
Optimal Sampling and Clustering
in the Stochastic Block Model

(Supplementary material)

A Proof of Theorem 1 – Binary symmetric SBMs

Consider the binary symmetric SBM, where α = ( 1
2 ,

1
2 ), p11 = p22 = p, and p12 = p21 = q.

Without loss of generality, let V1 = {1, . . . , n2 } and V2 = {n2 + 1, . . . , n}. Assume that there exists
a joint sampling and clustering algorithm π satisfying1:

P[
∣∣∪2
k=1Vk \ Sπk

∣∣ < s] ≥ 1− ηn, (1)

where Sπ1 ,Sπ2 are the clusters returned by the algorithm π and limn→∞ ηn = 0. We show that (1)
cannot hold when

2T

n
max{KL(p, q),KL(q, p)} ≤ 1

(1 + γn)4
log
(n
s

)
, (2)

where γn =
(
log
(
n
s

))−1/4
+
√
ηn. Note that limn→∞ γn = 0. To this aim, we first relate (1)

to an hypothesis testing problem, where each hypothesis corresponds to an allocation of nodes to
clusters. We then construct two stochastic models: the first model leads to observations generated
under the true SBM, and the second to observations made under a different allocation of nodes to
clusters. Finally, we use a change-of-measure argument: we study the log-likelihood ratio of the
observations under the two models, and show how it relates to hypothesis testing problem and to the
error probability ηn. This leads to our necessary condition.

Hypothesis testing. Let s̄ = d s+1
γn
e, consider the hypothesesH0, . . . ,HM corresponding to different

allocations of nodes to clusters. Let V(m)
1 ,V(m)

2 be the allocation corresponding to Hm. We construct
these allocations so that:

(C0) V(0)
1 = {1, 2, . . . , n

2
} and V(0)

2 = {n
2

+ 1, . . . , n},

(C1)
∣∣∣∪2
k=1V

(0)
k \ V

(m)
k

∣∣∣ = 2s̄ for all 1 ≤ m ≤M,

(C2)
∣∣∣∪2
k=1V

(m)
k \ V(l)

k

∣∣∣ ≥ 2s̄ for all m, l : m 6= l.

We can prove that we can build M ≥
(

n
32es̄

)s̄
hypotheses satisfying (C1) and (C2). This lower

bound on M comes from the analysis of (n/2s̄ )
2∑s̄

l=1 (2s̄
l )(

n−2s̄
l )

: there are
(
n/2
s̄

)2
feasible allocations

satisfying (C1) and for any such given allocation, there are at most
∑s̄
l=1

(
2s̄
l

)(
n−2s̄
l

)
allocations

violating (C2). A detailed proof is provided in (18).

Based on the outputs of the algorithm π, define the following hypothesis testing function:

f(Sπ1 ,Sπ2 ) = arg min
m∈{0,1,...,M}

∣∣∣∪2
k=1V

(m)
k \ Sπk

∣∣∣ .
1Formally, the inequality should be minσ P[

∣∣∪2
k=1Vσ(k) \ Sπk

∣∣ < s] ≥ 1 − ηn, where the min is over
permutations σ of {1, 2}.
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Note that
∣∣∣∪2
k=1V

(m)
k \ V(l)

k

∣∣∣ can be interpreted as a distance between any two different allocations

(V(m)
1 ,V(m)

2 ) and (V(l)
1 ,V(l)

2 ) and thus the triangle inequality holds, e.g.,∣∣∣∪2
k=1V

(m)
k \ V(l)

k

∣∣∣ ≤ ∣∣∣∪2
k=1Sπk \ V

(m)
k

∣∣∣+
∣∣∣∪2
k=1Sπk \ V

(l)
k

∣∣∣ for all m, l.

We deduce from (1) and the triangle inequality that:

P[f(Sπ1 ,Sπ2 ) = 0] ≥ 1− ηn and min
1≤m≤M

P[f(Sπ1 ,Sπ2 ) = m] ≤ ηn
M
, (3)

since the algorithm π mis-classifies at most s nodes with probability 1− ηn.

Two stochastic models. To prove the necessary condition, we use a change-of-measure argument.
More precisely, we consider that the observations can either come from the true stochastic model Φ
corresponding to the true allocation of nodes to clusters, or from another model Ψ. Let PΦ = P (resp.
PΨ) and EΦ[·] = E[·] (resp. EΨ[·]) be the probability measure and expectation under the model Φ
(resp. Ψ). To construct the second model Ψ, let m∗ = arg min1≤m≤M P[f(Sπ1 ,Sπ2 ) = m]. Ψ is
constructed so that:

PΨ[f(Sπ1 ,Sπ2 ) = m∗] ≥ 1− ηn. (4)

The construction of such a Ψ can be made as follows: randomly select s̄+s+1
2 nodes from V1 \ V(m∗)

1

and s̄+s+1
2 nodes from V2 \V(m∗)

2 and swap the selected nodes. We denote by Ṽ1 and Ṽ2 the resulting
clusters under Ψ. Then,∣∣∣∪2

k=1Ṽk \ V
(m∗)
k

∣∣∣ = s̄− s− 1 and
∣∣∣∪2
k=1Ṽk \ V

(0)
k

∣∣∣ = s̄+ s+ 1. (5)

From the triangle inequality and the condition (C2), for all m 6= m∗∣∣∣∪2
k=1V

(m)
k \ Ṽk

∣∣∣ ≥ ∣∣∣∪2
k=1V

(m)
k \ V(m∗)

k

∣∣∣− ∣∣∣∪2
k=1Ṽk \ V

(m∗)
k

∣∣∣ ≥ s̄+ s+ 1. (6)

Now, since π must have by assumption less than s mis-classified nodes with probability 1− ηn, we
deduce, combining (5) and (6), that (4) actually holds.

Change-of-measure argument. In (3) and (4), we have identified events that are very unlikely under
PΦ and very likely under PΨ when we assume that the algorithm mis-classified less than s nodes
w.h.p.. More precisely, we deduce from (3) and (4) that:

PΦ[f(Sπ1 ,Sπ2 ) = m∗] ≤ ηn
M

and PΨ[f(Sπ1 ,Sπ2 ) = m∗] ≥ 1− ηn. (7)

This observation will be used to derive an upper bound of the log-likelihood ratioQ of the observations
under PΦ and PΨ. Let y(t) and e(t) denote the value and the edge corresponding to the t-th
observation, respectively. Let Cij = {(v, w) ∈ (Ṽi \ V(0)

i )× (Ṽj ∩ V(0)
j )}. Then, the log-likelihood

ratio of the observations under PΦ and PΨ, Q, is defined as follows:

Q =

T∑
t=1

1(e(t) ∈ C11 ∪ C22)

(
y(t) log

p

q
+ (1− y(t)) log

1− p
1− q

)
+

T∑
t=1

1(e(t) ∈ C12 ∪ C21)

(
y(t) log

q

p
+ (1− y(t)) log

1− q
1− p

)
.

Using (7), we can upper bound PΨ {Q ≤ log(M)} as follows. Observe first that:

PΨ{Q ≤ log(M), f(Sπ1 ,Sπ2 ) = m∗} =

∫
{Q≤log(M),f(Sπ1 ,Sπ2 )=m∗}

dPΨ

=

∫
{Q≤log(M),f(Sπ1 ,Sπ2 )=m∗}

exp(Q)dPΦ

≤MPΦ{Q ≤ log(M), f(Sπ1 ,Sπ2 ) = m∗}
≤MPΦ{f(Sπ1 ,Sπ2 ) = m∗}
≤ηn. (8)
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From (7), we also have:

PΨ{Q ≤ log(M), f(Sπi∗) 6= m∗} ≤ PΨ{f(Sπi∗) 6= m∗} ≤ ηn. (9)

Combining (8) and (9), we conclude that:

PΨ{Q > log(M)} ≥ 1− 2ηn. (10)

Now since nodes within the same cluster play the same role and due to the symmetry of the SBM, the
expected number of observations should be identical for all nodes. Thus:

EΨ

[
T∑
t=1

1(e(t) ∈ ∪i,jCij)

]
≤ 2(s̄+ s+ 1)

n
T. (11)

Moreover, we have:

EΨ

[
y(t) log

p

q
+ (1− y(t)) log

1− p
1− q

|e(t) ∈ C11 ∪ C22

]
= KL(p, q)

EΨ

[
y(t) log

q

p
+ (1− y(t)) log

1− q
1− p

|e(t) ∈ C12 ∪ C21

]
= KL(q, p),

and from the optional stopping time theorem and (11),

EΨ[Q] ≤ (s̄+ s+ 1)
2T

n
max{KL(p, q),KL(q, p)}. (12)

In the above inequality, EΨ[Q] is maximized when all the observation budget is used to sample
inter-cluster edges when KL(p, q) < KL(q, p) and intra-cluster edges when KL(p, q) > KL(q, p)
(which corresponds to x∗(p,α)). Markov inequality then implies that:

PΨ{Q > log(M)} ≤ 2T (s̄+ s+ 1) max{KL(p, q),KL(q, p)}
n log(M)

. (13)

However, in view of (2) and of the definitions of s̄ and M , 2T (s̄+s+1) max{KL(p,q),KL(q,p)}
n log(M) cannot

exceed 1− 2ηn. Hence (13) contradicts (10). Therefore, to have less than s mis-classified nodes with
high probability, we need: lim infn→∞

2T ·max{KL(p,q),KL(q,p)}
n log(n/s) ≥ 1.

B Proof of Theorem 1 – Generic SBMs

Notations. Let 1S ∈ {0, 1}n be the binary vector where only the values corresponding to the indices
of elements in S are equal to 1. Let dH(A,B) denote the Hamming distance between A and B.
We denote by Pπ and Eπ the probability and the expectation under a given sampling and clustering
algorithm π.

Proof strategy. Assume that an algorithm π satisfies:

(P1) when |Vi| = αin for all 1 ≤ i ≤ K,

Eπ[d(v,Vj)] = 2xπij
T

n
for all v ∈ Vi for all 1 ≤ i, j ≤ K, (14)

(P2) for all (V1, . . . ,VK) having
√∑K

k=1(αk − |Vk|n )2 ≤ s
n log(ns ) ≤ β,

Pπ
[

1

2

K∑
k=1

dH(1Vk ,1Sπk ) < s

]
≥ 1− ηn, (15)

where (Sπk )1≤k≤K are the clusters returned by the algorithm π and limn→∞ ηn = 0.
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From ηn and the target number of mis-classified nodes, we set γn =
(
log
(
n
s

))−1/4
+
√
ηn and

s̄ = d s+1
γn
e. In the proof, we show that with any algorithm π and xπ ∈ X (α), it is not able to satisfy

both (P1) and (P2) when

2
T

n
·D(p,α) <

1

(1 + γn)4
log
(n
s

)
. (16)

Let i∗ and j∗ be the cluster indices such that
K∑
k=1

xπi∗kKL(pi∗k, pj∗k) = ∆(xπ,p).

Hypothesis testing for clusters i∗ and j∗. Let H0, . . . ,HM be hypotheses defined with different
partitions (V(m)

1 , . . . ,V(m)
K ) satisfying that

(C0) |V(0)
i∗ | = αi∗n− s̄− s− 1, |V(0)

j∗ | = αj∗n+ s̄+ s+ 1, and

|V(0)
k | = αkn for all k /∈ {i∗, j∗},

(C1) V(0)
i∗ ⊂ V

(m)
i∗ and |V(m)

i∗ | = αi∗n+ s̄− s− 1,

(C2) dH(1V(m)

i∗
,1V(l)

i∗
) ≥ 2s̄ for all l 6= m

(C3) V(m)
k = V(0)

k for all k /∈ {i∗, j∗}

Then, we can build this set of hypotheses such that

M ≥
(αj∗n

16es̄

)s̄
. (17)

This is due to the following reason. There are
(
αj∗n+s̄+s+1

2s̄

)
different partitions satisfying (C0), (C1),

and (C3), since we can generate a new partition by moving 2s̄ elements of V(0)
j∗ to V(m)

i∗ . Let the

first partition (V(1)
1 , . . . ,V(1)

K ) be randomly selected among the
(
αj∗n+s̄+s+1

2s̄

)
possible partitions.

For the given (V(1)
1 , . . . ,V(1)

K ), there are at most
∑s̄
l=1

(
2s̄
l

)(αj∗n−s̄+s+1
l

)
partitions satisfying (C0),

(C1), and (C3), but not (C2). After removing all the partitions violating (C2) with respect to the first
partition, we randomly select the second partition and then remove all the partitions violating (C2)
with respect to the second partition. In this manner, we can iteratively generate M partitions with

M ≥
(
αj∗n+s̄+s+1

2s̄

)∑s̄
l=1

(
2s̄
l

)(αj∗n−s̄+s+1
l

)
(a)

≥

(
αj∗n+s̄+s+1

2s̄

)2s̄

∑s̄
l=1

(
2s̄
l

)(αj∗n−s̄+s+1
l

)
≥

(αj∗n
2s̄

)2s̄∑s̄
l=0

(
2s̄
l

)(αj∗n
l

)
(b)

≥
(αj∗n

2s̄

)2s̄
22s̄
( eαj∗n

s̄

)s̄
=
(αj∗n

16es̄

)s̄
, (18)

where (a) is obtained from
(
a
b

)
≥
(
a
b

)b
and (b) is obtained from the facts that

∑s̄
l=0

(
2s̄
l

)
<∑2s̄

l=0

(
2s̄
l

)
= 22s̄ and

(
a
b

)
≤
(
ea
b

)b
for all 0 ≤ b ≤ a.

Random graph models. Let Φ be the SBM model corresponding to the partition of H0,
(V(0)

1 , . . . ,V(0)
K ), and Ψ(m) be the SBM model with partition (Ṽ(m)

1 , · · · , Ṽ(m)
K ) such that

V(0)
i∗ ⊂ Ṽ

(m)
i∗ ⊂ V(m)

i∗ and |Ṽ(m)
i∗ | = αi∗n. (19)
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Let PΦ and PΨ(m) be the probability measures under the models Φ and Ψ(m), respectively. We
analogously denote by EΦ and EΨ(m) the expectations under Φ and Ψ(m).

From the clustering algorithm π, we can build a simple hypothesis test as follows:

f(Sπi∗) = arg min
m∈{0,1,...,M}

dH(1V(m)

i∗
,1Sπ

i∗
).

Note that the partition vector of (Ṽ(m)
1 , . . . , Ṽ(m)

K ) is α and the partition vector of (V(m)
1 , . . . ,V(m)

K )

is α′ satisfying ‖α−α′‖2 = s̄+s+1
n

√
2 ≤ s

n log
(
n
s

)
. Thus, we have

PΦ[f(Sπi∗) = 0] ≥ 1− ηn, and PΨ(m) [f(Sπi∗) = m] ≥ 1− ηn for all 1 ≤ m ≤M, (20)

since the number of mis-classified nodes is less than s with probability at least 1− ηn from (15); and
the condition (C2) and the definition of Ψ(m) in (19) imply that f(Sπi ) = 0 under Φ and f(Sπi ) = m
under Ψ(m) when the number of mis-classified nodes is less than s.

The log-likelihood ratio and its connection to the error probability of the hypothesis test. Let
m∗ = arg minm∈{1,...,M} PΦ[f(Sπi∗) = m]. Then, from (20),

PΦ[f(Sπi∗) = m∗] ≤ ηn
M
. (21)

In what follows, we derive the log-likelihood ratio of the observations between Φ and Ψ(m∗) and
explain its connection to the error probability.

Let (Ṽ1, . . . , ṼK) be the partition under Ψ(m∗). Let y(t) and e(t) denote the observed value and the
observed edge at the t-th observation, respectively. Let Ck = {(v, w) ∈ (Ṽi∗ \ V(0)

i∗ ) × Ṽk}. We
introduce Q, referred to as the pseudo-log-likelihood ratio of the observations under PΦ and PΨ(m∗) )
as follows:

Q =

T∑
t=1

K∑
k=1

1(e(t) ∈ Ck)

(
y(t) log

pi∗k
pj∗k

+ (1− y(t)) log
1− pi∗k
1− pj∗k

)
. (22)

We have:

PπΨ(m∗){Q ≤ log(M)}
=PπΨ(m∗){Q ≤ log(M), f(Sπi∗) = m∗}+ PπΨ(m∗){Q ≤ log(M), f(Sπi∗) 6= m∗}. (23)

We get:

PπΨ(m∗){Q ≤ log(M), f(Sπi∗) = m∗} =

∫
{Q≤log(M),f(Sπ

i∗ )=m∗}
dPπΨ(m∗)

=

∫
{Q≤log(M),f(Sπ

i∗ )=m∗}
exp(Q)dPπΦ

≤ exp(log(M))PπΦ{Q ≤ log(M), f(Sπi∗) = m∗}
≤ MPπΦ{f(Sπi∗) = m∗}
≤ ηn, (24)

where the last inequality is obtained from (21).

From (20), we also have:

PπΨ(m∗){Q ≤ log(M), f(Sπi∗) 6= m∗} ≤ PπΨ(m∗){f(Sπi∗) 6= m∗}
≤ ηn. (25)

Combining (23), (24), and (25), we conclude that:

PπΨ(m∗){Q > log(M)} ≥ 1− 2ηn. (26)

Analysis of the log-likelihood ratio. We now show that (26) does not hold when

2
T

n
·D(p,α) <

1

(1 + γn)4
log
(n
s

)
.
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(16) is a necessary condition for (15), since every algorithm π satisfying (15) has to satisfy (26).

Applying Markov inequality,

PπΨ(m∗){Q > log(M)} ≤
Eπ

Ψ(m∗) [Q]

log(M)

≤
2(s̄+ s+ 1)T

∑K
k=1 x

π
i∗kKL(pi∗k, pj∗k)

n log(M)

≤2(s̄+ s+ 1)T ·D(p,α)

n log(M)

≤ 1

(1 + γn)2
, (27)

where the last inequality holds since from the definition of γn,

log(M) ≥ s̄ log
(αj∗n

16es̄

)
≥ 1

1 + γn
s̄ log

(n
s

)
and

s̄+ s+ 1

s̄
≤ 1 + γn.

Thus, we have
PΨ(i∗){Q > log(m)} ≤1− 2γn(1 + o(1)) < 1− 2ηn,

which contradicts (26).

C Proof of Lemmas

C.1 A useful property of the KL divergence

Since d2KL(a,b)
da2 = 1

a(1−a) and 1
max{a,b} ≤

1
x(1−x) ≤ 1

min{a(1−a),b(1−b)} for all x ∈
[min{a, b},max{a, b}], we have

(a− b)2

2 max{a, b}
≤ KL(a, b) ≤ (a− b)2

2 min{a(1− a), b(1− b)}
.

Under (A1) and (A2), therefore, there exist positive constants c1 and c2 such that
c1p ≤ KL(pik, pjk) ≤ c2p for all i, j, k.

C.2 Proof of Lemma 1

Under (A1) and (A2), we have KL(pik, pjk) = O(p) for all i, j, k. For all α and α̃, we deduce
∆(x∗(p,α),p) ≤∆(x′,p) +O(p‖α− α̃‖2)

≤∆(x∗(p, α̃),p) +O(p‖α− α̃‖2),

where x′ = arg minx∈X (α̃) ‖x− x∗(p,α)‖2. Analogously, we have

∆(x∗(p, α̃),p) ≤ ∆(x∗(p,α),p) +O(p‖α− α̃‖2).

Therefore, we have
|∆(x∗(p,α),p)−∆(x∗(p, α̃),p)|

‖α̃−α‖2
=
|D(p,α)−D(p, α̃)|

‖α̃−α‖2
= O (p) .

C.3 Proof of Lemma 2

Assume that the true clusters V1, . . . ,VK are given. Since e(Vi,Vj) is a sum of T independent
Bernoulli random variables, from Chernoff-Hoeffding inequality, for all 1 ≤ i ≤ K

P
{∣∣∣∣4e(Vi,Vi)δT

n(n− 1)

|Vi|(|Vi| − 1)
− pii

∣∣∣∣ ≥ p√
n

}
≤e−

δT
4 ·KL((pii+

p√
n

)
|Vi|(|Vi|−1)

n(n−1)
,pii
|Vi|(|Vi|−1)

n(n−1)
)

+ e
− δT4 ·KL((pii− p√

n
)
|Vi|(|Vi|−1)

n(n−1)
,pii
|Vi|(|Vi|−1)

n(n−1)
)

≤ exp

(
− pT/n

(log(pT/n))2

)
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and for all i, j such that i 6= j,

P
(∣∣∣∣4e(Vi,Vj)δT

n(n− 1)

2|Vi||Vj |
− pij

∣∣∣∣ ≥ p√
n

)
≤e−

δT
4 ·KL((pij+

p√
n

)
2|Vi||Vj |
n(n−1)

,pij
2|Vi||Vj |)
n(n−1)

)
+ e
− δT4 ·KL((pij− p√

n
)

2|Vi||Vj |
n(n−1)

,pij
2|Vi||Vj |
n(n−1)

)

≤ exp

(
− pT/n

(log(pT/n))2

)
,

since KL(p, q) ≥ (p−q)2

2(p+q) .

We now consider |e(Vi,Vj) − e(Si,Sj)|, the error due to the mis-classified nodes in the first step.
Since the observations and the partition from the first step are correlated, we are not able to directly
use concentration inequalities for the sum of independent random variables. We thus define a set
of partitions so that the first step output (S1, . . . ,SK) belongs to the set where the number of mis-
classified nodes is less than n exp

(
−C pT/n

log(pT/n)

)
and then show that all partitions in the set satisfy

|e(Vi,Vj)− e(Si,Sj)| ≤ 2n with high probability. We define the sets as follows:

A =

{
(V ′1, . . . ,V ′K) : ∪Kk=1|Vk \ V ′k| ≤ n exp

(
−C pT/n

log(pT/n)

)}
.

For any given (V ′1, . . . ,V ′K) ∈ A,

P
(∣∣e(Vi,Vj))− e(V ′i,V ′j))∣∣ ≥ 2n

)
≤P
(∣∣e(V ′i \ Vi,Vj) + e(Vi \ V ′i,V ′j)

∣∣ ≥ 2n
)

≤P (e(V ′i \ Vi,Vj)) ≥ n) + P
(
e(Vi \ V ′i,V ′j)) ≥ n

)
≤2 exp

(
−n

6

)
,

where the last inequality is obtained from the Chernoff bound since

E [e(V ′i \ Vi,Vj))] ≤ p
δT

4
exp

(
−C pT/n

log(pT/n)

)
≤ n

2
.

Since
(
a
b

)
≤
(
ea
b

)b
,

|A| ≤
(

n

n exp
(
−C pT/n

log(pT/n)

))Kn exp(−C pT/n
log(pT/n) )

≤

 en

n exp
(
−C pT/n

log(pT/n)

)
n exp(−C pT/n

log(pT/n) )

Kn exp(−C pT/n
log(pT/n) )

= exp

((
CpT

log(pT/n)
+ n(1 + log(K))

)
exp

(
−C pT/n

log(pT/n)

))
From the union bound, we obtain

max
i,j
|e(Vi,Vj))− e(Si,Sj))| ≤ max

(V′1,...,V′K)∈A
max
i,j

∣∣e(Vi,Vj))− e(V ′i,V ′j))∣∣ ≤ 2n

with probability

1− 2|A| exp
(
−n

6

)
≥ 1− exp

(
− n

12

)
.

We conclude that with high probability,

|pij − p̂ij |
pij

= O

(
log(Tp/n)

Tp/n
+

1√
n

)
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C.4 Proof of Lemma 3

Let x′ = arg minx∈X (α̂) ‖x − x∗(p,α)‖2 where ‖A‖2 is the spectral norm of A. When∣∣∪Ki=1Vi \ Si
∣∣ ≤ n exp

(
−C pT/n

log(pT/n)

)
, |pij−p̂ij |pij

= O
(

log(Tp/n)
Tp/n + 1√

n

)
, and pT

n = ω(1),

∆(x∗(p,α),p)
(a)

≤∆(x∗(p,α), p̂) +O(max
i,j
|pij − p̂ij |)

(b)

≤∆(x′, p̂) +O(max
i,j
|pij − p̂ij |+ pmax

i
|αi − α̂i|)

≤∆(x∗(p̂, α̂), p̂) +O(max
i,j
|pij − p̂ij |+ pmax

i
|αi − α̂i|)

(c)

≤∆(x∗(p̂, α̂), p̄) +O(max
i,j
|pij − p̂ij |+ pmax

i
|αi − α̂i|)

≤∆(x∗(p̂, α̂), p̄) +O(p(
log(Tp/n)

Tp/n
+

1√
n

)), (28)

where (a) is obtained from |KL(pik, pjk) − KL(p̂ik, p̂jk)| = O(maxi,j |pij − p̂ij |) since
dKL(a,b)

da = log
(
a(1−b)
b(1−a)

)
and we assume that

∣∣∣log
(
pik(1−pjk)
pjk(1−pik)

)∣∣∣ ≤ κU ; (b) is obtained from the
fact that KL(p̂ik, p̂jk) = O(p) for all i, j, k under (A1); and (c) is obtained from |KL(p̂ik, p̂jk)−
KL(p̄ik, p̄jk)| = O(maxi,j |pij − p̂ij |+ pmaxi |αi − α̂i|).

Analogously, we can show that

∆(x∗(p̂, α̂), p̄) ≤ ∆(x∗(p,α),p) +O(p(
log(Tp/n)

Tp/n
+

1√
n

)). (29)

Since ∆(x∗(p,α),p) = Ω(p) under (A2), from (28) and (29), we have

|∆(x∗(p̂, α̂), p̄)−∆(x∗(p,α),p)|
∆(x∗(p,α),p)

= O(
log(Tp/n)

Tp/n
+

1√
n

).

C.5 Proof of Lemma 4

When v ∈ Si ∩Vi, e(v,Sk) is a sum of independent Bernoulli r.v. with mean p̄ik with 2(1− δ
2 )x̂∗ik

T
n

samples. From the Chernoff-Hoeffding bound, we have

P
(

max
1≤k≤K

∣∣∣∣e(v,Sk)− 2(1− δ

2
)x̂∗ikp̂ik

T

n

∣∣∣∣ ≥ δ

4
p̂
T

n

)
≤

K∑
k=1

P
(∣∣∣∣e(v,Sk)− 2(1− δ

2
)x̂∗ikp̂ik

T

n

∣∣∣∣ ≥ δ

4
p̂
T

n

)

≤
K∑
k=1

P
(∣∣∣∣e(v,Sk)− 2(1− δ

2
)x̂∗ikp̄ik

T

n

∣∣∣∣ ≥ δ

5
p̂
T

n

)

≤
K∑
k=1

(
e
−2(1− δ2 )x̂∗ik

T
nKL(p̄ik+ δp̂

10x̂∗
ik
,p̄ik)

+ e
−2(1− δ2 )x̂∗ik

T
nKL(p̄ik− δp̂

10x̂∗
ik
,p̄ik)

)
≤ exp

(
− pT/n

(log(pT/n))3

)
,
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where the last inequality is obtained from the facts that (a−b)2

2 max{a,b} ≤ KL(a, b) ≤ (a−b)2

2 min{a(1−a),b(1−b)}
and δ = 1

log(pT/n) . From the above inequality and the Markov inequality,

P
{∣∣∣Si \ V̂i∣∣∣ ≥ αin exp

(
− pT/n

(log(pT/n))4

)}
≤P
{
|Si \ Vi|+

∣∣∣(Si ∩ Vi) \ V̂i∣∣∣ ≥ αin exp

(
− pT/n

(log(pT/n))4

)}
≤P
{∣∣∣(Si ∩ Vi) \ V̂i∣∣∣ ≥ αin

2
exp

(
− pT/n

(log(pT/n))4

)}

≤
E
[∣∣∣(Si ∩ Vi) \ V̂i∣∣∣]

αin
2 exp

(
− pT/n

(log(pT/n))4

)
≤ exp

(
− pT/n

2(log(pT/n))3

)
for all 1 ≤ i ≤ K.

When v ∈ Si ∩Vj , e(v,Sk) is a sum of independent Bernoulli r.v. with mean p̄jk with 2(1− δ
2 )x̂∗ik

T
n

samples. From the Chernoff-Hoeffding bound, we have

P
(

max
1≤k≤K

∣∣∣∣e(v,Sk)− 2(1− δ

2
)x̂∗ikp̂ik

T

n

∣∣∣∣ ≤ δ

4
p̂
T

n

)
=

K∏
k=1

P
(∣∣∣∣e(v,Sk)− 2(1− δ

2
)x̂∗ikp̂ik

T

n

∣∣∣∣ ≤ δ

4
p̂
T

n

)

≤
K∏
k=1

exp

− min
q∈(p̂ik− δp̂

4(2−δ)x̂∗
ik
,p̂ik+ δp̂

4(2−δ)x̂∗
ik

)
(2− δ)x̂∗ik

T

n
·KL(q, p̄jk)


≤ exp

(
−

K∑
k=1

2x̂∗ik
T

n
·KL(p̄ik, p̄jk) +O

(
δpT

n

))

≤ exp

(
−2

T

n
·D(p,α) +O

(
δpT

n

))
.

From the above inequality and the Markov inequality, with high probability∣∣∣V̂i \ Vi∣∣∣ ≤ αin exp

(
−2

T

n
·D(p,α) +O

(
δpT

n

))
for all 1 ≤ i ≤ K.

C.6 Proof of Lemma 5

Since |pij−p̂ij |
pij

= O
(

log(Tp/n)
Tp/n + 1√

n

)
from Lemma 2, we have KL( e(v,Sk)

d(v,Sk) , p̂ik) ≥
1
2KL( e(v,Sk)

d(v,Sk) , p̄ik) under (A1) and (A2). From the Chernoff-Hoeffding bound, we deduce

P

{
K∑
k=1

d(v,Sk)KL(
e(v,Sk)

d(v,Sk)
, p̂ik) ≥ d(v,V)DR(p̂, α̂)

}

≤
K∑
k=1

P
{
d(v,Sk)KL(

e(v,Sk)

d(v,Sk)
, p̂ik) ≥ δT

4Kn
exp

(
pT/n

(log(pT/n))4

)
DR(p̂, α̂)

}

≤
K∑
k=1

P
{
d(v,Sk)KL(

e(v,Sk)

d(v,Sk)
, p̄ik) ≥ δT

8Kn
exp

(
pT/n

(log(pT/n))4

)
DR(p̂, α̂)

}
≤2K exp

(
− δT

8Kn
exp

(
pT/n

(log(pT/n))4

)
DR(p̂, α̂)

)
.
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Since we have DR(p̂, α̂) = Ω(p) under (A2) and δ = Ω( 1
log(pT/n) ), the above inequality becomes

P

{
K∑
k=1

d(v,Sk)KL(
e(v,Sk)

d(v,Sk)
, p̂ik) ≥ d(v,V)DR(p̂, α̂)

}
≤ exp

−pT exp
(

pT/n
(log(pT/n))4

)
n log(pT/n)2

 .

Applying Markov inequality, we deduce that this second round additionally generates at most
n exp

(
−pTn exp

(
pT/n

(log(pT/n))5

))
mis-classified nodes with high probability.
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