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Alternative Weight Sharing

We have evaluated a different weight sharing scheme, see the drawing below, which shares as little as
possible weights but still enables generalization to longer sequences. This version performs similarly
to our default choice presented in Fig. 3 but has more parameters.
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Minimal weight sharing.

The following picture shows a comparison of different weight sharing schemes. All the different
sharings with 192 feature maps give a similar accuracy. But increasing the number of feature maps
does increase accuracy. Note that we have included the embedding layer in the parameter count
which has 11.5M parameters for 192 feature maps(embedding size 192, 60K vocabulary) and 23M
parameters for 384 feature maps(embedding size 384, 60K vocabulary). So the weights of the
Shuffle-Exchange network give only a fraction of the total parameters.
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Effect of weight sharing on LAMBADA task.
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