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This document contains the proof for Lemma 1 and Theorem 1 along with some additional experi-
ments highlighting the algorithmic performance evaluation and for showing the applicability of the
algorithm for learning some popular classical graph structures.

1 Proof of Lemma 1

Proof. We define an index set Ωt:

Ωt :=

{
l |[Lx]tt =

∑
l∈Ωt

xl

}
, t ∈ [1, p]. (1)

For any x ∈ R
p(p−1)

2 , we have

‖Lx‖2F = 2

p(p−1)
2∑

k=1

x2
k +

p∑
i=1

([Lx]ii)
2 (2)

= 4

p(p−1)
2∑

k=1

x2
k +

n∑
t=1

∑
i,j∈Ωt, i 6=j

xixj (3)

≤ 4

p(p−1)
2∑

k=1

x2
k +

1

2

n∑
t=1

∑
i,j∈Ωt, i 6=j

x2
i + x2

j (4)

= (4 + 2(|Ωt| − 1))

p(p−1)
2∑

k=1

x2
k (5)

= 2p ‖x‖2 , (6)

where the second equality is due to the fact that each xk only appears twice on the diagonal; the first
inequality achieves equality when each xk is equal; the last equality follows the fact that |Ωt| = p−1.
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Therefore, by the definition of operator norm, we can obtain

‖L‖2 = sup
‖x‖=1

‖Lx‖F =
√

2p, (7)

concluding the proof.

2 Derivation for λ′s update

Next the sub-problem for the λ update is

minimize
c1≤λ1≤···≤λq≤c2

−
q∑
i=1

log λi +
β

2
‖λ− d‖22, (8)

The sub-problem (8) is a convex optimization problem. One can solve the convex problem (8) with a
solver (e.g., CVX) but we can do it more efficiently with our algorithm for large scale problems. The
solution is obtained by satisfying the KKT optimality conditions.

The Lagrangian of the optimization (8) is

L(λ,µ) = −
q∑
i=1

log λi +
β

2
‖λ− d‖22 (9)

+ µ1(c1 − λ1) +

q∑
i=2

µi(λi−1 − λi) + µq+1(λq − c2).

The KKT optimality conditions are derived as:

− 1

λi
+ β(λi − di)− µi + µi+1 = 0, i = 1, · · · , q; (10)

c1 − λ1 ≤ 0; (11)
λi−1 − λi ≤ 0, i = 2, · · · , q; (12)
λq − c2 ≤ 0; (13)

µi ≥ 0, i = 1, · · · , q + 1; (14)
µ1(c1 − λ1) = 0; (15)

µi(λi−1 − λi) = 0, i = 2, · · · , q; (16)
µq+1(λq − c2) = 0; (17)

Algorithm 1 summarizes the iterative procedure for updating λ.
Remark 1. The problem of the form (8) is popularly known as a regularized isotonic regression
problem. The isotonic regression is a well-researched problem that has found applications in
numerous domains see [see 1, 2, 3, 4, 5]. To the best of our knowledge, however, there does not
exist any computationally efficient method comparable to the Algorithm 1. The proposed algorithm
can obtain a globally optimal solution within a maximum of q + 1 iterations for the q-dimensional
regularized isotonic regression problem, and can be potentially adapted to solve other isotonic
regression problems. The computationally efficient Algorithm 1 also holds an important contribution
for the isotonic regression literature.

Lemma 1. The solution of the KKT system (10)-(17) is λi = (di +
√
d2
i + 4/β)/2, for i = 1, · · · , q,

if c1 ≤ λ1 ≤ · · · ≤ cq ≤ c2 hold.

Proof. It is obvious that it conditions c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 hold, then the solutions of the primal
and dual variables satisfy all equations.

We start from the corresponding unconstrained version of the problem (8) whose solution is

λ
(0)
i =

(
di +

√
d2
i + 4/β

)
/2. (18)
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Algorithm 1 Update rule for λ1, · · · , λq

1: Compute: λi = (di +
√
d2
i + 4/β)/2 for 1 ≤ i ≤ q.

2: if λ satisfies c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 then
3: RETURN λ1, · · · , λq .
4: end if
5: while λ violates c1 ≤ λ1 ≤ · · · ≤ λq ≤ c2 do
6: check situation 1:
7: if c1 ≥ λ1 ≥ · · · ≥ λr with at least one inequality strict and r ≥ 1,
8: Set λ1 = · · · = λr = c1.
9: end if

10: check situation 2:
11: if λs ≥ · · · ≥ λq ≥ c2 with at least one equality strict and s ≤ q,
12: Set λs = · · · = λq = c2.
13: end if
14: check situation 3:
15: if λi ≥ · · · ≥ λm with at least one equality strict and 1 ≤ i ≤ m ≤ q,

Set λi = · · · = λm =
(
d̄i→m +

√
d̄2
i→m + 4/β

)
/2,with d̄i→m =

1

m− i+ 1

∑m

j=i
dj .

16: end if
17: end while
18: RETURN λ1, · · · , λq

If this solution satisfies all the KKT conditions (10)-(17), then it is also the optimal. Otherwise, each
λ

(0)
i that violates the conditions c1 ≤ λ(0)

1 ≤ · · · ≤ λ(0)
q ≤ c2 needs to be updated.

Situation 1: c1 ≥ λ
(0)
1 ≥ · · · ≥ λ

(0)
r , implying c1 − 1

c1β
≥ d1 ≥ · · · ≥ dr, where at least one

inequality is strict and r ≥ 1. Without loss of generality, let the j-th inequality is strict with 1 ≤ j ≤ r,
i.e. dj > dj+1. The KKT optimality conditions for this pare are:

− 1

λj
+ β(λj − dj)− µj + µj+1 = 0; (19)

− 1

λj+1
+ β(λj+1 − dj+1)− µj+1 + µj+2 = 0; (20)

λj − λj+1 ≤ 0; (21)
µi ≥ 0, i = j, j + 1, j + 2; (22)

µj+1(λj − λj+1) = 0; (23)

We subtract the first two equations and obtain:

2µj+1 = µj+2 + µj + (
1

λj
− 1

λj+1
) + β(λj+1 − λj) + β(dj − dj+1) > 0, (24)

due to the fact that dj > dj+1 and λj ≤ λj+1. Since µj+1 > 0, we also have

2µj = µj+1 + µj−1 + (
1

λj−1
− 1

λj
) + β(λj − λj−1) + β(dj−1 − dj) > 0, (25)

where dj−1 ≥ dj and λj−1 ≤ λj . Similarly, we can obtain µj > 0 with 2 ≤ j ≤ r. In addition,

µ1 = − 1

λ1
+ β(λ1 − d1) + µ2 (26)

− 1

c1
+ β(c1 − d1) + µ2 > 0. (27)

Totally, we have µj > 0 with 1 ≤ j ≤ r. By (15) and (16), we obtain λ1 = · · · = λr = c1.
Therefore, we update

λ
(1)
1 = · · · = λ(1)

r = c1. (28)
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Situation 2: λ(0)
s ≥ · · · ≥ λ

(0)
q ≥ c2, implying ds ≥ · · · ≥ dq ≥ c2 − 1

c2β
, where at least one

inequality is strict and s ≤ q.

Similar to situation 1, we can also obtain µj > 0 with s+1 ≤ j ≤ m+1 and thus λs = · · · = λq = c2.
Therefore, we update λ(0)

s , · · · , λ(0)
q by λ(1)

s = · · · = λ
(1)
q = c2.

Situation 3: λ(0)
i ≥ · · · ≥ λ

(0)
m , implying di ≥ · · · ≥ dm, where at least one inequality is strict and

1 ≤ i ≤ m ≤ q. Here we assume λ(0)
i−1 < λ

(0)
i (c1 < λ

(0)
1 if i = 1) and λ(0)

m < λ
(0)
m+1 (λ(0)

q < c2 if
m = q). Otherwise, this will be reduced to situation 1 or 3.

Similar to situation 1, we can also obtain µj > 0 with i+ 1 ≤ j ≤ m and thus λ(1)
i = λ

(1)
i+1 = · · · =

λ
(1)
m .

We sum up equations (19) with i ≤ j ≤ m and obtain

− 1

λj
+ βλj −

1

m− i+ 1
(β

m∑
j=i

dj + µi − µm+1) = 0, j = i, · · · ,m. (29)

Here we need to use iterative method to find the solution that satisfies KKT conditions. It is easy to
check that µi = µm+1 = 0 when λ(0)

i−1 < λ
(0)
i and λ(0)

m < λ
(0)
m+1. In that case, according to (29), we

have

λj =

(
d̄i→m +

√
d̄2
i→m + 4/β

)
/2, j = i, · · · ,m. (30)

where d̄i→m = 1
m−i+1

∑m
j=i dj . Therefore, we update λ(0)

i , · · · , λ(0)
m by

λ
(1)
i = · · · = λ(1)

m =

(
d̄i→m +

√
d̄2
i→m + 4/β

)
/2. (31)

If there exists the case that λ(1)
i−1 > λ

(1)
i , we need to further update λ(1)

i−1, λ
(1)
i , · · · , λ(1)

m in the next
iteration. It will include two cases to discuss:

1. λ(1)
i−1 has not been updated by (31), implying that λ(1)

i−1 = λ
(0)
i−1 =

(
d̄i−1 +

√
d2
i−1 + 4/β

)
/2. So

λ
(1)
i−1 > λ

(1)
i means di−1 > d̄i→m. KKT conditions for this pare are:

− 1

λi−1
+ β(λi−1 − di−1)− µi−1 + µi = 0; (32)

− 1

λi
+ β(λi − d̄i→m)− µi + µm+1 = 0; (33)

λi−1 − λi ≤ 0; (34)
µp ≥ 0, p = i− 1, i,m+ 1; (35)

µi(λi−1 − λi) = 0; (36)

We subtract the first two equations and obtain

2µi = µi−1 + µm+1 + (
1

λi−1
− 1

λi
) + β(λi − λi−1) + β(di−1 − d̄i→m) > 0, (37)

and thus λi−1 = λi = · · · = λm. Then the equation (29) can be written as

− 1

λj
+ βλj −

1

m− i+ 2
(β

m∑
j=i−1

dj + µi−1 − µm+1) = 0, j = i− 1, · · · ,m. (38)

Hence, we update

λ
(2)
i−1 = · · · = λ(2)

m =
(
d̄(i−1)→m +

√
d̄2

(i−1)→m + 4/β
)
/2. (39)

2. λ
(1)
i−1 has been updated by (31), implying that λ

(1)
t = · · · = λ

(1)
i−1 =(

d̄t→(i−1) +
√
d2
t→(i−1) + 4/β

)
/2 with t < i − 1. Then λ(1)

i−1 > λ
(1)
i means d̄t→(i−1) > d̄i→m.
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Similarly, we can also obtain λt = λt+1 = · · · = λm by deriving KKT conditions. We sum up
equations (10) over t ≤ j ≤ m and obtain

− 1

λj
+ βλj −

1

m− t+ 1
(β

m∑
j=t

dj + µt − µm+1) = 0, j = t, · · · ,m. (40)

So we update

λ
(2)
t = · · · = λ(2)

m =

(
d̄t→m +

√
d̄2
t→m + 4/β

)
/2. (41)

For the case that λ(1)
m > λ

(1)
m+1, the update strategy is similar to the case λ(1)

i−1 > λ
(1)
i .

We iteratively check each situation and update the corresponding λi accordingly. We can check that
the algorithm will be terminated with the maximum number of iterations q + 1 and c1 ≤ λ(q+1)

1 ≤
· · · ≤ λ(q+1)

q ≤ c2 holds for all variables. Because each updating above is derived by KKT optimality
conditions for Problem (8), the iterative-update procedure summarized in Algorithm 1 converges to
the KKT point of Problem (8).

3 Proof for Theorem 2

Proof. The proof of algorithm convergence is partly based on the proof of BSUM in [6]. We first show
the linear independence constraint qualification on unitary constraint set SU , {U ∈ Rp×q|UTU =
Iq}.
Lemma 2. Linear independence constraint qualification (LICQ) holds on each U ∈ SU .

Proof. We rewrite SU as

{U ∈ Rp×q|gij(U) =

p∑
k=1

ukiukj − Iij ,∀1 ≤ i ≤ j ≤ q}, (42)

where uij and Iij are the elements of U and identity matrix I in i-th row and j-th column, respectively.
It is observed that

∇gij(U) =

{
[0p×(i−1); 2ui; 0p×(q−i)], if i = j;
[0p×(i−1);uj ; 0p×(j−i−1);ui; 0p×(q−j)], otherwise.

(43)

We can see ui from∇gii(U) will only appear in i-th column, but ui from∇gij(U) with i 6= j will
not appear in i-th column. Consequently, each∇gij(U) cannot be expressed as a linear combination
of the others, thus each∇gij(U) is linear independent.

Now we prove Theorem 2. It is easy to check that the level set {(w, U,λ)|f(w, U,λ) ≤
f(w(0), U (0),λ(0))} is compact, where f(w, U,λ) is the cost function in Problem (8 in the pa-
per manuscript). Furthermore, the sub-problems ((10) and (16) in the paper manuscript) have unique
solutions since they are strictly convex problems and we get the global optima. According to Theorem
2 in [6], we obtain that the sequence (w(t), U (t),λ(t)) generated by Algorithm 1(i.e., in the paper
manuscript) converges to the set of stationary points. Note that U is constrained on the orthogonal
Stiefel manifold that is nonconvex, while BSUM framework does not cover nonconvex constraints.
But the subsequence convergence can still be established [7] due to the fact that the cost function
value here is non-increasing and bounded below in each iteration.

Next we will further show that each limit of the sequence (w(t), U (t),λ(t)) satisfies KKT conditions
of Problem ((8) in the paper manuscript). Let (w, U,λ) be a limit point of the generated sequence.
The Lagrangian function of (equation (8) in the paper manuscript) is

L(w, U,λ,µ1,µ2,M) =− log gdet(Diag(λ)) + tr (KLw) +
β

2
‖Lw − UDiag(λ)UT ‖2F

− µT1 w + µT2 h(λ) + tr
(
MT (UTU − Iq)

)
, (44)
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where µ1, µ2 and M are dual variables, and µT2 h(λ) = µ2,1(α1 − λ1) +
∑q
i=2 µ2,i(λi−1 − λi) +

µ2,q+1(λq − α2) with µ2 = [µ2,1, · · · , µ2,q+1]T .

(1) we can see λ is derived from KKT conditions of sub-problem (equation (16) in the paper
manuscript). Obviously, λ also satisfies KKT conditions of Problem (equation (8) in the paper
manuscript).

(2) we show w satisfies KKT conditions (equation (10) in the paper manuscript). The KKT conditions
with w can be derived as:

L∗Lw − L∗(UDiag(λ)UT − β−1K)− β−1µ1 = 0; (45)

µT1 w = 0; (46)
w ≥ 0; (47)
µ1 ≥ 0; (48)

Know w is derived by KKT system see Lemma (4 in the paper manuscript), we obtain

w − (w − 1

L1
(L∗Lw − c))− µ = 0, (49)

and c = L∗(UDiag(λ)UT − β−1K). So we have

L∗Lw − L∗(UDiag(λ)UT − β−1K)− 1

L1
µ = 0, (50)

Therefore, w also satisfies KKT conditions (equation (8) in the paper manuscript).

(3) KKT conditions with respect to U are as below:

LwUDiag(λ)− 1

2
U(Diag(λ)2 + β−1(M +MT )) = 0; (51)

UTU = Iq. (52)

Since U admits the first order optimality condition on orthogonal Stiefel manifold, we have

LwUDiag(λ)− U(UTLwUDiag(λ)− 1

2
[UTLwU,Diag(λ)]) = 0, (53)

where [A,B] = AB − BA. Note that UTLwU is a diagonal matrix according to the update of U .
So there must exist a M such that U satisfies (51). Therefore, (w, U,λ) satisfies KKT conditions of
Problem (equation (8) in the paper manuscript).

4 Experiments

For synthetic experiments we create several synthetic data sets based on different graph structures G.
First, we generate an improper GMRF model parameterized by the true precision matrix ΘG , which
follows the Laplacian constraints in (equation (2) in the paper manuscript) as well as the specific
graph structure. Then, a total of n samples {xi ∈ Rp}ni=1 are drawn from the IGMRF model with
ΘG : xi ∼ N (0,Θ†G), ∀i. The sample covariance matrix S is computed as,

S =
1

n

n∑
i=1

(xi − x̄i)(xi − x̄i)
T , with x̄i =

1

n

n∑
i=1

xi. (54)

Algorithms use the SCM S and prior information regarding target graph families, if available (e.g.,
number of connected components k). We set c1 and c2 to very small and large value, respectively, and
the choice of β is discussed for each case separately. For each scenario, 20 Monte Carlo simulations
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are performed. For performance evaluation, we use following metrics, namely, relative error (RE)
and F-score (FS):

Relative Error =

∥∥∥Θ̂−Θtrue

∥∥∥
F

‖Θtrue‖F
, F-Score =

2tp
2tp + fp + fn

, (55)

where Θ̂ = Lŵ is the final estimation result of the algorithm and Θtrue is the true reference graph
Laplacian matrix, true positive (tp) stands for the case when there is an actual edge and the algorithm
detects it; false positive (fp) stands for the case when algorithm detects an edge but no actual edge
present; and false negative (fn) stands for the case when algorithm misses an actual edge present.
Further, we disregard an edge if its weight value is less than 0.1. The F-score metric takes values in
[0, 1] where 1 indicates perfect structure recovery [8]. To check the performance evolution for each
iteration t we evaluate the RE and FS with Θ̂t. Algorithms are terminated when the relative change
in wt is relatively small.

4.1 Benchmarks

The CGL algorithm proposed in [8] is the state-of-the-art method for estimating a connected com-
binatorial graph Laplacian matrix from the sample covariance matrix. For synthetic data exper-
iments with connected graph structure (e.g., modular, grid, and connected bipartite), we com-
pare the performance of the SGL algorithm against CGL. Additionally, for more insight, we also
compare against some heuristic based approaches. These are i) the pseudo-inverse of the sam-
ple covariance matrix S†, denoted as Naive and ii) the solution of following quadratic program
wqp = arg minw≥0

∥∥S† − Lw∥∥2

F
, denoted as QP.

For the comparison on multi-component graph learning, as per our knowledge, there is no exist-
ing method to learn graph Laplacian matrix with multiple components (e.g., k−component and
k−component bipartite). Thereby, for the sake of completeness, we compare against Naive and QP,
which are expected to give meaningful comparisons for high sample scenarios.

For experiments with real data, we compare the algorithm performance with GLasso [9], GGL1,
constrained Laplacian rank algorithm CLR [10], Spectral clustering [11], and k−means clustering.
Unlike CGL, the GGL algorithm aims to estimate a generalized graph Laplacian matrix. As observed
in [8], GGL performance is always superior than CGL, therefore, for real data we omit the comparison
with CGL. Note that the GGL and GLasso cannot estimate the standard Laplacian matrix in (equation
(2) in the paper manuscript) , thereby, we cannot compare against those for the synthetic experiments.
For CGL, GGL, and GLasso the sparsity parameter α is chosen according to the suggested
procedures [8, 12].

4.2 Performance evaluation for SGL Algorithm

In this Subsection, we evaluate the performance of the SGL algorithm on grid graph, modular
graph, multi-component graph, noisy-multi component graph, and popular synthetic structures for
clustering).

4.2.1 Grid graph

We consider a grid graph structure denoted as Ggrid(p), where p = 64 are the number of nodes, each
node is attached to their 4 nearest neighbors (except the vertices at the boundaries), edge weights are
selected randomly uniformly from [0.1, 3]. Figure 1 depicts the graph structures learned by SGL and
CGL for n/p = 100, edges smaller than 0.05 were discarded. For CGL we use α = 0.005 whereas,
for SGL, we fix β = 20 and α = 0.005.

Figure 2 compares the performance of the algorithms for different sample size regimes on the grid
graph model. This is with respect to the number of data samples, used to calculate sample covariance
S, per number of vertices (i.e., n/p), see (54). For n/p <= 100, we fix β = 10, otherwise we fix
β = 100. Additionally, we fix α = 0. For QP and Naive we do not need to set any parameters. It
is observed in Figure 2, the SGL algorithm significantly outperforms the baseline approaches: for

1Code for the methods CGL, GGL is available at https://github.com/STAC-USC/Graph_Learning
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(a) True grid graph (b) CGL (c) SGL(Proposed)

Figure 1: Sample results of learning Ggrid(64) (a) True grid graph, (b) CGL (RE = 0.09163,FS =
0.8057), and (c) SGL (RE = 0.0490,FS = 0.9955).

all the sample ratios SGL can achieve a lower average RE and higher average FS. For instance, to
achieve a low RE (e.g., 0.1), SGL requires a lower sample ratio (n/p = 5) than Naive (n/p = 80),
QP (n/p = 29) and CGL (n/p = 30).
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Figure 2: Average performance results for learning Laplacian matrix of a Ggrid graph. The SGL
algorithm outperforms Naive, QP, and CGL for all the sample ratios.

4.2.2 Modular graph

We consider a random modular graph, also known as stochastic block model, Gmo(p, k, ℘1, ℘2) with
p = 64 vertices and k = 4 modules (subgraphs), where ℘1 = 0.01 and ℘2 = 0.3 are the probabilities
of having an edge across modules and within modules, respectively. Edge weights are selected
randomly uniformly from [0.1, 3]. Figure 3 illustrates the graph learning performances under different
nodes to sample ratio (n/p). It is observed in Figure 2, the SGL and the CGL algorithm significantly
outperforms the Naive and QP. Furthermore, for low sample ratio (i.e., n/p < 2) SGL achieves
better performance than CGL, while they perform similarly for a higher sample ratio (i.e., n/p > 2).

4.2.3 Multi-component graph

We consider to learn a multi-component graph also known as block-structured graph denoted as
Gmc(p, k, ℘), with p = 64, k = 4 and ℘ = 0.5, where p is the number of nodes, k is the number of
components, and ℘ is the probability of having an edge between any two nodes inside a component
while the probability of having an edge between any two nodes from different components is zero.
Edge weights are selected randomly uniformly from [0.1, 3]. Figure 4 illustrates the graph learning
performances of different methods in terms of average RE and FS.

4.2.4 Effect of the parameter β

In the current subsection, we study the effect of the parameter β on the algorithm performance in
terms of RE and FS. It is observed from Figure 5 that a large β enables the SGL to obtain a low RE
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Figure 3: Average performance results for learning Laplacian matrix of a modular graph Gmo with
four modules. The proposed SGL for β = 100, α = 0 method outperforms the base line approaches.
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Figure 4: Average performance results as, a function of the number of samples, for learning Laplacian
matrix of a 4-component graph. The SGL method demonstrates good performance for multi-
component graph learning, and significantly outperforms the baseline approaches Naive and QP.

and a high FS. For a large β, the formulation puts more weight on the relaxation term so as to make
it closer to the spectral constraints. In addition, along with the increase of β the RE and FS tend
to be stable. But empirically it is observed that a huge β slows down the convergence speed of the
algorithm.
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Figure 5: Effect of the parameter β on the SGL algorithm. We consider here estimating of a multi-
component graph structure Gmc(32, 4, 0.5) edge weights drawn randomly uniformly from [0,1]. It is
observed from that a large β enables the SGL to obtain a low RE and high FS.

4.2.5 Multi-component graph: noisy setting

Here we aim to learn a multi-component graph under noisy setting. At first we generate a 4 component
graph Gmc(20, 4, 1) with equal number of nodes in all the components, the nodes inside a component
are fully connected and the edges are drawn randomly uniformly from [0, 1]. Then we add random
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noise to all the in-component and out component edges. The noise is an Erdos-Renyi graph GER(p, ℘),
where p = 20 is the number of nodes, ℘ = 0.35 is the probability of having an edge between any two
pair of nodes, and edge weights are randomly uniformly drawn from [0, κ]. Specifically, we consider
a scenario where each sample xi ∼ N (0,Θ†noisy) used for calculating SCM as in (54) is drawn from
the noisy precision matrix,

Θnoisy = Θtrue + ΘER, (56)

where Θtrue is the true Laplacian matrix and ΘER is the noise Laplacian matrix, which follows the ER
graph structure. Figure 6 illustrates an instance of the SGL performance for noisy-multi component
graph with fixed n/p = 30, β = 400, α = 0.1, and κ = 0.45.
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Figure 6: An example of estimating a 4-component graph. Heat maps of the graph matrices: (a)
the ground truth graph Laplacian matrix Θtrue, (b) Θnoisy after being corrupted by noise, (c) Θlearned
the learned graph Laplacian with a performance of (RE,FS) = (0.210, 1), which means a perfect
structure recovery even in a noisy setting that heavily suppresses the ground truth weights. The panels
(d), (e), and (f) correspond to the graphs represented by the Laplacian matrices in (a), (b), and (c),
respectively.

4.2.6 Multi-component graph: components number mismatch

For learning a multi-component graph structure, SGL requires the knowledge of the number of
components k, as a prior information, which is a common assumption for similar frameworks. If
not available, one can infer k by using existing methods for model selection e.g., cross validation,
Bayesian information criteria (BIC), or Akaike information criteria (AIC). Furthermore, we also
investigate the performance when accurate information about the true number of clusters is not
available.

We consider an experiment involving model mismatch: the underlying Laplacian matrix that generates
the data has j number of components but we actually use k, k 6= j, number of components to
estimate it. We generate a k = 7 multi-component graph Gmc(49, 7, 1), the edge weights are
randomly uniformly are drawn from [0, 1]. Additionally, we consider a noisy model as in (56) i.e.,
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Θnoisy = Θtrue + ΘER, where the noise is an Erdos-Renyi graph GER(49, 0.25) with edge randomly
uniformly drawn from [0, 0.45]. Figure 7 shows an example where the underlying graph has seven
components, and we apply the SGL algorithm with j = 2. As we can see, even though the number
of components is mismatched and the data is noisy, the SGL algorithm is still able to identify the true
structure with a reasonable performance in terms of F-score and average relative error. The take away
from Figure 7 is that, even in the lack of true information regarding the number of components in a
graph, the graph learned from the SGL algorithm can yield an initial approximate graph very close to
the true graph, which can be used as an input to other algorithms for post-processing to infer more
accurate graph.
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Figure 7: Heat maps of the graph matrices: (a) the ground truth graph Laplacian of a seven-component
graph Θtrue, (b) Θnoisy after being corrupted by noise, (c) Θlearned the learned graph Laplacian with
a performance of (RE,FS) = (0.18, 0.81). The panels (d), (e), and (f) correspond to the graphs
represented by the Laplacian matrices in (a), (b), and (c), respectively. For Figure 7 (c) and (f)
we are essentially getting results corresponding to a two-component graph, which is imperative
from the usage of spectral constraints of k = 2. It is observed that the true graph (d) with k = 7
components are contained exactly in the learned graph (f), the extra edges, which are due to the
inaccurate spectral information when removed from 7 (f) can yield the true graph. One can use some
simple post-processing techniques (e.g., thresholding of elements in the learned matrix Θ), to recover
the true component structure.

Figure 8 depicts the average performance of SGL as a function of k. The settings for the experiment
is same as in Figure 7, except now we use different number of components information for each
instances. It is observed that the SGL has its best performance when k matches with the true number
of the components in the graph. This also suggests that the SGL algorithm has the potential to
be seamlessly integrated with model selection techniques to dynamically determine the number of
clusters to use, in a single algorithm [13, 14, 15].

4.2.7 Popular multi-component structures

Here we consider the classical problem of clustering for some popular synthetic structures. To do
that, we generate 100 nodes per cluster distributed according to structures colloquially known as two
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Figure 8: Average performance results as a function of the number of components k: best results
are obtained for true number of components. As we can note, the performance is monotonically
increasing and eventually reaches a perfect F-score when k = 7.

(a) two moons (b) two circles (c) spirals

(d) three circles (e) worms (f) helix 3d

Figure 9: SGL is able to perfectly classify the data points according to the cluster membership for all
the structures.

moons, two circles, three spirals, three circles, worms and helix 3d. Figure 9 depicts the results of
learning the clusters structures using the proposed algorithm SGL.

4.3 Different Spectral Constraint

As a concrete example, we reported a detailed analysis of the most used case of k-components
(equation (4) in the manuscript) and single component graph eq (equation (5) in the manuscript).
Now we implement the 4th case (equation (7) in the paper manuscript) in Figure 10 presented below.
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(a) Ground truth (b) Constraint eq (7) (c) Constraint eq (5)
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Ground−truth
Exact
Inexact

(d) Eigenvalues

Figure 10: Experiment for a connected graph with p = 15 nodes and n/p = 10. (a) True graph;
(b) Graph learned with exact spectral constraint (RE= 0.19, FS=0.97); (c) Graph learned with only
connected graph spectral constraint (RE= 0.34, FS=0.87). This demonstrates that more spectral
information helps improve the graph estimation results.

4.4 Clustering of animal data set

Figure 11 compares the clustering performance of the SGL method for k = 10 clusters against the
state-of-the-art clustering algorithms: (a) k−means clustering, (b) spectral clustering 2, (c) CLR,
and (d) SGL with k = 10. It is remarked that all the algorithms except the SGL are designed only
for clustering (grouping) task and are not capable of specifying further connectivity inside a group
while SGL is capable of doing both the task of clustering and connectivity(edge weights) estimation
jointly.

2 Code for spectral and k−means is available at https://cran.r-project.org/web/packages/kernlab [16]
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(b) Spectral [11]
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(c) CLR [10]
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(d) SGL with k = 10(proposed)

Figure 11: All the methods obtain 10 components intending to group similar animals together.
Clustering with k−means and spectral methods yield components with un-common(possibly
wrong) groupings. For example, in (a) seal, cow, horse are grouped together: characteristics of seal
does not seem to fit with the cow and horse, and in (b) cockroach, lion, iguana, tiger, ant, alligator are
grouped together which is also in contrary to the expectation. On the other hand, it is observed that
both CLR (c) and SGL (d) are able to obtain groupings of animal adhering to our general expectation
of the animal behaviors. Although both the results vary slightly, the final results from both the
methods are meaningful. For example, CLR groups all the insects (bee, butterfly, cockroach, ant)
together in one group while SGL splits them into two groups, one with ant, cockroach and another
with bee, butterfly. On the other hand, SGL groups the herbivore mammals (horse, elephant, giraffe,
deer, camel, rhino, cow) together in one group, while CLR splits these animals into two groups, one
containing rhino, elephant and another group containing the rest.
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