
A Rate-Distortion Theory

Given a source X ⇠ q(x) and a distortion function d : X ⇥ Z 7! R+ over samples and their codes
Z, the rate-distortion function is defined as an optimization over conditional distributions q(z|x):

R(D) = min
q(z|x)

Iq(X; Z) subj Eq(x)q(z|x)d(x, z)  D (9)

It is common to optimize an unconstrained problem by introducing a Lagrange multiplier �
�1 which,

at optimality, reflects the tradeoff between compression and fidelity as the slope of the rate-distortion
function at D, i.e. �

�1 = � @R

@D
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q(z|x)

Iq(X; Z) + �
�1

�
Eq(x)q(z|x)d(x, z) � D

�

Eq. 8 suggests the cross entropy reconstruction loss as a distortion measure, so that d(x, z) =
� log p✓(x|z). We can then observe the equivalence between the rate-distortion optimization and our
problem definition, as only the tradeoff between rate and distortion affects the characterization of
solutions.

It is also interesting to note the self-consistent equations which solve the variational problem above
(see, e.g. Tishby et al. [39])

q(z|x) =
q(z)

Z(x, �)
exp

�
� �

�1
d(x, z)

�

q(z) =

Z
q(z|x)q(x)dx

Notice that, regardless of the choice of distortion measure, our Echo noise channel enforces the
second equation throughout optimization by using the encoding marginal as the ‘optimal prior.’ For
our choice of distortion, the solution simplifies as:

q(z|x) =
q(z)p(x|z)1/�

Z(x, �)
(10)

This provides an interesting comparison with the generative modeling approach. While the Evidence
Lower Bound objective can be interpreted as performing posterior inference with prior p(z) in the nu-
merator, we see that the information theoretic perspective prescribes using the exact encoding marginal
q(z). Indeed, our version of the ELBO bounds in Eq. 7 bounds the likelihood under the generative
model p(x) =

R
q�(z)p✓(x|z)dx. The gap in this bound then becomes DKL[q�(z|x)|| q(z)p(x|z)

Z(x) ],
encouraging the encoder to match the rate-distortion solution for � = 1.

B Implementation of Echo Noise Sampling

Numerically, Gaussian noise cannot be sampled exactly and is instead approximated to within
machine precision. We discuss several unique implementation choices that allow us to generate
similarly precise Echo noise samples. In particular, we must ensure that the infinite sum defining the
noise in Eq.3 converges and is accurately approximated using a finite number of terms.

Activation Functions: We parameterize the encoding functions f(x) and S(x) using a neural
network and can choose our activation functions to satisfy the convergence conditions of Lemma
2.3. We let the final layer of f use an element-wise tanh (·/16) to guarantee that the magnitude is
bounded: 8x, |f(x)|  1. We found it useful to expand the linear range of the tanh function for
training stability, although differences were relatively minor and may vary by application. One could
also consider clipping the range of a linear activation to enforce a desired magnitude |f(x)|  M .

For the experiments in this paper, S(x) is diagonal, with functions sj(x) on the diagonal. We imple-
ment each sj(x) using a sigmoid activation, making the spectral radius ⇢(S(x)) = maxj |sj(x)|  1.
However, this is not quite enough to ensure convergence, as 8x, sj(x) = 1 would lead to an infinite

2Note, we have constrained the distortion here, instead of the rate as in the main text. We write the Lagrange
multiplier as ��1 to maintain a correspondence between the parameterizations of each problem.
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amount of noise. We thus introduce a clipping factor on sj(x) to further limit the spectral radius and
ensure accurate sampling in this high noise, low rate regime.

Sampling Precision: When can our infinite sum be truncated without sacrificing numerical preci-
sion? We consider the sum of the remainder terms after truncating at ` = dmax using geometric series
identities. For |f(x)|  M and ⇢(S(x))  r, we know that the sum of the infinite series will be less
than M

1�r
. The first dmax terms will have a sum given by M

�
1�r

dmax

1�r

�
, so the remainder will be less

than M
�
r
dmax

1�r

�
. For a given choice of dmax, we can numerically solve for r such that the sum of

truncated terms falls within machine precision M
�
r
dmax

1�r

�
 2�23. For example, with M = 1 and

dmax = 99, we obtain r = 0.8359. We therefore scale our element-wise sigmoid to sj(x) = r�(·)
for calculating both the noise and the rate.

Low Rate Limit: This clipping factor limits the magnitude of noise we can add in practice, and
thus defines a lower limit on the achievable rate in an Echo model. For diagonal S(x), the mutual
information can be bounded in terms of r, so that I(X; Z) = �

P
dz

j=1 Eq log |sj(x)| � �dz log r.
Note that r is increasing in dmax, since the first term in the remainder decreases exponentially with
the number of terms. Each included term can then have higher magnitude, leading to lower achievable
rates. Thus, this limit can be tuned to achieve strict compression by increasing dmax or simply using
fewer latent factors dz .

Batch Optimization: Another consideration in choosing dmax is that we train using mini-batches of
size B for stochastic gradient descent. For a given training example, we can use the other iid samples
in a batch to construct Echo noise, thereby avoiding additional forward passes to evaluate f and
S. There is also a choice of whether to sample with or without replacement, although these will be
equivalent in the large batch limit. In experiments we saw little difference between these strategies,
and proceed to sample without replacement to mirror the treatment of training examples. We let
dmax = B � 1 to set the rate limit as low as possible for this sampling scheme.

C Total Correlation for Echo Noise

To briefly demonstrate that Echo noise is dependent across latent dimensions, we can estimate
the total correlation of noise samples in Table 3 using the second-order covariance approximation
TC(✏) = � log |⌃diag�1

✏
⌃✏|. This is clearly zero for diagonal Gaussian noise, and provides a

sufficient condition to show that the Echo noise is not independent.

Table 3: TC by Dataset

Binary MNIST Omniglot Fashion MNIST

TC(✏) 7.3 18.8 30.2

For the Echo models considered in this work, we can also derive an interesting equivalence between
the conditional and overall total correlation. Observe that the expression for mutual information in
Eq. 4 decomposes for diagonal S(x):

Iq(X; Z) = �Eq(x) log | det S(X)|

= �Eq(x)

dzX

j=1

log sj(X)

This additivity across dimensions implies that Iq(X; Z) =
P

dz

j=1 Iq(X; Zj). Before proceeding, we
first recall the definitions of total correlation and conditional total correlation [43], which measure
the divergence from independence of the marginal and conditional, respectively:

TC(Z) = DKL[q�(z)||
dzY

j=1

q�(zj)]

TC(Z|X) = DKL[q�(z|x)||
dzY

j=1

q�(zj |x)]
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Now consider the quantity DKL[q�(z|x)||
dzQ
j=1

q�(zj)]. We can decompose this in two different ways,

first by projecting onto the joint marginal:

DKL[q�(z|x)||
dzY

j=1

q�(zj)] = Eq log
q�(z|x)

Q
dz

j=1 q�(zj)

= Eq log
q�(z|x)

Q
dz

j=1 q�(zj)

q�(z)

q�(z)

= Iq(X; Z) + TC(Z)

We can also decompose using the factorized conditional:

DKL[q�(z|x)||
dzY

j=1

q�(zj)] = Eq log
q�(z|x)

Q
dz

j=1 q�(zj)

= Eq log
q�(z|x)

Q
dz

j=1 q�(zj)

Q
dz

j=1 q�(zj |x)
Q

dz

j=1 q�(zj |x)

=
dzX

j=1

Iq(X; Zj) + TC(Z|X)

The equality of I(X; Z) and
dzP
j=1

Iq(X; Zj) implies equality for TC(Z) and TC(Z|X).

Iq(X; Z) + TC(Z) =
dzX

j=1

Iq(X; Zj) + TC(Z|X)

=) TC(Z) = TC(Z|X)

The effects of this relationship have not been widely studied, as TC(Z|X) = 0 for traditional VAE
models. On the other hand, TC(Z) is usually non-zero and has been minimized as a proxy for
‘disentanglement’ [20, 10]. We evaluate similar regularization for Echo in Sec. 5.3.

We have shown that parallel Echo channels are perfectly additive in that
P

j
Iq(X; Zj)�Iq(X; Z) =

0. However, general channels could be sub- or super-additive, so that TC(Z) < TC(Z|X),
TC(Z) = TC(Z|X), or TC(Z) > TC(Z|X) (e.g. Sec. 4.2 of [17]). Extending Echo to non-
diagonal S(x) could allow us to explore the various relationships between TC(Z) and TC(Z|X)
and more precisely characterize those which are useful for representation learning.

D Additional Results

D.1 Fashion MNIST Rate-Distortion

We show a full rate-distortion curve for Fashion MNIST in Fig.5, along with reconstructions at
various rates. Echo performance nearly matches that of comparison methods except at low rates.

Figure 5: FMNIST Rate-Distortion and Visualization
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D.2 Marginal Activations

We visualize dimension-wise marginal activations for Echo on Binary MNIST and Omniglot in Fig.6.
We show q(zj) for thirteen dimensions in each method, including nine with highest rates, three with
low rates, and one with minimal rate. For each, we combine activations from 2000 encoder samples
on each test example and fit a KDE estimator with RBF bandwidth chosen according to the Scott
criterion.

As discussed in Sec. 2, Echo avoids assumptions that the marginals are independent and Gaussian as
in VAEs. However, we observe the individual Echo marginals q(zj) to be approximately Gaussian,
with the Anderson-Darling test failing to reject the null hypothesis of Gaussianity for any dimension.
Nevertheless, the joint marginal q(z) may still be dependent (see App. C).

Individual dimensions are also are free to learn different means and variances without incurring a
penalty in the objective, with factors generally keeping more mutual information with the data having
less variance in the marginals. The highest mean dimension in the Omniglot plot corresponds to an
‘unused’ dimension that saturates the lower limit on achievable rate.

Figure 6: Marginal Activations by Dimension

D.3 Echo f(x) vs. S(x)

We can analyse the Echo mutual information at each data point by noting that the expression in
Eq. 4 involves an expectation over x. Since H(Z) and H(E) do not depend on X in the proof of
Thm. 2.2, we can evaluate �

P
j
log sj(x) as a pointwise mutual information. We compare this

quantity with the L2-norm of f(x) as a proxy for signal to noise ratio. Test examples are sorted
by conditional likelihood p✓(x|z) on the x-axis, and we see that Echo indeed has higher mutual
information on examples where the generative model likelihood is high. Further analysis of these
pointwise informations remains for future work.

Figure 7: Echo f(x) vs. S(x): Binary MNIST (left) and Omniglot (right)

16



E Details for Experiments

All models were trained using a similar convolutional architecture as used in [3], but with ReLU
activations, unnormalized gradients, and fewer latent factors. We use Keras notation and list con-
volutional layers using the arguments (filters, kernel size, stride, padding). We show an example
parametrization of Echo in the hidden layer.

• Conv2D(32, 5, 1, ‘same’)
• Conv2D(32, 5, 2, ‘same’)
• Conv2D(64, 5, 1, ‘same’)
• Conv2D(64, 5, 2, ‘same’)
• Conv2D(256, 7, 1, ‘valid’)
• echo_input = [Dense(32, tanh(·/16)),

Dense(32, tf.math.log_sigmoid)]
• Lambda(echo_sample)(echo_input)
• Conv2DTranspose(64, 7, 1, ‘valid’)
• Conv2DTranspose(64, 5, 1, ‘same’)
• Conv2DTranspose(64, 5, 2, ‘same’)
• Conv2DTranspose(32, 5, 1, ‘same’)
• Conv2DTranspose(32, 5, 2, ‘same’)
• Conv2DTranspose(32, 4, 1, ‘same’)
• Conv2D(1, 4, 1, ‘same’, activation = ‘sigmoid’)

We trained using Adam optimization for 200 epochs, with a learning rate of 0.0003 decaying linearly
to 0 over the last 100 epochs. All experiments were run using NVIDIA Tesla V100 GPUs.

MAF and IAF models were implemented using the Tensorflow Probability package [13]. Each uses
four steps of mean-only autoregressive flow, with each step consisting of three layers of 640 units.
For the VampPrior, we used 750 pseudoinputs on all datasets. For the IAF-Vamp experiments, note
that the VampPrior is calculated with respect to the inputs z0 of the IAF transformation to avoid
expensive density evaluations on new samples. This is valid since the mean-only transformation has
constant Jacobian, but makes this method closely resemble VAE-Vamp. All MMD penalties had a
loss coefficient of 999, and were evaluated using a radial basis kernel with bandwidth � = 32/

p
2 as

in [45, 46].

For rate-distortion experiments, we evaluated � = [.05, .075, .1, .125, .15, .2, .25, .3, .4, .5, .6, .7, .8,

.9, 1, 1.5, 2, 3, 4, 6], with additional � to fill in gaps in the curve as necessary.

For the disentanglement experiments in Sec. 5.3, we followed the architecture and hyperparameters
in Locatello et al. [26]. We trained for 300,000 gradient steps on both the full dataset and the
downsampled dataset with dependent factors. The visualization in Figure 4 was generated using code
from Chen et al. [10].
Code implementing these experiments can be found at https://github.com/brekelma/echo.
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