is present in the sequence (admission). Denote the event that, given a lab occurs, it is of the
specific class u as Eu, and the event that a lab of the target class ũ also occurs in the same sequence
as Oũ. Then essentially, we iteratively find each predictor u as

arg max
u

p(Eu|Oũ)

p(Eu)
= arg max

u

p(Eu|Oũ)p(Oũ)

p(Eu)
= arg max

u
p(Oũ|Eu).

Using the above heuristics, the target itself will always be selected as the top 1 predictor. Table 6
shows an example of the selected predictors for lab class 355. The first row is the target class itself,
followed by the other predictors.

J Full likelihood results on MIMIC

Table 7 shows the full results of test log-likelihood on the MIMIC datasets. CGPRPP-1 and CGPRPP-
10 are CGPRPP with Q = 1 and Q = 10. CGPRPP* is the model selected with the best training
likelihood.

5

Table 6: Predictors selected for lab class 355.

Class ID Lab labels Fluid Category

355 Hemoglobin; MCH; MCHC; MCV; Platelet
Count; RDW; Red Blood Cells; White
Blood Cells

Blood Hematology

294 Basophils; Eosinophils; Lymphocytes;
Monocytes; Neutrophils

Blood Hematology

394 PTT Blood Hematology
368 INR(PT); PT Blood Hematology
140 Magnesium Blood Chemistry
113 Glucose Blood Chemistry
53 Alanine Aminotransferase (ALT); Asparate

Aminotransferase (AST)
Blood Chemistry

150 Phosphate Blood Chemistry
95 Creatinine; Urea Nitrogen Blood Chemistry
54 Albumin Blood Chemistry

Table 7: Test log-likelihood on MIMIC datasets.

Data HP-GS HP-GS-A HP-LS NSMMPP CGPRPP-1 CGPRPP-10 CGPRPP*

355 -3668 -3947 -6510 -3664 -3249 -3374 -3249
60 -4673 -5051 -7299 -4660 -4246 -4203 -4246
3 -3721 -3733 -5722 -3737 -3759 -3847 -3759
95 -4064 -4390 -5712 -3982 -3817 -3933 -3933
368 -3366 -3711 -5625 -3309 -3378 -3538 -3378
354 -4344 -4792 -7185 -4409 -4225 -3984 -4225
151 -3338 -3574 -5323 -3763 -3093 -3313 -3093
550 -1053 -1064 -1744 -1039 -1175 -1063 -1175
113 -4656 -5049 -7143 -4539 -4276 -4142 -4276
140 -3206 -3475 -4625 -3244 -2942 -2933 -2942
294 -1011 -1054 -1308 -941.2 -993.6 -1131 -993.6
17 -3783 -3807 -5339 -3758 -3808 -4120 -3808
150 -3238 -3537 -4894 -3377 -3100 -3144 -3100
80 -3388 -3772 -5365 -3903 -3402 -3426 -3402
394 -3098 -3251 -4945 -3268 -3010 -3127 -3010
1 -3220 -3291 -3772 -3228 -3234 -3737 -3234
53 -1913 -2138 -2963 -1916 -1900 -1803 -1900
7 -2502 -2533 -3514 -2626 -2512 -2729 -2512
8 -1633 -1667 -3142 -1786 -1694 -1652 -1694
18 -1596 -1678 -3085 -1532 -1648 -1817 -1648

K Time prediction evaluation

We also evaluate the performance of our method for predicting the time of each target event on the
MIMIC datasets. On each dataset, we repeat the experiment for each method 5 times and show the
average results. The setting of each method is the same as for likelihood evaluation, except for HP-LS,
where we only test for h = 2. We sample 100 times to estimate the expected time to each next event
for all the methods.

We evaluate the accuracy of the time predications using root mean square error (RMSE), where the
difference between the predicted time and the true time of each event is calculated. The results are in
Table 8. The unit is hour. CGPRPP* has the best or close to best results in most cases, except for lab
class 8. In that case, CGPRPP (Q = 10) is selected over CGPRPP (Q = 1) based on the training
likelihood, although the latter has a much better time prediction accuracy on the test data.

6

Table 8: RMSE (hour) of time predictions on MIMIC datasets.

Data HP-GS HP-GS-A HP-LS NSMMPP CGPRPP-1 CGPRPP-10 CGPRPP*

355 16.43 14.78 16.98 22.06 13.79 16.59 13.79
60 11.81 10.4 11.19 13.2 9.956 10.6 9.956
3 13.46 13.45 24.75 60.44 19.13 18.85 19.13
95 17.43 17.17 17.36 15.99 16.17 17.43 17.43
368 25.32 19.24 31.7 19.71 17.03 22.18 17.03
354 49.1 50.13 50.46 46.87 49.61 48.52 48.52
151 23.36 23.3 23.53 24.12 22.37 25.91 22.37
550 101.4 96.11 139.3 177 96.97 91.01 96.97
113 13.32 11.65 13.4 9.457 11.22 10.52 11.22
140 17.45 11.86 11.8 9.633 9.892 11.49 9.892
294 98.16 87.78 104.3 185.6 74.12 76.23 74.12
17 28.19 28.18 31.96 29.16 28.63 95.36 28.63
150 22.65 15.76 15.45 16.27 15.87 15.86 15.86
80 44.9 44.53 46.39 43.67 44.15 44.18 44.15
394 29.76 26 46.24 30.05 25.45 21.04 25.45
1 25.85 25.84 32.43 26.53 25.97 29.36 25.97
53 51.7 36.41 59.48 38.55 27.84 27.49 27.49
7 24.02 22.92 34 56.59 25.71 24.54 25.71
8 25 24.64 63.39 26.08 28.75 65.34 65.34
18 58.99 57.89 86.18 1611 62.2 56.49 62.2

L Related work and discussion

L.1 Hawkes process variants

Hawkes processes [Hawkes, 1971] are one of the most widely used models for event sequences. It
models the dependencies between events through so-called triggering kernels. More recently different
models have been proposed to generalize Hawkes processes. Zhou et al. [2013] propose to learn the
triggering kernels of a Hawkes process nonparametrically after discretization by solving ordinary
differential equations. Eichler et al. [2017] also use discretization of the triggering kernels, but their
model learns the kernels by solving least-square problems. Xu et al. [2016] propose to use a set
of basis functions to approximate the triggering kernel nonparametrically, which does not require
discretization, and their method shows better performance than the previous works. Lee et al. [2016]
use a stochastic process to model the evolution of the excitations (weights) in a Hawkes process,
so the weights become random variables instead of constant parameters. Restricting the kernels
to the same exponential kernel (sharing one parameter) for efficiency, they propose a simulation
algorithm and an inference algorithm based on a hybrid of MCMC algorithms. Wang et al. [2016]
define an isotonic Hawkes process, where the conditional intensity function of the Hawkes process is
transformed through a monotonic discretized nonparametric link function, and the triggering kernel is
given and needs to be continuous and monotonically decreasing. The link function is estimated by
moment matching instead of traditional maximum likelihood estimation. Zhang et al. [2018] develop
a method to nonparametrically estimate the triggering kernel of a univariate Hawkes process. Bacry
and Muzy [2014] prove a connection between the triggering kernel of a multivariate Hawkes process
and its second-order statistics, from which they develop an estimation method of the triggering kernel
by solving Wiener-Hopf systems through discretization. Donnet et al. [2018] study nonparametric
Bayesian estimation of the triggering kernel of a multivariate Hawkes process, focusing on the
theoretical analyses of the posterior convergence rates.

All the above works are only concerned with nonparametric or flexible estimation of a part of the
conditional intensity function, mostly the triggering kernel. In contrast, our method nonparametrically
estimates the whole conditional intensity function, which is a major difference that makes the model
more flexible. Moreover, our method uses GPs as the nonparametric model for the dependency of the
intensity on the history and does not require any discretization. Despite being flexible, the model can
be learned efficiently using approximate inference without the need of sampling.

7

L.2 GP-modulated point processes

Gaussian processes (GPs) are probabilistic models for functions [Rasmussen and Williams, 2006].
They have been used to model the intensity functions of point processes. These models are also
referred to as GP-modulated Poisson processes or GP-modulated Cox processes. Adams et al. [2009]
propose an MCMC algorithm for a Sigmoidal Gaussian Cox process (SGCP), where the GP is
mapped through a logistic function to the intensity function. Rao and Teh [2011] extend SGCP by
augmenting the logistic mapping from the GP to the intensity function with a time dependent function.
Lasko [2014] proposes to use the exponential transformation of a GP as the intensity function, so
there is no upper bound on the intensity function, and it can model bursty events better than SGCP. In
contrast to the previous works, where sampling algorithms are used for inference, Lloyd et al. [2015]
propose a variational inference algorithm for GP-modulated point processes, assuming the intensity
function is a square transformation of a GP. This enables closed-form evaluation of the integral of the
intensity function, which is not possible in previous works. Kim [2018] combines Markov modulated
Poisson processes with GP-modulated point processes such that the intensity function is a switching
model of multiple GPs controlled by a Markov process.

The aforementioned GP-modulated point processes are univariate models, where each sequence
consists of points of one type. On the other hand, there are multivariate point processes, where points
can have different types. Gunter et al. [2014] extend SGCP to multivariate point processes, where
each intensity function is defined as a convolution of a shared set of GPs. An MCMC algorithm is
developed for inference. Lloyd et al. [2016] extend [Lloyd et al., 2015] to multivariate point processes,
and call their model Latent Point Process Allocation (LPPA). In LPPA, the intensity function of
each variate is a positive weighted sum of squared GPs. Ding et al. [2018] further extend LPPA
through Dirichlet processes. The intensity function of each variate becomes an infinite weighted sum
of squared GPs. This resolves the problem of having to pick an appropriate number of latent GPs
beforehand in LPPA.

Our method also utilizes the flexibility of GPs. Different from the above works, we do not assume a
sequence-specific latent state. Instead our model can be viewed as defining a local latent state relative
to the recent events and independent of the sequence. In this way, our model can be applied across
sequences, i.e., trained on a set of sequences and make predictions on other unseen sequences, while
the GP-modulated point processes cannot.

L.3 Alternative point-process models

Neural networks have also been studied as a way to model the intensity functions of point processes.
Du et al. [2016] develop an RNN for modeling event time series. Event labels and inter-event times
are used as the input at each step. Mei and Eisner [2017] draw intuition from Hawkes processes
and develop a continuous-time LSTM, where the memory cell has an exponential decay between
two consecutive events. Monte-Carlo sampling is used for evaluating the integral of the intensity
function in both training and prediction. Xiao et al. [2017] define a Wasserstein distance for point
processes and combine it with Generative Adversarial Networks (GANs) to train generative models.
Their work is limited to univariate point processes. Li et al. [2018] propose a reinforcement learning
framework for learning generative point processes models. Their work is also limited to univariate
point processes. In contrast to neural-network-based methods, our approach uses nonparametric
Bayes to provide flexibility. It is a more principled approach, and similar to Hawkes processes, the
models are easier to explain and understand.

Another type of point-process models are based on featurization of the history. Gunawardana et al.
[2011] assume the intensity function is a piecewise-constant function of the past events, which is
a decision tree mapping features extracted with window-based functions from the past events to
constants. Lian et al. [2015] also assume a piecewise-constant intensity function but extend it to
multitask problems using a hierarchical model. Different from these works, our model learns the
dependencies between events directly from the data and does not require any feature engineering.

References
Y. Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on Information

Theory, 27(1):23–31, January 1981. ISSN 0018-9448. doi: 10.1109/TIT.1981.1056305.

8

Chris Lloyd, Tom Gunter, Michael Osborne, and Stephen Roberts. Variational inference for Gaussian
process modulated Poisson processes. In International Conference on Machine Learning, pages
1814–1822, 2015.

D. Luo, H. Xu, H. Zha, J. Du, R. Xie, X. Yang, and W. Zhang. You are what you watch and
when you watch: Inferring household structures from IPTV viewing data. IEEE Transactions on
Broadcasting, 60(1):61–72, March 2014. ISSN 0018-9316. doi: 10.1109/TBC.2013.2295894.

Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning Granger causality for Hawkes
processes. In International Conference on Machine Learning, pages 1717–1726, 2016.

Hongteng Xu and Hongyuan Zha. THAP: A matlab toolkit for learning with Hawkes processes.
arXiv:1708.09252 [cs, stat], August 2017.

Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83–90, 1971. ISSN 0006-3444. doi: 10.2307/2334319.

Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multi-dimensional Hawkes
processes. In International Conference on Machine Learning, pages 1301–1309, 2013.

Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. Graphical modeling for multivariate Hawkes
processes with nonparametric link functions. Journal of Time Series Analysis, 38(2):225–242,
March 2017. ISSN 01439782. doi: 10.1111/jtsa.12213.

Young Lee, Kar Wai Lim, and Cheng Soon Ong. Hawkes processes with stochastic excitations. In
International Conference on Machine Learning, pages 79–88, 2016.

Yichen Wang, Bo Xie, Nan Du, and Le Song. Isotonic Hawkes processes. In International Conference
on Machine Learning, pages 2226–2234, 2016.

Rui Zhang, Christian Walder, Marian-Andrei Rizoiu, and Lexing Xie. Efficient non-parametric
Bayesian Hawkes processes. arXiv:1810.03730 [cs, stat], October 2018.

Emmanuel Bacry and Jean-Francois Muzy. Second order statistics characterization of Hawkes
processes and non-parametric estimation. arXiv:1401.0903 [physics, q-fin, stat], January 2014.

Sophie Donnet, Vincent Rivoirard, and Judith Rousseau. Nonparametric Bayesian estimation of
multivariate Hawkes processes. arXiv:1802.05975 [math, stat], February 2018.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning.
MIT press Cambridge, 2006.

Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable nonparametric Bayesian
inference in Poisson processes with Gaussian process intensities. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 9–16. ACM, 2009.

Vinayak Rao and Yee W. Teh. Gaussian process modulated renewal processes. In Advances in Neural
Information Processing Systems, pages 2474–2482, 2011.

Thomas A. Lasko. Efficient inference of Gaussian-process-modulated renewal processes with
application to medical event data. In Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, UAI’14, pages 469–476, Arlington, Virginia, United States, 2014. AUAI
Press. ISBN 978-0-9749039-1-0.

Minyoung Kim. Markov modulated Gaussian Cox processes for semi-stationary intensity modeling
of events data. In International Conference on Machine Learning, pages 2640–2648, July 2018.

Tom Gunter, Chris Lloyd, Michael A. Osborne, and Stephen J. Roberts. Efficient Bayesian nonpara-
metric modelling of structured point processes. In Proceedings of the Thirtieth Conference on
Uncertainty in Artificial Intelligence, UAI’14, pages 310–319, Arlington, Virginia, United States,
2014. AUAI Press. ISBN 978-0-9749039-1-0.

Chris Lloyd, Tom Gunter, Michael Osborne, Stephen Roberts, and Tom Nickson. Latent point process
allocation. In Artificial Intelligence and Statistics, pages 389–397, May 2016.

9

Hongyi Ding, Mohammad Khan, Issei Sato, and Masashi Sugiyama. Bayesian nonparametric
Poisson-process allocation for time-sequence modeling. In International Conference on Artificial
Intelligence and Statistics, pages 1108–1116, 2018.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1555–1564. ACM, 2016.

Hongyuan Mei and Jason M. Eisner. The neural Hawkes process: A neurally self-modulating
multivariate point process. In Advances in Neural Information Processing Systems, pages 6757–
6767, 2017.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. In Advances in Neural Information Processing
Systems, pages 3247–3257, 2017.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 10804–10814. Curran Associates, Inc., 2018.

Asela Gunawardana, Christopher Meek, and Puyang Xu. A model for temporal dependencies in
event streams. In Advances in Neural Information Processing Systems, pages 1962–1970, 2011.

Wenzhao Lian, Ricardo Henao, Vinayak Rao, Joseph Lucas, and Lawrence Carin. A multitask point
process predictive model. In International Conference on Machine Learning, pages 2030–2038,
2015.

10

	Proof of Theorem 1
	Definitions of and
	Efficient computation of and
	Proof of computational complexity
	Time prediction
	Conditional GP vs. variational sparse GP
	Effect of varying Q
	Details of the IPTV dataset
	Details of the MIMIC datasets
	Full likelihood results on MIMIC
	Time prediction evaluation
	Related work and discussion
	Hawkes process variants
	GP-modulated point processes
	Alternative point-process models

