
Appendix

A Probability Tools

Proposition 5 (Chernoff-Hoeffding Inequality (Hoeffding, 1963)). Let {Xi}i∈[t] be a list of indepen-
dent random variables supported on [0, 1] and set X = 1

t

∑t
i=1Xi. Then, for every ε > 0, it holds

that
P(|X − E[X]| ≥ ε) ≤ 2 exp(−2tε2).

Proposition 6 (Restatement of Theorem 5.1(ii) in (Janson, 2018)). Let {Xi}i∈[t] be a list of indepen-
dent random variables such that P(Xi > x) ≤ exp(−aix) for x > 0. And let µ =

∑t
i=1

1
ai

. Then
for any λ ≥ 1, it holds that

P(X ≥ λµ) ≤ exp(1− λ).

Proposition 7 (Hoeffding’s Maximal Inequality (Hoeffding, 1963)). Let {Xi}i∈[t] be a list of i.i.d.
random variables supported on [0, 1] and set µ = E[X1]. Then, for any ε > 0, it holds that

P(∀i ∈ [t], X1 +X2 + · · ·+Xi ≥ iµ+ ε) ≤ exp

(
−2ε2

t

)
.

Proposition 8 (Restatement of Lemma 2.6 in (Tsybakov, 2009)). Let P and Q be two probability
distributions supported on some set X . Then for every set A ⊂ X , one has

PX∼P (A) + PX∼Q(A) ≥ 1

2
exp(−DKL(P ‖ Q)),

where A denotes the complement of A and DKL denotes the Kullback-Leibler divergence between P
and Q given by

DKL(P ‖ Q)
def
=
∑
x∈X

P (x) ln

(
P (x)

Q(x)

)
.

Proposition 9 (Restatement of Lemma 15.1 in (Lattimore and Szepesvári, 2018)). Let v = P1 ⊗
· · · ⊗ PK and v′ = P ′1 ⊗ · · · ⊗ P ′K be the reward distributions of two K-armed bandits. Assuming
DKL(Pi, P

′
i ) < +∞ for any arm i ∈ [K]. Fix some policy π and let Pv = Pvπ and Pv = Pv′π be

the two probability measures induced by the n-round interconnection of π and v (respectively, π and
v′). Then

DKL(Pv ‖ Pv′) =

K∑
i=1

Ev[Ti(n)] ·DKL(Pi ‖ P ′i ),

where Ti(n) is the random variable denoting the number of times arm i is pulled.

B Properties of Pc

We first show the optimal solution to Pc({∆i}i∈S , T ) by proving the following lemma.
Lemma 10. If c > 0, then the optimal solution to Pc({∆i}i∈S , T ) can be expressed in the following
form

xi = max

{
Φc − ln ∆−1

i

c∆2
i /2

, 0

}
,

where Φc
def
= max{x :

∑K
i=1 max{x−ln ∆−1

i

c∆2
i /2

, 0} ≤ T}.

Proof. Since
∑K
i=1 max{x−ln ∆−1

i

c∆2
i /2

, 0} is an increasing continuous function on x, Φc is indeed
well-defined.

We apply KKT conditions (see Proposition 8.7.2 in (Matouek and Gärtner, 2006)) to solve the
minimization problem Pc({∆i}i∈S , T ). Concretely, the KKT conditions apply to Pc({∆i}i∈S , T )
gives

(−c∆2
i ) exp(−cxi∆2

i )− ui + v = 0 for i ∈ [K]
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uixi = 0 for i ∈ [K]

ui ≤ 0 for i ∈ [K]

xi ≥ 0 for i ∈ [K]

K∑
i=1

xi = T,

where ui for i ∈ [K] and v are K + 1 newly-introduced variables. In particular, if xi > 0, then
ui = 0 and it holds that

c

2
xi∆

2
i + ln ∆−1

i =
1

2
ln
c

v
. (15)

It is easy to see the solution xi = max{Φc−ln ∆−1
i

c∆2
i /2

, 0} for i ∈ [K] satisfies (15) and is a minimum
point.

For any positive number c > 0, let x = Ψc be the solution to
K∑
i=1

(
I{x≤ln ∆−1

i }
· exp(2x) + I{x>ln ∆−1

i }
· x− ln ∆−1

i + c/2

c∆2
i /2

)
= T.

Note that
K∑
i=1

(
I{x≤ln ∆−1

i }
· exp(2x) + I{x>ln ∆−1

i }
· x− ln ∆−1

i + c/2

c∆2
i /2

)
is a strictly increasing continuous function on x that equals K when x = 0 and tends to infinity when
x→∞. Hence Ψc exists and is uniquely defined.

Then we derive the optimal solution to Pc({max{∆i, exp(−Ψc)}}i∈S , T ), as follows.
Lemma 11. If c > 0, then the optimal solution to Pc({max{∆i, exp(−Ψc)}}i∈S , T ) can be
expressed in the following form

xi = I{Ψc≤ln ∆−1
i }
· exp(2Ψc) + I{Ψc>ln ∆−1

i }
· Ψc − ln ∆−1

i + c/2

c∆2
i /2

.

Proof. By Lemma 10, the optimal solution to Pc({max{∆i, exp(−Ψc)}}i∈S , T ) can be expressed
as

c

2
xi max{∆i, exp(−Ψc)}2 + ln max{∆i, exp(−Ψc)}−1 = Φc,

where

Φc = max

{
x :

K∑
i=1

max

{
x− ln max{∆i, exp(−Ψc)}−1

cmax{∆i, exp(−Ψc)}2/2
, 0

}
≤ T

}
.

It is easy to see that Φc = Ψc + c/2. Therefore the optimal solution to
Pc({max{∆i, exp(−Ψc)}}i∈S , T ) is

xi = max

{
Φc − ln max{∆i, exp(−Ψc)}−1

c
2 max{∆i, exp(−Ψc)}2

, 0

}
= I{Ψc≤ln ∆−1

i }
· exp(2Ψc) + I{Ψc>ln ∆−1

i }
· Ψc − ln ∆−1

i + c/2

c∆2
i /2

,

proving this lemma.

Using Lemma 11, we derive the following useful inequality.
Lemma 12. Suppose c > 0 and let {x∗i }i∈S be the solution to Pc({max{∆i, exp(−Ψc)}}i∈S , T ).
Then ∑

i∈S
exp(−cx∗i∆2

i ) ≤ exp(c)Pc({max{∆i, exp(−Ψc)}}i∈S , T ).
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Proof. By Lemma 11, the optimal solution to Pc({max{∆i, exp(−Ψc)}}i∈S , T ) can be expressed
as

x∗i = I{Ψc≤ln ∆−1
i }
· exp(2Ψc) + I{Ψc>ln ∆−1

i }
· Ψc − ln ∆−1

i + c/2

c∆2
i /2

. (16)

Therefore, we obtain ∑
i∈S

exp
(
−cx∗i∆2

i

)
≤ exp(c)

∑
i∈S

exp
(
−cx∗i max{∆i, exp(−Φc)}2

)
= exp(c)Pc({max{∆i, exp(−Ψc)}}i∈S , T ),

and this lemma follows.

Finally, we will show how the value of Pc({∆i}i∈S , T ) will change when c is changed.
Lemma 13. If c, c′ > 0, then

Pc({∆i}i∈S , T ) = Pc′({∆i}i∈S , T c/c′).

Proof. We observe that for any sequence of positive numbers {xi}i∈S ,

K∑
i=1

exp(−cxi∆2
i ) =

K∑
i=1

exp(−c′ · (cxi/c′)∆2
i ).

Suppose {xi}i∈S is the optimal solution to Pc({∆i}i∈S , T ). Then {cxi/c′}i∈S is a feasible solution
to Pc′({∆i}i∈S , T c/c′). Hence we obtain Pc′({∆i}i∈S , T c/c′) ≤Pc({∆i}i∈S , T ). On the other
hand, using a similar argument, we can also obtain Pc({∆i}i∈S , T ) ≤ Pc′({∆i}i∈S , T c/c′).
Therefore, it holds that

Pc({∆i}i∈S , T ) = Pc′({∆i}i∈S , T c/c′),
and the lemma follows.

C Hard Instances for the Uniform Sampling Approach

In this section, we describe a class of bad instances for the uniform sampling approach. In such
instances, we show that, to achieve the same order of regret, the uniform sampling approach needs at
least Ω(K) times more budget than the optimal policy.

We fix the threshold θ = 0.5. For each K ≥ 20, we construct two instances I1 and I2. In I1, we
set θ1 = 0.5−

√
1/(K − 1), and θ2:K = 0.5 +

√
0.1. In I2, we set θ1 = 0.5 +

√
1/(K − 1), and

θ2:K = 0.5 +
√

0.1. Hence for both instances, ∆1 =
√

1/(K − 1) and ∆2:K =
√

0.1. Suppose
T = 2K(K−1)t0 where t0 ≥ 10. For simplicity, we useRuni(I;T ) andRopt(I;T ) to represent the
regret incurred by the uniform sampling approach and the optimal policy on instance I respectively.

We now bound Runi(I;T ) and Ropt(I;T ) in sequence. We first consider the uniform sampling
approach and give a lower bound of regret incurred by it. Note that given T = 2K(K − 1)t0, the
uniform sampling approach will play each arm 2(K − 1)t0 times. Let K denote the event that the
classification for arm 1 is incorrect. Define PI [·] as the probability induced by performing the uniform
sampling approach on instance I . We have

max{Runi(I1;T ),Runi(I2;T )} ≥ max{PI1(K),PI2(K)}

≥ 1

2
exp

(
−16 ·

(√
1/(K − 1)

)2

· 2(K − 1)t0

)
= Ω(exp(−32t0)) (17)

where the second inequality is obtained by applying Theorem 20 when there is only one arm.
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Next we derive an upper bound of regret incurred by the optimal policy. By setting x1 = K(K −
1)t0−(K−1) lnK and x2:K = Kt0+lnK, and using Chernoff-Hoeffding Inequality (Proposition 5),
we have for any instance I ∈ {I1, I2}, it holds that

Ropt(I;T )

≤ 2 exp

(
−2 · 1

K − 1
· (K(K − 1)t0 − (K − 1) lnK)

)
+ 2(K − 1) exp(−2 · 0.1 · (Kt0 + lnK))

≤ 2(K + 1)2 exp(−0.2Kt0) (18)

For any ε ≤ 1/(K + 1), according to (17), there exists an instance I ′ ∈ {I1, I2} such that, to achieve
ε regret, the uniform sampling approach needs at least Ω(K2 ln ε−1) budget. However, by (18), the
optimal policy only needs at most 10(K− 1)(ln 2

ε + 2 ln(K+ 1)) ≤ 20(K− 1) ln 2
ε = O(K ln ε−1)

plays for I ′.

D Missing Proofs in Section 4

D.1 Proof of Theorem 1

For convenience, we define the real-valued function f(x)
def
= αx + lnα + 0.5 − α and use f−1

to denote its inverse. Also, we use RLSA
B (T ) | F to denote the regret incurred by arms in B when

conditioned on event F .

Proof of Theorem 1. As discussed before, we only need to establish (13), i.e.,

RLSA
B (T ) ≤ Υ(α) ·

∑
i∈B

exp

(−λi∆2
i

10

)
.

Let Λ′ = αbΛ
α − 0.1c and define the events G0

def
= FΛ′ , Gk def

=
∧k−1
i=0 FΛ′−αi ∧ FΛ′−αk if 1 ≤

k ≤ bΛ
α − 0.1c, and GbΛ

α−0.1c+1
def
=
∧bΛ

α−0.1c
i=0 Fαi. Note that the events G0, . . . ,GbΛ

α−0.1c+1 form
a partition of the total probability space. Then,

RLSA
B (T ) =

bΛ
α−0.1c+1∑
k=0

RLSA
B (T ) | Gk · P(Gk)

≤ RLSA
B (T ) | FΛ′

+

bΛ
α−0.1c∑
k=1

RLSA
B (T ) | FΛ′−αk

· P(FΛ′−α(k−1)) + |B|P(F0). (19)

Notice that that ξi,10 ≥ 0.5 ln 10 > 0. Moreover, since T ≥ 10K, after T rounds it holds that
ξi(T ) > 0 for all i ∈ S. Therefore, P(F0) = 0. Recall that f−1(y) = y+α−lnα−0.5

α . Combining
Lemma 3 and Lemma 4, we upper bound (19) by∑

i∈B

9 · 8α
√

2
8α
√

2− 1
exp

(
−λi∆

2
i

10
+ f−1(1.1α)/4

)

+

bΛ
α−0.1c∑
k=1

∑
i∈B

9 · 8α
√

2
8α
√

2− 1
exp

(
−λi∆

2
i

10
+ f−1((k + 1.1)α)/4

)
exp(−40(k − 0.9))

≤ 9 · 8α
√

2
8α
√

2− 1
exp

(
f−1(1.1α)/4

)(
1 +

bΛ
α−0.1c∑
k=1

exp(−39.75k + 36)

)
·
∑
i∈B

exp

(
−λi∆

2
i

10

)

≤ 9.3 · 8α
√

2
8α
√

2− 1
exp

(
2.1α− lnα− 0.5

4α

)
·
∑
i∈B

exp

(
−λi∆

2
i

10

)
This completes the proof of (13).
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D.2 Proof of Lemma 3

The goal of this subsection is to establish the following lemma which gives a lower bound on the
probability of FC .

Lemma 3 (restated). P(FΛ−k) ≥ 1− exp(−40k/α) for 0 ≤ k < Λ.

To prove Lemma 3, we make use of Lemma 14 and Lemma 15, and defer their proofs to the later part
of this subsection.

Recall that for any arm i ∈ S and C > 0, τi,C is the random variable representing the smallest
positive integer such that ξi,τi,C > C. The following Lemma 14 shows an exponentially small tail of
the distribution of τi,C .

Lemma 14. For any arm i ∈ S, and C > 0, we have the following statements:

(a) τi,C ≤ 2 exp(2C);
(b) if C > ln ∆−1

i , then for any k ≥ 1, τi,C satisfies

P
(
τi,C >

40

α
· C − ln ∆−1

i + k

∆2
i

)
≤ 2 exp(−40k/α).

Based on Lemma 14, we are able to show that
∑K
i=1 τi,C also follows an exponential distribution,

which leads to the following lemma.

Lemma 15. P(
∑K
i=1 τi,Λ−k ≤ T ) ≥ 1− exp(−40k/α) for all 0 ≤ k < Λ.

We are now ready to prove the main lemma (Lemma 3) of this subsection.

Proof of Lemma 3. By Lemma 15, it suffices to prove that FΛ−k occurs when
∑K
i=1 τi,Λ−k ≤

T . So we assume that all the random rewards are generated before the algorithm starts and that∑K
i=1 τi,Λ−k ≤ T .

Since ξi,t ≥ ln t, it is easy to see that there exists T ∗ satisfying maxi∈S ξi(T
∗) > Λ − k and

maxi∈S ξi(t) ≤ Λ − k for any 1 ≤ t < T ∗. We claim that T ∗ ≤ T . Indeed, notice that for
any arm i ∈ S and t ≤ T ∗ − 1, ξi(t) ≤ Λ − k. Hence Ti(T ∗ − 1) < τi,Λ−k, and so T ∗ − 1 =∑K
i=1 Ti(T

∗ − 1) <
∑K
i=1 τi,Λ−k ≤ T . Therefore T ∗ ≤ T .

Now, we assume without loss of generality that for arm i∗ ∈ S, ξi∗(T ∗) > Λ− k. Since at time t
Algorithm 1 pulls argmini∈S ξi(t− 1), arm i∗ will not be pulled until all the other arms i ∈ S \ {i∗}
satisfy ξi(t − 1) > Λ − k. Since

∑K
i=1 τi,Λ−k ≤ T , then we can find T \ such that T ∗ ≤ T \ ≤ T

and ξi(T \) > Λ− k for any arm i ∈ S. This proves the lemma.

D.2.1 Proof of Lemma 14

Lemma 14 (restated). For any arm i ∈ S, and C > 0, we have the following statements:

(a) τi,C ≤ 2 exp(2C);
(b) if C > ln ∆−1

i , then for any k ≥ 1, τi,C satisfies

P
(
τi,C >

40

α
· C − ln ∆−1

i + k

∆2
i

)
≤ 2 exp(−40k/α).

Proof. We first prove Lemma 14(a). Note that if t ≥ b2 exp(2C)c, then we have ξi,t > 0.5 ln t ≥ C.
Hence t ≤ b2 exp(2C)c ≤ 2 exp(2C) as desired.

Now we prove Lemma 14(b). Note that ∀k ≥ 1,

P
(
τi,C >

40

α
· C − ln ∆−1

i + k

∆2
i

)
≤ P

(
ξi,τi,C ≤ C | τi,C =

⌊
40

α
· C − ln ∆−1

i + k

∆2
i

⌋)
.
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Assuming τi,C =
⌊

40
α ·

C−ln ∆−1
i +k

∆2
i

⌋
and |∆̂i,τi,C −∆i| <

√
10∆i/4, we get that

ξi,τi,C = ατi,C(∆̂i,τi,C )2 + 0.5 ln τi,C

> α ·
⌊

40

α
· C − ln ∆−1

i + k

∆2
i

⌋
· ((1−

√
10/4)∆i)

2 + 0.5 ln τi,C

≥ α · 4

5
· 40

α
· C − ln ∆−1

i + k

∆2
i

· ((1−
√

10/4)∆i)
2 + 0.5 ln τi,C

> C − ln ∆−1
i + k + 0.5 ln τi,C > C,

where we used τi,C =
⌊

40
α ·

C−ln ∆−1
i +k

∆2
i

⌋
≥ 4

5 · 40
α ·

C−ln ∆−1
i +k

∆2
i

> 4
∆2
i

when α ≤ 8 and k ≥ 1.

Therefore, we have that

P
(
ξi,τi,C ≤ C | τi,C =

⌊
40

α
· C − ln ∆−1

i + k

∆2
i

⌋)
≤ P

(
|∆̂i,τi,C −∆i| ≥

√
10

4
∆i | τi,C =

⌊
40

α
· C − ln ∆−1

i + k

∆2
i

⌋)

≤ P

(
|θ̂i,τi,C − θi| ≥

√
10

4
∆i | τi,C =

⌊
40

α
· C − ln ∆−1

i + k

∆2
i

⌋)

≤ 2 exp

(
−2 · 4

5
· 40

α
· C − ln ∆−1

i + k

∆2
i

· (
√

10∆i/4)2

)
≤ 2 exp(−40k/α),

where the second inequality follows since |∆̂i,τi,C −∆i| = ||θ̂i,τi,C − τ | − |θi − τ || ≤ |θ̂i,τi,C − θi|,
and the third inequality follows from Chernoff-Hoeffding Inequality (Proposition 5). This proves the
desired result.

D.2.2 Proof of Lemma 15

Lemma 15 (restated). P(
∑K
i=1 τi,Λ−k ≤ T ) ≥ 1− exp(−40k/α) for all 0 ≤ k < Λ.

Proof. Define the set A def
= {i ∈ S : Λ > ln ∆−1

i + k}. We can assume without loss of generality
that A is not empty. Let E1 be the event

∑
i∈S\A

τi,Λ−k ≤
∑
i∈S\A

(
I{Λ≤ln ∆−1

i }
·2 exp(2Λ)+I{Λ>ln ∆−1

i }
·40

α
·Λ− ln ∆−1

i + 1 + α/40

∆2
i

)
;

(20)

and let E2 be the event ∑
i∈A

τi,Λ−k ≤
∑
i∈A

40

α
· Λ− ln ∆−1

i + 1 + α/40

∆2
i

. (21)

Note that when E1 and E2 hold, we have
∑K
i=1 τi,Λ−k ≤

∑K
i=1 max{40/α+ 1, 40}λi = T . Hence

P(
∑K
i=1 τi,Λ−k > T ) ≤ P(E1) + P(E2), and since E1 always holds by Lemma 14(a), we have

P

(
K∑
i=1

τi,Λ−k > T

)
≤ P

(∑
i∈A

τi,Λ−k >
∑
i∈A

40

α
· Λ− ln ∆−1

i + 1 + α/40

∆2
i

)
.

Now, for any arm i ∈ A, let zi = τi,Λ−k − 40
α ·

Λ−k−ln ∆−1
i +1

∆2
i

. By Lemma 14(b), for any x ≥ 0, zi
satisfies

P(zi > x) ≤ 2 exp

(
−40

α
(αx∆2

i /40 + 1)

)
≤ exp(−x∆2

i ).
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Applying Proposition 6, we have that for any λ ≥ 1,

P

(∑
i∈A

zi > λ ·
∑
i∈A

1

∆2
i

)
≤ exp(1− λ).

Therefore,

P

(∑
i∈A

τi,Λ−k >
∑
i∈A

40

α
· Λ− ln ∆−1

i + 1 + α/40

∆2
i

)

= P

(∑
i∈A

zi > (40k/α+ 1) ·
∑
i∈A

1

∆2
i

)
≤ exp(−40k/α).

This completes the proof of the lemma.

D.3 Proof of Lemma 4

Recall that we defined B = {i ∈ S : Λ > ∆−1
i } and f(x) = αx+ lnα+ 0.5− α. We point out

that if x ≥ α−lnα−0.5
α + 0.1, then f(x) ≥ 0.1α. The goal of this subsection is to build the following

lemma.
Lemma 4 (restated). If κ ≥ α−lnα−0.5

α + 0.1, then conditioned on FΛ−f(κ),

RLSA
B (T ) ≤ 9 · 8α

√
2

8α
√

2− 1
·
∑
i∈B

exp

(
−λi∆

2
i

10
+ κ/4

)
.

To prove Lemma 4, we make use of Lemma 16, Lemma 17 and Corollary 18, and defer their proofs
in the later part of this subsection.

For any arm i ∈ B and κ, we define the eventMi,κ by

Mi,κ
def
=

∀t ∈ [1, λi], |∆̂i,t −∆i| ≤

√
λi∆2

i /5− κ/2 + 1
4α ln λi

t

t

 .

Intuitively, Mi,κ requires that the estimation error of ∆i during any time of the algorithm stays
within a small band that is parameterized by the quality parameter κ. The following Lemma 16 gives
a lower bound onMi,κ .

Lemma 16. For any arm i ∈ B and κ, it holds that P(Mi,κ) ≥ 1− 4· 8α√2
8α√2−1

exp
(
−λi∆

2
i

10 + κ/4
)

.

The following Lemma 17 shows thatMi,κ together with FΛ−f(κ) guarantees that arm i is explored
by enough queries.

Lemma 17. For any arm i ∈ B and κ ≥ α−lnα−0.5
α , conditioning onMi,κ ∧ FΛ−f(κ), we have

that Ti(T ) ≥ λi/20.

A corollary of Lemma 17 is as follows.

Corollary 18. For any arm i ∈ B and κ ≥ α−lnα−0.5
α , we have

P(Ti(T ) < λi/20 | FΛ−f(κ)) ≤
P(Mi,κ)

P(FΛ−f(κ))
.

We are now ready to give an upper bound for the contribution of the arms in B to the aggregate regret
of Algorithm 1.

Proof. Let i be an arbitrary arm in B. Since P(E i(T ) | FΛ−f(κ)) ≤ 1, it suffices to prove that

P(E i(T ) | FΛ−f(κ)) ≤
9 · 8α
√

2
8α
√

2− 1
exp

(
−λi∆

2
i

10
+ κ/4

)
(22)
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whenever
8α√2

8α√2−1
exp

(
−λi∆

2
i

10 + κ/4
)
≤ 1/9. Then the lemma follows by summing up the inequal-

ity for all arms in B.

Notice that
P(E i(T ) | FΛ−f(κ))

= P(E i(T ) | Ti ≥ λi/20,FΛ−f(κ))P(Ti ≥ λi/20 | FΛ−f(κ))

+ P(E i(T ) | Ti < λi/20,FΛ−f(κ))P(Ti < λi/20 | FΛ−f(κ))

≤ P(E i(T ) | Ti ≥ λi/20,FΛ−f(κ)) + P(Ti < λi/20 | FΛ−f(κ)). (23)
We first focus on the first term of (23), and note that

P(E i(T ) | Ti ≥ λi/20,FΛ−f(κ))

=
P(E i(T ) ∧ FΛ−f(κ) | Ti ≥ λi/20)

P(FΛ−f(κ) | Ti ≥ λi/20)

≤ P(E i(T ) | Ti ≥ λi/20)

P(FΛ−f(κ) | Ti ≥ λi/20)
=

P(E i(T ) ∧ Ti ≥ λi/20)

P(FΛ−f(κ) ∧ Ti ≥ λi/20)

=
P(E i(T ) ∧ Ti ≥ λi/20)

(1− P(Ti < λi/20 | FΛ−f(κ))) · P(FΛ−f(κ))
. (24)

Then plugging (24) into (23), we derive

P(E i(T ) | FΛ−f(κ)) ≤
P(E i(T ) ∧ Ti ≥ λi/20)

(1− P(Ti < λi/20 | FΛ−f(κ))) · P(FΛ−f(κ))
+P(Ti < λi/20 | FΛ−f(κ)).

(25)

Using Chernoff-Hoeffding Inequality (Proposition 5), we have

P(E i(T ) ∧ Ti ≥ λi/20) =

+∞∑
t=dλi/20e

P(E i(T ) | Ti = t)P(Ti = t)

≤
+∞∑

t=dλi/20e

P(Ti = t) · 2 exp(−λi∆2
i /10) ≤ 2 exp(−λi∆2

i /10). (26)

Moreover, by Lemma 3 and the fact that f(κ) ≥ 0.1α for κ ≥ α−lnα−0.5
α + 0.1, we have

P(FΛ−f(κ)) ≥ 1− exp(−40f(k)/α) ≥ 1− exp(−4) ≥ 0.9. (27)
Combining (27) with Corollary 18 and Lemma 16, we have

P(Ti < λi/20 | FΛ−f(κ))

≤ P(Mi,κ)

P(FΛ−f(κ))
≤

4· 8α√2
8α√2−1

exp
(
−λi∆

2
i

10 + κ/4
)

0.9

≤ 4.5 · 8α
√

2
8α
√

2− 1
exp

(
−λi∆

2
i

10
+ κ/4

)
. (28)

Putting together (25), (26), (27), and (28), we obtain
P(E i(T ) | FΛ−f(κ))

≤ 2 exp(−λi∆2
i /10)(

1− 4.5· 8α√2
8α√2−1

exp
(
−λi∆

2
i

10 + κ/4
))
· 0.9

+
4.5 · 8α

√
2

8α
√

2− 1
exp

(
−λi∆

2
i

10
+ κ/4

)

≤
(

2

(1− 4.5/9) · 0.9 +
4.5 · 8α

√
2

8α
√

2− 1

)
exp

(
−λi∆

2
i

10
+ κ/4

)
≤ 9 · 8α

√
2

8α
√

2− 1
exp

(
−λi∆

2
i

10
+ κ/4

)
,

where the second inequality follows from our assumption that
8α√2

8α√2−1
exp

(
−λi∆

2
i

10 + κ/4
)
≤ 1/9.

This proves (22) and therefore the lemma.
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D.3.1 Proof of Lemma 16

Lemma 16 (restated). For any arm i ∈ B and κ, it holds that P(Mi,κ) ≥ 1 −
4· 8α√2
8α√2−1

exp
(
−λi∆

2
i

10 + κ/4
)

.

In order to estimate the probability ofMi,κ , we introduce a more general lemma as follows and
Lemma 16 becomes a simple corollary of Lemma 19.

Lemma 19. (Variable Confidence Level Bound) LetX1, . . . , XL be i.i.d. random variables supported
on [0, 1] with mean µ. For any a > 0 and b > 0, it holds that

P

(
∀t ∈ [1, L],

∣∣∣∣∣1t
t∑
i=1

Xi − µ
∣∣∣∣∣ ≤

√
a+ b ln(L/t)

t

)
≥ 1− 2b/2+2

2b/2 − 1
exp(−a/2).

Now we only need to prove Lemma 19.

Proof of Lemma 19. Let l = blog2 Lc. By Chernoff-Hoeffding Inequality (Proposition 5), we have
for any t ∈ {1, 2, 4, . . . , 2l},

P

∣∣∣∣∣1t
t∑
i=1

Xi − µ
∣∣∣∣∣ ≤ 1

2

√
a+ b ln L

t

t

 ≥ 1− 2 exp(−a/2) · t
b/2

Lb/2
.

Via a union bound and using the fact that 2l+1 ≤ 2L, we get

P

∀t ∈ {1, 2, 4, . . . , 2l}, ∣∣∣∣∣1t
t∑
i=1

Xi − µ
∣∣∣∣∣ ≤ 1

2

√
a+ b ln L

t

t


≥ 1− 2 exp(−a/2) ·

l∑
i=0

2bi/2

Lb/2
≥ 1− 2b/2+1

2b/2 − 1
exp(−a/2). (29)

By Hoeffding’s Maximal Inequality (Proposition 7), we have for any t ∈ {1, 2, 4, . . . , 2l},

P

(
∀j ∈ [1,min{t, L− t}], |Xi,t+1 + · · ·+Xi,t+j − jµ| ≤

1

2

√
t

(
a+ b ln

L

t

))

≥ 1− 2 exp(−a/2) · t
b/2

Lb/2
.

Again via a union bound and using the fact that 2l+1 ≤ 2L, we get

P

(
∀t ∈ {1, 2, 4, . . . , 2l},∀j ∈ [1,min{t, L−t}], |Xi,t+1+· · ·+Xi,t+j−jµ| ≤

1

2

√
t

(
a+ b ln

L

t

))

≥ 1− 2b/2+1

2b/2 − 1
exp(−a/2). (30)

Combining (29) and (30), and using a union bound, we have with probability at least 1 −
2b/2+2

2b/2−1
exp(−a/2) uniformly over all t ∈ {1, 2, 4, . . . , 2l} and j ∈ [1,min{t, λi − t}] that

|X1 + · · ·+Xt+j − (t+ j)µ| ≤
√
t

(
a+ b ln

L

t

)
.

Dividing both sides of the above inequality by (t+ j), we complete the proof of this lemma.
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D.3.2 Proof of Lemma 17 and Corollary 18

Lemma 17 (restated). For any arm i ∈ B and κ ≥ α−lnα−0.5
α , conditioning onMi,κ ∧ FΛ−f(κ),

we have that Ti(T ) ≥ λi/20.

Proof. Fix an arm i ∈ B and κ ≥ α−lnα−0.5
α . We now condition onMi,κ ∧ FΛ−f(κ) and prove

this lemma by contradiction. Suppose for contradiction that we have t < λi/20. Notice that

ξi,t ≤ αt

∆i +

√
λi∆2

i /5− κ/2 + 1
4α ln λi

t

t

2

+ ln
√
t

≤ α
(√

λi
20

∆i +

√
λi∆2

i /5− κ/2 +
1

4α
ln
λi
t

)2

+ ln
√
t

≤ α
(

0.5λi∆
2
i − κ +

1

2α
ln
λi
t

)
+ ln
√
t

≤ α(0.5λi∆
2
i − κ) + ln

√
λi, (31)

It is easy to verify that x = (αλi)
− 1

2 is the minimum of the function 0.5αλix
2 + lnx−1 when x > 0.

Hence, we have

ln
√
λi + ln

√
α+ 0.5 = 0.5αλi(αλi)

−1 + ln(αλi)
1
2 ≤ 0.5αλi∆

2
i + ln ∆−1

i .

Therefore,

(31) ≤ αλi∆2
i + ln ∆−1

i − α− (ακ + lnα+ 0.5− α).

Finally, since Λ = αλi∆
2
i + ln ∆−1

i − α for all i ∈ B by definition, the last inequality yields
ξi,t ≤ Λ− f(κ), which contradicts the assumption that FΛ−f(κ) is true.

Corollary 18 (restated). For any arm i ∈ B and κ ≥ α−lnα−0.5
α , we have

P(Ti(T ) < λi/20 | FΛ−f(κ)) ≤
P(Mi,κ)

P(FΛ−f(κ))
.

Proof. Note that

P(Ti(T ) < λi/20 | FΛ−f(κ)) = 1− P(Ti(T ) ≥ λi/20 ∧ FΛ−f(κ))

P(FΛ−f(κ))
.

Further by Lemma 17, we obtain

P(Ti(T ) < λi/20 | FΛ−f(κ)) ≤ 1− P(Mi,κ ∧ FΛ−f(κ))

P(FΛ−f(κ))
=

P(Mi,κ ∧ FΛ−f(κ))

P(FΛ−f(κ))
≤ P(Mi,κ)

P(FΛ−f(κ))
,

which concludes the proof of this corollary.

E The Lower Bound

In this section we discuss the regret lower bound of any algorithm. For any sequence of K gaps
∆1, . . . ,∆K > 0, let I∆1,...,∆K

denote the set of instances of the problem where the gap between
θi and θ is ∆i for every arm i ∈ [K]. We now show a parameter dependent lower bound of the
aggregate regret when the time horizon T ≥ K.

Theorem 20. Let (∆1, . . . ,∆K) ∈ (0, 1/4]K be a sequence of gaps. Then for any algorithm A and
time horizon T ≥ K, there exists an instance I ∈ I∆1,...,∆K

such that

RA(I;T ) ≥ 1

4
P16({∆i}i∈S , T ).
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Proof. Let B(µ) denote the Bernoulli distribution with mean µ. We use ∆i(I) to denote the gap
between arm i and the threshold θ, given the instance I . For any algorithm A and instance I , let
DIA denote the probability space induced by I and A. We use PIA to denote the measure of the
probability space DIA, and use EIA[·] to denote the expectation with respect to PIA. When clear
from the context, the reference to A is omitted.

We fix the threshold θ = 1/2. To prove the theorem, it suffices to prove that there exist 2K instances
I0, . . . , I2K−1 ∈ I∆1,...,∆K

such that

max
0≤j<2K

RA(Ij ;T ) ≥ 1

4
P16({∆i}i∈S , T ).

We now define these instances explicitly. Suppose the binary representation of j is denoted by
aj1 · · · ajK . Then for any arm i in Ij , the associated distribution is B(1/2 + aji∆i). Thus the
distribution associated with Ij can be represented by the product distribution

B(1/2 + aj1∆1)⊗ · · · ⊗ B(1/2 + ajK∆K).

First, we note that

max
0≤j<2K

RA(Ij ;T ) = max
0≤j<2K

K∑
i=1

PIj (E i(T ))

≥ 1

2K

2K−1∑
j=0

K∑
i=1

PIj (E i(T )). (32)

By counting PIj (E i(T )) twice and then reordering, we have

(32) =
1

2K+1

K∑
i=1

2K−1∑
j=0

(
PIj (E i(T )) + PIj⊕2i−1 (E i(T ))

)
, (33)

where ⊕ denotes the binary XOR operation. Now from Proposition 8, we get that for i ∈ [K],

PIj (E i(T )) + PIj⊕2i−1 (E i(T ))

≥ 1

2
exp(−DKL(PIj ‖ PIj⊕2i−1 ))

(a)
=

1

2
exp(−EIj [xi] ·DKL(B(1/2 + aji∆i) ‖ B(1/2 + aj⊕2i−1

i ∆i))

=
1

2
exp

(
−EIj [xi] · 2∆i ln

(
1 +

2∆i

1/2−∆i

))
(b)

≥ 1

2
exp

(
−4EIj [xi]∆2

i

1/2−∆i

)
≥ 1

2
exp(−16EIj [xi]∆2

i ), (34)

where (a) follows from standard divergence decomposition (Proposition 9) and (b) follows from
∆i ≤ 1/4. Finally, plugging (34) into (33), we have

max
0≤j<2K

RA(Ij ;T )

≥ 1

2K+1

2K−1∑
j=0

K∑
i=1

1

2
exp(−16EIj [xi]∆2

i )

≥ 1

2K+1

2K−1∑
j=0

min
x1+···+xK=T
x1,...,xK≥0

K∑
i=1

1

2
exp(−16xi∆

2
i )

= min
x1+···+xK=T
x1,...,xK≥0

K∑
i=1

1

4
exp(−16xi∆

2
i )
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=
1

4
P16({∆i}i∈S , T ),

which concludes the proof of this theorem.

F Additional Experimental Results

F.1 Comparison with APT(0)

The following figure demonstrates the experimental results when LSA is compared with APT(0) and
some other algorithms under the scenario that there is no indifference zone and simple regret is used.
Please refer to Section 5 for different setting details.
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Figure 2: Simple regret on a logarithmic scale for different settings.

F.2 T-tests

In order to statistically compare our algorithm and other algorithms, we perform two-tailed paired
t-tests between our algorithm and other algorithms respectively on 5000 independent runs. When
performing t-tests, we set T = 1000, T = 40000, and T = 100000 in Setup 1, 2 and 3 respectively.
The null hypothesis is that our algorithm and other algorithms have the same mean. The p-values are
listed in the following table.

Setup P-values
APT(0) APT(.025) APT(.05) APT(.1) UCBE(-1)

Setup 1 1.4e-32 0.60 0.95 1.3e-5 0
Setup 2 0 8.9e-21 1.5e-78 4.0e-160 0
Setup 3 0 7.8e-28 3.6e-88 1.5e-192 0

Setup P-values
UCBE(0) UCBE(4) Opt-KG(1,1) Opt-KG(.5,.5) Uniform

Setup 1 2.5e-69 4.1e-225 7.8e-3 5.6e-8 1.1e-295
Setup 2 0 1.6e-251 2.9e-26 4.6e-46 0
Setup 3 0 2.0e-157 2.1e-24 6.5e-36 0

Table 1: T-test results between our algorithm and other algorithms in Setup 1, 2 and 3

F.3 Experimental Results for More Setups

We present additional experimental results with other settings of {θi}Ki=1.

4. (geometric progression). K = 10; θ1:4 = 0.4 − 0.2(1:4), θ5 = 0.45, θ6 = 0.55, and
θ7:10 = 0.6 + 0.25−(1:4) (see Setup 4 in Figure 3).

5. (two-group setting II). K = 100; θ1:50 = 0.4 and θ51:100 = 0.51 (see Setup 5 in Figure 3).

6. (one-side group). K = 10; θ1:10 = 0.4 + (i− 1)/100 (see Setup 6 in Figure 3).
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Figure 3: Average aggregate regret on a logarithmic scale for additional set of settings.

F.4 Robustness of the Tuning Parameter in LSA

To test the robustness of our algorithm, we show the results of our algorithm for Setup 1 when varying
α in Figure 4. We find that the performance is very consistent with different choices of α. The
differences are marginal and not statistically significant. For simplicity, in our experiments in the
main text, we use α = 1.35 as default (black curve in the figure).
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Figure 4: Average aggregate regret on a logarithmic scale of LSA(α) on Setup 1 for different α.
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