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Abstract

We consider the problem of online learning in reinforcement learning when several1

state representations (mapping histories to a discrete state space) are available to2

the learning agent. At least one of these representations is assumed to induce a3

Markov decision process (MDP), and the performance of the agent is measured in4

terms of cumulative regret against the optimal policy giving the highest average5

reward in this MDP representation. We propose an algorithm (UCB-MS) with6

Õ(
√
T ) regret in any communicating MDP. The regret bound shows that UCB-MS7

automatically adapts to the Markov model and improves over the currently known8

best bound of order Õ(T 2/3).9

1 Introduction10

In Reinforcement Learning (RL), an agent aims to learn a task while interacting with an unknown11

environment. We consider online learning (i.e., non-episodic) problems where the agent has to trade12

off the exploration needed to collect information about rewards and dynamics and the exploitation13

of the information gathered so far. In this setting, it is commonly assumed that the agent knows14

a suitable state representation which makes the process on the state space Markovian. However,15

designing such a representation is often highly non-trivial since many “reasonable” representations16

may lead to non-Markovian models.17

The task of selecting or designing a (suitable and compact) state representation of a dynamical18

system is a well-known problem in engineering, especially in robotics. This setting has received a19

lot of attention in recent years due to the growing number of applications using images or videos20

as observations [e.g., 1, 2, 3]. It is possible to come up with different approaches for extracting21

features from such high-dimensional observation spaces, but not all of them describe the problem22

well or exhibit Markovian dynamics. Additionally, the Markovian assumption that transitions and23

rewards are independent of history is often violated in real-world applications where there is often24

a dependence on the last k > 1 observations. To deal with this scenario Markov models have been25

extended from first-order models to kth-order models. The problem of selecting the right order of the26

model falls into the problem of selecting the correct state representation. In both cases, the goal is to27

perform as well as when the true order or compact features of the Markov model are known. For28

more details and further examples we refer to [4, 5, 6].29

We consider the following setting that was introduced by Hutter [7], where it was called feature30

reinforcement learning. The agent is provided with a finite set Φ of representations mapping histories31

(sequences of actions, observations, and rewards) to a finite set of states, such that at least one32

model φ◦ ∈ Φ induces a Markov Decision Process (MDP) [8]. The goal of the agent is to learn to33

solve the task under the appropriate representation. The ability of testing and quickly discarding34

non-Markovian representations (not compatible with the observed dynamics) is fundamental for35

learning efficiently. This efficiency is measured in terms of cumulative regret, which compares the36
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reward collected by the learner to the one of an agent knowing the Markovian representation and37

playing the associated optimal policy (i.e. giving the highest average reward).38

This problem was initially studied by Maillard et al. [4]. Given a finite set of representations Φ, after39

T steps the regret of the Best Lower Bound (BLB) algorithm w.r.t. any optimal policy associated40

to a Markov model is upper bounded by Õ(
√
|Φ|T 2/3). The BLB algorithm is based on random41

exploration of the models and uses properties of UCRL2 [9] —an efficient algorithm for exploration-42

exploitation in communicating MDPs— to control the amount of time spent in non-Markovian43

models. BLB requires to estimate the diameter [9] of the true MDP, which leads to an additional44

additive term in the regret bound that may be exponential in the true diameter. BLB was successively45

extended by Nguyen et al. [6] to the case of countably infinite set of models. The suggested IBLB46

algorithm removes the guessing of the diameter —thus avoiding the additional exponential term47

in the regret— but its regret bound is still of order T 2/3. The Optimistic Model Selection (OMS)48

algorithm [5] claimed a regret bound of Õ(
√
|Φ|T ), thus matching the optimal dependence in terms49

of T . However, algorithm and analysis were based on the REGAL.D algorithm [10], and recently50

it has been pointed out, that the proof of the regret bound for REGAL.D contains a mistake that51

invalidates also the result for OMS, see App. A of [11]. Accordingly, it still has been an open question52

whether it is possible to achieve regret bounds of order
√
T in the considered setting.53

In this paper we introduce UCB-MS, an optimistic elimination algorithm that performs efficient54

exploration of the representations. For this algorithm we prove a regret bound of order Õ(
√
|Φ|T ).55

Our algorithm as well as our results are based on and generalize the regret bounds achieved for56

the UCRL2 algorithm in [9]. In particular, if Φ consists of a single Markov model we obtain the57

same regret bound as for UCRL2. UCB-MS employs optimism to choose a model from Φ. To avoid58

suffering too large regret from choosing a non-Markov model, the collected rewards are compared to59

regret bounds that are known to hold for Markov models. If a model fails to give sufficiently high60

reward, it is eliminated. On the other hand, UCB-MS is happy to employ a non-Markov model as61

long as it gives as much reward as it would be expected from a corresponding Markov model.62

While UCB-MS shares some basic ideas with BLB and OMS, it is simpler than OMS, however63

recovers the same regret bounds that have been claimed for OMS. As BLB, UCB-MS has to guess the64

diameter, however the guessing scheme we employ comes at little cost w.r.t. regret and in particular65

does not give any additive constants in the bounds that are exponential in the diameter. We also show66

how to modify the guessing scheme to guess diameter and the size of the state space of the Markov67

model φ◦ at the same time. Last but not least, we introduce the notion of the effective size SΦ of68

the state space induced by the model set Φ and give regret bounds that depend on SΦ, which gives69

improved bounds, e.g. for hierarchical models.70

Overview. We start with describing the learning setting in full detail in the following section. In71

Section 3, we give some preliminaries concerning the UCRL2 algorithm. Our UCB-MS algorithm is72

introduced in Section 4 where we also give the regret analysis in case the diameter of the underlying73

Markov model is known. The following Section 5 shows how to guess the diameter otherwise.74

Section 6 gives some further improvements and also introduces the notion of effective state space.75

2 Setting76

The details of the considered learning setting are as follows. At each time step t = 1, 2, . . ., the77

learner receives an initial observation ot and has to choose an action at from a finite set of actions A.78

In return, the learner receives a reward rt taken fromR = [0, 1] and the next observation ot+1.79

We denote by O the set of observations and define the history ht up to step t as the sequence80

o1, a1, r1, o2, . . . , at, rt, ot+1 of observations, actions and rewards. The set Ht := O × (A×R×81

O)t−1 contains all possible histories up to step t and we set H :=
⋃
t≥1Ht to be the set of all82

possible histories.83

2.1 Models and MDPs84

A state-representation model (in the following short: model) φ is a function that maps histories to85

states, that is, φ : H → Sφ. If a model φ induces a Markov decision process (MDP) we call it a86

Markov model. An MDP has the Markov property that any time t, the probability of reward rt and87

next state st+1 = φ(ht+1), given the past history ht, only depends on the current state st = φ(ht)88
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and the chosen action at, i.e., P (st+1, rt|ht, at) = P (st+1, rt|st, at). We assume that for MDPs this89

probability is also independent of t.90

Usually an MDP M is denoted as a tuple M = (Sφ,A, r, p), where r(s, a) is the mean reward and91

p(s′|s, a) the probability of a transition to state s′ ∈ Sφ when choosing action a ∈ A in state s ∈ Sφ.92

If φ is a Markov model, we write the induced MDP as M(φ).93

MDPs are called communicating if for any two states s, s′ it is possible to reach s′ from s with94

positive probability by choosing appropriate actions. The smallest expected time it takes to connect95

any two states is called the diameter D of the MDP, cf. [9]. In communicating MDPs, the optimal96

average reward ρ∗ is independent of the initial state and will be achieved by a stationary deterministic97

policy π∗ ∈ ΠSD that maps states to actions. For a Markov model φ, the diameter and the optimal98

average reward of the induced MDP will be denoted as D(φ) and ρ∗(φ), respectively.99

2.2 Problem setting100

The learning setting we consider is the following. As already described before, the learner chooses101

actions at and obtains a reward rt and an observation ot+1 in return. We assume that the learner has102

a finite set Φ of models at her disposal and at least one model φ◦ in Φ is a Markov model. The goal is103

to provide algorithms that perform well with respect to the optimal policy π∗ in the MDP M(φ◦),104

that is, the optimal strategy when the Markov model and the induced underlying MDP are completely105

known. Accordingly, the performance of a learning algorithm will be measured by considering its106

regret after any T steps defined as (cf. [9, 10, 4])107

Tρ∗(φ◦)−
T∑
t=1

rt ,

where rt is the reward received by the learning algorithm at step t.108

3 UCRL2 Preliminaries109

The algorithm we propose is based on the UCRL2 algorithm of [9]. Thus, in this section we give110

some preliminaries concerning the UCRL2 algorithm.111

UCRL2 is an algorithm that generalizes the optimism in the face of uncertainty idea of UCB [12]112

from the bandit setting to reinforcement learning in MDPs. The algorithm maintains estimates of113

rewards and transition probabilities and respective confidence intervals that make up a set of plausible114

MDPsM.115

That is, acting in an unknown MDP, UCRL2 maintains estimates r̂(s, a) and p̂(·|s, a) of rewards and116

transition probabilities, respectively. The setMt of plausible MDPs at step t contains all MDPs with117

rewards r̃(s, a) and p̃(·|s, a) and transition probabilities satisfying1118 ∣∣r̂(s, a)− r̃(s, a)
∣∣ ≤ √

7 log(4SAt3/δ)
2N(s,a) , (1)

∥∥p̂(·|s, a)− p̃(·|s, a)
∥∥

1
≤

√
14S log(4At3/δ)

2N(s,a) , (2)

where N(s, a) denotes the number of times a has been chosen in s (and is set to 1, if a has not been119

chosen in s so far). The true MDP M is inM with high probability.120

Lemma 1 (Lemma 17 in the appendix of [9]2). With probability at least 1− δ
30t8 , at step t the true121

MDP M is contained in the setMt.122

The UCRL2 algorithm proceeds in episodes k = 1, 2, . . .. In each episode k starting at step tk123

the algorithm plays a fixed policy π̃k, which is chosen to maximize the optimal average reward in124

Mk := Mtk . That is, writing ρ(π,M) for the average reward of policy π in MDP M we have125

ρ̃k := maxπ,M∈Mk
ρ(π,M) = ρ(π̃k, M̃k), where M̃k is an optimistic MDP chosen fromMk to126

maximize ρ̃k. As the true MDP M is inMk with high probability, we also have that ρ̃k ≥ ρ∗.127

1The confidence intervals shown here are the ones we use in the following and slightly differ from the
confidence intervals given for UCRL2 in [9]. That is, the confidence δ of the original values is replaced by δ/2t2

to guarantee smaller error probability, which is needed in our analysis.
2As noted before, the error probability δ has been changed from δ to δ/2t2 here.
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Let vk(s, a) denote the number of times a has been chosen in s in episode k, while Nk(s, a) denotes128

the number of times a has been chosen in s before episode k (i.e., in episodes 1 to k − 1). If there129

were no visits in (s, a) before episode k, then Nk(s, a) is set to 1. Episode k is terminated by UCRL2130

when a state s is reached in which vk(s, π̃k(s)) = Nk(s, π̃k(s)).131

Let S = |S| be the size of the state space, A = |A| the size of the action space, and D be the diameter132

of the MDP. Then, one can show the following upper bound on the regret of UCRL2.133

Theorem 2 (Theorem 2 of [9]). With probability 1 − δ the regret of UCRL2 after any T steps is134

bounded by135

34DS

√
AT log

(
2T 3

δ

)
.

The bound is based on an episode-wise decomposition of the regret, which we will use for our136

algorithm. Let Tk be the (current) length of episode k. In the following, we abuse notation for Tk as137

well as for vk(s, a) by using the same notation for the number of steps in a terminated episode as138

well as for the current number of steps in an ongoing episode. Further, recall that tk denotes the time139

step when episode k starts. The regret of UCRL2 in any episode k is bounded as follows.3140

Lemma 3. Consider an arbitrary episode k started at step tk. With probability 1− δ
2t2k

, the regret of141

UCRL2 at each step Tk in this episode is bounded by142 (
2D

√
14S log

( 16t3k
δ

)
+ 2

)∑
s,a

vk(s,a)√
Nk(s,a)

+ 2D

√
5Tk log

( 16t2kTk
δ

)
+D.

4 The UCB-MS Algorithm143

Now let us turn to the state representation learning setting introduced in Section 2. We start with144

the simpler case when an upper bound D̄ on the diameter D := D(φ◦) of the Markov model φ◦ is145

known (i.e., D̄ ≥ D). The case when no bound on the diameter is known is dealt with in Section 5.146

The UCB-MS algorithm we propose (shown as Alg. 1) basically performs the policy computation147

of UCRL2 for each model φ. That is, in episodes k = 1, 2, . . ., UCB-MS constructs for each state148

representation φ ∈ Φ a set of plausible MDPsMk,φ and computes the optimistic average reward149

ρ̃k,φ = argmax
π∈ΠSD,M∈Mk,φ

{ρ(π,M)}. (3)

This problem can be solved using Extended Value Iteration (EVI) [9] up to an arbitrary ac-150

curacy.4 Among all the models, UCB-MS selects the one with highest average reward (i.e.,151

φk := argmaxφ∈Φ{ρ̃k,φ}). The associated optimistic policy π̃k,φk is executed until the number of152

visits is doubled in at least one state-action pair (UCRL2 stopping condition) or this policy does not153

provide sufficiently high average reward (see Eq. 6), in which case the model φk is eliminated.154

The function Γt in Eq. (6) defines the allowed deviation from the promised optimistic average reward155

ρ̃k := ρ̃k,φk . We define Γt, according to Lemma 3, as156

Γt(D) :=

(
2D

√
14Sφt log

(
16t3k(t)
δ

)
+ 2

)∑
s,a

vk(t)(s,a)√
Nk(t)(s,a)

+ 2D

√
5Tk(t) log

(
16t2k(t)Tk(t)

δ

)
+D,

(4)
where k(t) denotes the episode in which step t occurs. In Eq. 6 we exploit the prior knowledge157

D̄ ≥ D in order to properly define the condition for model elimination. We will see below in158

Section 5 that it is easy to adapt the algorithm to the case of unknown diameter.159

If the set Φ consists only of a single Markov model, basically UCB-MS coincides with UCRL with160

an additional checking step that will result in discarding the single model only with small probability.161

Note that UCB-MS shares the optimistic model selection and the idea of eliminating underachieving162

models with OMS, however its structure is much simpler.163

Concerning the computational complexity of our algorithm, note that the EVI subroutine we use164

for policy computation works just as ordinary value iteration with the same convergence properties165

3The bound in Lemma 3 is not explicitly stated for single episodes in [9] but easily follows from equations
(8), (9), (15)–(17), and the argument given before equation (18), choosing confidence δ/t2 instead of δ.

4As for UCRL2, we set the accuracy in episode k to be 1/
√
tk.
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Algorithm 1 UCB-Model Selection (UCB-MS)
Input: set of models Φ, confidence parameter δ ∈ (0, 1), upper bound D̄ on diameter
Initialization: Let t := 1 be the current time step.
for episodes k = 1, 2, . . . do

Let tk := t be the initial step of the current episode k.

B For each φ ∈ Φ, use Extended Value Iteration (EVI) to compute an optimistic MDP M̃k(φ)
in Mt,φ (the set of plausible MDPs defined via the confidence intervals (1) and (2) for the
estimates so far), a (near-)optimal policy π̃k,φ on M̃t,φ with approximate average reward ρ̃t,φ.
B Choose model φk ∈ Φ such that

φk = argmax
φ∈Φ

{
ρ̃t,φ

}
, (5)

and set ρ̃k := ρt,φk , π̃k := π̃t,φk , and Sk := Sφk .
B Repeat till termination of the current episode k:

◦ Choose action at := πk(st), get reward rt and observe next state st+1 ∈ Sk
◦ Set t := t+ 1.
◦ if vk(st, at) = Ntk(st, at) then terminate current episode.
◦ if

(t− tk + 1)ρ̃k −
t∑

τ=tk

rτ > Γt(D̄) (6)

then set Φ := Φ \ {φk} and terminate current episode.
end for

and the same computational complexity with an additional overhead of O(|S|2|A|) per iteration step,166

cf. [9]. Policy is computed for each model φ at most |Φ|+ SφA log T times, cf. Lemma 5 (c) below.167

Our first result is the following regret bound for UCB-MS. Here Smax := maxφ Sφ denotes the size168

of state space of the largest model and SΣ :=
∑
φ Sφ the size of the total state space over all models.169

Theorem 4. With probability 1− δ, the regret of UCB-MS using D̄ ≥ D is bounded by170

const · D̄
√
SmaxSΣAT log

(
T
δ

)
.

Note that the bound of Theorem 4 holds for any Markov model in Φ. Thus, in case there is a Markov171

model with smaller state space the regret bound shows that UCB-MS automatically adapts to this172

preferable model. When Φ consists of a single Markov model we re-establish the bounds for UCRL2173

(up to the prior knowledge). Most importantly, the bound of Theorem 4 improves over the currently174

best known bound for BLB, which is of order Õ(T 2/3). If all models induce a state space of equal175

size S, the bound in Theorem 4 is Õ(DS
√
|Φ|AT ), which also improves over the claimed regret176

bound of OMS, which is of order Õ(DS3/2A
√
|Φ|T ). We note however that in other cases the state177

space dependence of the OMS bound may be better. In Section 6 below we show how to regain the178

OMS bound for our algorithm and how in some cases (like for hierarchical models) the dependence179

on SΣ can be replaced by the smaller effective size of the state space.180

4.1 Analysis (Proof of Theorem 4)181

The following lemma collects some basic facts about UCB-MS.182

Lemma 5. With probability 1− δ, all of the following statements hold:183

(a) The confidence intervals (1) and (2) of the Markov model φ◦ hold for all time steps t = 1, . . . , T .184

(b) No Markov models are discarded in (6).185

(c) The number of episodes of UCB-MS is bounded by |Φ|+ SΣA log T .186

Proof. (a) follows from Lemma 1 by summing over the error probabilities giving an error probability187

of
∑
t

δ
30t8 <

δ
6 .188
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For (b), if UCB-MS chooses a Markov model, then the regret in the respective episode is bounded189

according to Lemma 3. The sum over the respective error probabilities δ/2t2k over all episodes is190

bounded by 5δ
6 , which proves (b).191

If (b) holds, then there are at most |Φ|−1 episodes in which a model is discarded. For episodes which192

are terminated by doubling the number of visits, we can use Proposition 18 of [9], as the episode193

termination criterion of UCB-MS is the same as for UCRL2. Since we have to take into account all194

states of all models, the size of the state space to be considered is the sum over the sizes of the state195

spaces of the individual models.196

The bound on the number of episodes in the worst case depends on SΣ. Under some assumptions on197

the given models in Φ (like having hierarchical models) this can be reduced, see Section 6 for details.198

Proof of Theorem 4. We assume that the statements of Lemma 5 all hold, which is the case with199

probability 1 − δ. Let φ◦ be a Markov model in Φ and consider any episode k. By Lemma 5 (a),200

the optimistic estimate ρ̃tk,φ◦ ≥ ρ∗(φ◦). By the optimism of the algorithm we further have that201

ρ̃k ≥ ρ̃tk,φ◦ . Hence, the regret ∆k in each episode k is bounded by202

∆k := Tk · ρ∗(φ◦)−
tk+Tk∑
τ=tk

rτ ≤ Tk · ρk −
tk+Tk∑
τ=tk

rτ .

By the definition of the algorithm, condition (6) does not hold at least up to the final step of the203

episode, so that we obtain that (as rewards are upper bounded by 1)204

∆k ≤ Γtk(D̄) + 1.

Using the definition of Γt(D̄) (see (4)) and writing K for the total number of episodes, we obtain for205

the total regret summing over all episodes a bound of206 ∑
k

∆k ≤
∑
k

(Γtk(D̄) + 1)

≤
(

2D̄

√
14Smax log

(
16T 3

δ

)
+ 2

)∑
k

∑
s,a

vk(s,a)√
Nk(s,a)

+ 2D̄

√
5 log

(
16T 3

δ

)∑
k

√
Tk +KD̄.

As for the analysis of UCRL2, we have that (cf. Eq. 20 of [9])207 ∑
k

∑
s,a

vk(s,a)√
Nk(s,a)

≤
(√

2 + 1
)√

SΣAT.

Using that
∑
k Tk = T together with Jensen’s inequality, we obtain

√
Tk ≤

√
KT . Summarizing208

we obtain using the bounds on the number of episodes of Lemma 5 (c) after some simplifications and209

noting that |Φ| ≤ SΣ a regret bound of210

const1 ·D
√
SmaxSΣAT log

(
T
δ

)
+ const2 ·D

√
SΣAT (log T )

(
log T

δ

)
+ const3 ·DSΣA log T,

which completes the proof of the theorem.211

5 Unknown Diameter212

If the diameter is unknown we suggest the following guessing scheme. We run UCB-MS with some213

initial value D̄ ≥ 1. If at some step all models have been eliminated then double the value of D̄ and214

restart the algorithm, that is, start a new episode now considering all models again.215

One can show that the regret of this doubling scheme is basically bounded as before unless D is very216

large compared to T .217

Theorem 6. With probability 1− δ, the regret of UCB-MS guessing D by doubling is bounded by218

const ·D
√(

SmaxSΣA+ |Φ| logD
)
T log

(
T
δ

)
.

Proof. Let Dk denote the parameter D̄ used in episode k (estimate of D). As in the proof of219

Theorem 4 we have that a Markov model will not be eliminated with high probability once Dk ≥ D.220
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Hence, in total there cannot be more than d|Φ| log2De episodes that are terminated by discarding a221

model.222

Let Γt(D) be defined as in (4). Then the same argument as in the proof of Theorem 4 shows that the223

regret in each episode k is bounded by Γtk(Dk) + 1.224

The rest of the proof can be rewritten from Theorem 4 using that Dk < 2D for all k with high225

probability. The only difference is that the bound on the number of episodes has an additional term of226

d|Φ| log2De, so that one obtains a regret bound of227

const1 ·D
√
SmaxSΣAT log

(
T
δ

)
+ const2 ·D

√(
SΣA(log T ) + |Φ| logD

)
T log T

δ +

const3 ·
(
DSΣA+ |Φ| logD

)
log T.

Summarizing the terms gives the claimed bound.228

Theorem 6 shows that the cost of the guessing scheme is little w.r.t. the regret and, in particular, does229

not result in any additive constant in the bound that is exponential in the diameter (in contrast to230

BLB). Thus, the improvements over OMS discussed after Theorem 4 hold also for UCB-MS with231

guessing the diameter.232

6 Improving the Bounds233

6.1 Improving on the Number of Episodes234

The regret bounds we obtain for UCB-MS are basically of the same order as for standard reinforcement235

learning in MDPs (i.e. with a given Markov model) as achieved e.g. by [9]. However, the state space236

dependence seems not completely satisfactory, as the bounds do not only depend on the state space237

size of the Markov model, but on the total state space size SΣ over all models.238

The appearance of the parameter SΣ in the bounds is due to the bound on the number of episodes239

in Lemma 5 (c). In the worst case, this bound cannot be improved. That is, without any further240

assumptions on the way models in Φ aggregate histories one cannot say how visits in a state under241

some model φ translate into state visits under some other model φ′. For example, when under some242

model φ all states have been visited so far, the respective histories may be mapped to just a single243

state under some other model φ′. Consequently, one basically has to assume that the states of different244

models φ, φ′ are completely independent of each other, which leads to the bound of Lemma 5 (c).245

However, if there is some particular structure on the set of given models Φ, the bound on the number246

of episodes can be improved to not depend on the total number of states SΣ.247

Definition 7. Let Φ be a set of state representation models. We define the effective size SΦ of the248

state space of Φ to be the number of states that are sufficient to cover all states under Φ in the sense249

that visits in all SΦ covering states induce visits in all other states.250

A simple example is when models are hierarchical. That is, there is some model φ in Φ, such that all251

other models φ′ aggregate the states of φ, i.e., it holds that if φ(h) = φ(h′) then φ′(h) = φ′(h′) for252

all histories h, h′ in H. In this case, SΦ = Sφ. Note that when considering different orders for an253

MDP, this also results in a hierarchical model set.254

In general, we obviously have that SΦ ≤ SΣ and the bound on the number of episodes of Lemma 5 (c)255

can be improved to depend on SΦ instead of SΣ (with the same proof).256

Lemma 8. The number of episodes of UCB-MS terminated by the doubling criterion is bounded by257

SΦA log T .258

Accordingly, we can strengthen the results of Theorems 4 and 6 as follows.259

Theorem 9. The regret bounds of Theorems 4 and 6 hold with SΣ replaced by SΦ.260

6.2 Improving Further on the State Space Dependence261

Even after adjusting the size of the state space, there is still room for improvement of the bounds with262

respect to the size of the state space. In principle, one would like to have a dependence on the size of263

the state space of the Markov model φ◦. As we have seen, with the current analysis the dependence264

on the effective number of states SΦ is unavoidable. However, the second appearing state space265
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term Smax can be improved by guessing the right size of the state space (i.e., Sφ◦). We distinguish266

between two cases, depending on whether a bound on the diameter is known.267

6.2.1 Diameter Known268

If there is a known bound on the diameter, we can adapt the guessing scheme for the diameter to the269

state space. That is, starting with S := 1 or S := minφ Sφ we compare the collected rewards to the270

optimistic average reward ρ̃k of the current episode k, as before eliminating underachieving models.271

As comparison term we choose now (in accordance with the regret bound for UCRL2 in Theorem 2)272

Γt(S) := 34DS

√
A(t− tk + 1) log

(
2t3

δ

)
. (7)

For this guessing scheme one can show the following regret bound (proof in Appendix A.1).273

Theorem 10. With probability 1− δ, the regret of UCB-MS guessing S by doubling is bounded by274

const ·DSφ◦

√
(SΦA log T + |Φ| logSφ◦)AT log

(
T
δ

)
.

We see that replacing Smax with Sφ◦ comes at a cost of worse dependence on the number of states275

and actions, as the summing over episodes in the proof has to be done differently. Still, if Smax is276

quite large, the bound of Theorem 10 can be an improvement over the previously presented bounds.277

6.2.2 Unknown Diameter278

If the diameter is not known, one can do the guessing for both D and S at the same time. More279

precisely, in the comparison term one does not guess D and S separately but the factor DS instead.280

That is, one starts with setting D̃S := 1 or some other fixed value like D̃S := minφ Sφ and defines281

the comparison term as282

Γt(D̃S) := 34D̃S

√
A(t− tk + 1) log

(
2t3

δ

)
. (8)

This leads to the following regret bound, which basically corresponds to the bound that has been283

claimed for OMS, only with SΣ replaced by the potentially smaller SΦ (proof in Appendix A.2).284

Theorem 11. With probability 1− δ, the regret of UCB-MS guessing both D and S by doubling is285

bounded by286

const ·DSφ◦

√
(SΦA log T + |Φ| log(DSφ◦))AT log

(
T
δ

)
.

7 Discussion287

While we have decided to use UCRL2 as reference algorithm for the definition of our UCB-MS288

strategy, our approach can actually serve as a blueprint for adapting any optimistic algorithm with289

known regret bounds to the state representation setting considered in this paper. In particular, if290

the regret bounds for UCRL2 or a variation of it can be improved (this might be possible w.r.t. the291

parameters S and D, cf. [9]) this automatically gives improved bounds for a corresponding variant of292

UCB-MS.293

In [5], it has been tried to use some form of regularization so that models with large state space are294

less appealing. However, this did not avoid the dependence of the claimed bounds on SΣ. It is an295

interesting question whether some improved regularization approach can give bounds that do only296

depend on Sφ◦ . In general, the right dependence of regret bounds on the size of the model set Φ is297

also an open problem.298

Another question that is still open also for the MDP setting is whether the diameter can be replaced299

by the bias span λ∗ of the optimal policy. With an upper bound on λ∗, one could replace UCRL2 by300

the SCAL algorithm of [13]. However, the guessing scheme we employ for the diameter does not301

work for SCAL, as chosen policies may not be optimistic anymore, if the guess for λ∗ is too small.302

Another direction for future research are generalizations to infinite model sets, which for the case of303

discrete sets has already been done for the BLB algorithm [6]. Parametric sets of models would be an304

interesting next step from there.305

A different question are approximate Markov models as considered in [14], where the assumption306

that there is a Markov model is dropped. The results given there are also affected by the mentioned307

error in the proof of the OMS regret bound. We think that our approach can be adapted, however the308

details still have to be worked out.309
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A Proofs349

A.1 Proof of Theorem 10350

The proof is like that for Theorem 6 only that now S instead of D is guessed and the comparison351

term Γt is different. That is, any Markov model φ◦ will not be discarded with high probability once352

S ≥ Sφ◦ . Therefore, there will be at most d|Φ| log2 Sφ◦e episodes that are terminated by discarding353

a model.354

Let Sk be the guess for the size of the state space in episode k. Then as in the proofs of Theorems 4355

and 6, the regret in each episode k can be shown to be bounded by Γtk(Sk) + 1. As Sk ≤ 2Sφ◦ ,356

summing over all ≤ d|Φ| log2 Sφ◦e + SΦA log T episodes, Jensen’s inequality gives the claimed357

regret bound.358

A.2 Proof of Theorem 11359

The proof is like that for Theorem 10. There will be at most d|Φ| log2(DSφ◦)e episodes that are360

terminated by eliminating a model, while the regret in each episode k is bounded by Γtk(D̃Sk) + 1,361

where D̃Sk ≤ 2DSφ◦ is the guess for episode k. A sum over the episodes gives the claimed362

bound.363

10


	Introduction
	Setting
	Models and MDPs
	Problem setting

	UCRL2 Preliminaries
	The Ucb-Ms Algorithm
	Analysis (Proof of Theorem 4)

	Unknown Diameter
	Improving the Bounds
	Improving on the Number of Episodes
	Improving Further on the State Space Dependence
	Diameter Known
	Unknown Diameter


	Discussion
	Proofs
	Proof of Theorem 10
	Proof of Theorem 11


