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A Key Concepts

A.1 Sub-Gaussian Random Variables

Definition 1 (Sub-Gaussian random variable/vector). A random variable y ∈ R with mean µy , E(y)
is sub-Gaussian if there exists some positive constant C such that the tail of y satisfies:

P(|y − µy| ≥ t) ≤ 2 exp(−t2/(2C2)),∀t ≥ 0. (1)

The smallest constant
√

2C satisfying (1) is called the sub-Gaussian norm, or the ψ2-norm of y,
denoted as |||y|||ψ2

. All sub-Gaussian random variables have a finite ψ2-norm. A random vector
z ∈ Rp is sub-Gaussian if z′u is sub-Gaussian for any u ∈ Rp. The ψ2-norm of a vector z is defined
as:

|||z|||ψ2
, sup

u∈Sp
|||z′u|||ψ2

,

where Sp denotes the unit sphere in the p-dimensional Euclidean space.

The sub-Gaussian property (1) describes a class of distributions whose tail decays at least as fast as a
Gaussian; some classical examples include the Gaussian, Bernoulli, and any bounded distribution.
An equivalent property to (1) says the following:

E[exp(λy)] ≤ exp

(
λ2C2

2
+ λµy

)
, ∀λ ∈ R.

The ψ2-norm of a sub-Gaussian random variable is usually related to its standard deviation, and
thus characterizes the random fluctuation embedded in the variable. For example, for a Gaussian
random variable y ∼ N (µy, σ

2), its Moment Generating Function (MGF) is M(λ) , E[exp(λy)] =
exp(λ2σ2/2 + λµy), which implies that its ψ2-norm is just a multiple of σ.

A.2 Gaussian width

Definition 2 (Gaussian width). For any set A ⊆ Rm, its Gaussian width is defined as:

w(A) , E
[

sup
u∈A

u′g
]
,

where g ∼ N (0, I) is an m-dimensional standard Gaussian random vector.
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B Omitted Theorems and Proofs

B.1 Bounding the Estimation Bias

To bound ‖β∗m − β̂m‖2, we present a simplified version of Theorem 3.11 in [1] as follows.

Theorem B.1. Under Assumptions A, B, C, D, E, when the sample size Nm ≥ nm, with probability
at least δm,

‖β∗m − β̂m‖2 ≤ τm.

The parameters nm, δm, τm are related to the Gaussian width of the unit ball in ‖ · ‖∞, the sub-
Gaussian norm of (xm, ym), the eigenvalues of the covariance matrix of (xm, ym), as well as the
geometric structure of the true regression coefficient β∗m. Moreover, τm is decreased as the sample
size increases and the uncertainty embedded in (xm, ym) is reduced.

B.2 Bounding the Distance to the Nearest Neighbors

We will show that the distances between x and its Km nearest neighbors could be upper bounded
probabilistically. All predictors are assumed to be centered, and independent from each other. In
Theorem B.2 we present a lower bound for P(‖x − xm(i)‖W ≤ w̄m, i = 1, . . . ,Km), for any
positive definite diagonal matrix W.

Theorem B.2. Suppose we are given Nm i.i.d. samples (xmi, ymi), i ∈ [Nm], drawn from some
unknown probability distribution with finite fourth moment. Every xmi has independent, centered
coordinates:

E(xmi) = 0, cov(xmi) = diag
(
σ2
m1, . . . , σ

2
mp

)
,∀i ∈ [Nm].

For a fixed predictor x, and any given positive definite diagonal matrix W ∈ Rp×p with diagonal
elements wj , j ∈ [p], and |wj | ≤ B̄2, suppose:

|(xmij − xj)2 − (σ2
mj + x2

j )| ≤ Tm, a.s., ∀i ∈ [Nm], j ∈ [p],

where xmij , xj are the j-th components of xmi and x, respectively. Under the condition that
w̄2
m > B̄2

∑p
j=1(σ2

mj + x2
j ), with probability at least 1− I1−pm0

(Nm −Km + 1,Km),

‖x− xm(i)‖W ≤ w̄m, i ∈ [Km],

where

I1−pm0
(Nm −Km + 1,Km) ,

Nm!

(Km − 1)!(Nm −Km)!

∫ 1−pm0

0

tNm−Km(1− t)Km−1dt,

pm0 = 1− exp

(
−σ

2
m

T 2
m

g
(Tm(w̄2

m/B̄
2 −

∑
j(σ

2
mj + x2

j )
)

σ2
m

))
,

and

σm =

√√√√ p∑
j=1

var
(

(xmij − xj)2
)
, g(u) = (1 + u) log(1 + u)− u.

Proof. To simplify the notation, we will omit the subscript m in all proofs, e.g., using xi and x(i)

for xmi and xm(i), respectively, and N for Nm. Define the event Ai := {‖xi − x‖B̄2I ≤ w̄}. As
long as we can calculate the probability that at least K of Ai, i ∈ [N ], occur, we are able to provide
a lower bound on P(‖x− x(i)‖W ≤ w̄, i ∈ [K]). Note that given x, Ai, i ∈ [N ], are independent
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and equiprobable, since xi, i ∈ [N ], are i.i.d. Based on Bennett’s inequality [5], we have:

P(Ai) = P(‖xi − x‖2B̄2I ≤ w̄
2)

= P
(
B̄2(xi1 − x1)2 + . . .+ B̄2(xip − xp)2 ≤ w̄2

)
= P(t1 + · · ·+ tp ≤ w̄2/B̄2)

= P
(∑

j

(
tj − (σ2

j + x2
j )
)
≤ w̄2/B̄2 −

∑
j

(σ2
j + x2

j )

)

≥ 1− exp

(
− σ

2

T 2
g
(T(w̄2/B̄2 −

∑
j(σ

2
j + x2

j )
)

σ2

))
, p0,

where tj = (xij − xj)2, j ∈ [p]; σ2 =
∑
j var(tj). In the above derivation, we used the fact that tj ,

j ∈ [p], are independent, and |tj − E[tj ]| ≤ T, a.s., ∀j.
Given the lower bound for P(Ai), we can derive a lower bound for the probability that exactly K of
Ai, i ∈ [N ], occur. For a given x, Ai, i ∈ [N ], are independent, and thus,

P(‖x− x(i)‖W ≤ w̄, i ∈ [K]) ≥ P(at least K of Ai, i ∈ [N ] occur)

=

N∑
k=K

(
N

k

)(
P(Ai)

)k(
1− P(Ai)

)N−k
≥

N∑
k=K

(
N

k

)
pk0(1− p0)N−k

= 1− I1−p0(N −K + 1,K),

where I1−p0(N −K + 1,K) is the regularized incomplete beta function defined as I1−p0(N −K +

1,K) , (N −K + 1)
(
N
K−1

) ∫ 1−p0
0

tN−K(1− t)K−1dt. The bound above used the monotonicity of
the binomial tail distribution in the “success” probability.

B.3 Proof of Theorem 2.1

Proof. We omit the subscript m for simplicity. By Theorems B.1 and B.2, we have

|(x− x(i))
′(β∗ − β̂)| = |(x− x(i))

′Ŵ
1
2Ŵ− 1

2 (β∗ − β̂)|

≤ ‖(x− x(i))
′Ŵ

1
2 ‖2‖Ŵ− 1

2 (β∗ − β̂)‖2

≤ w̄τ

b
,

where the second inequality used the fact that ‖Ŵ− 1
2 (β∗ − β̂)‖2 ≤ τ

b if ‖β∗ − β̂‖2 ≤ τ , which
can be verified by the Courant-Fischer Theorem, and the fact that Ŵ is diagonal with elements

β̂2
1 , . . . , β̂

2
p , and |β̂j | ≥ b. Based on the inequality

(∑n
i=1 ai

)2

≤ n
(∑n

i=1 a
2
i

)
, we know:

|(x− x(i))
′β̂| =

∣∣∣ p∑
j=1

β̂j(x− x(i))j

∣∣∣
≤

√√√√p

p∑
j=1

(
β̂j(x− x(i))j

)2

=

√
p(x− x(i))′Ŵ(x− x(i))

≤ √pw̄.
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Therefore,
|(x− x(i))

′β∗| = |(x− x(i))
′(β∗ − β̂) + (x− x(i))

′β̂|

≤ |(x− x(i))
′(β∗ − β̂)|+ |(x− x(i))

′β̂|

≤ w̄τ

b
+
√
pw̄.

Thus, for a given x,

E
[
(ŷ(x)− y(x))2

∣∣∣x,xi]
=

(
1

K

K∑
i=1

(
(x− x(i))

′β∗ + h(x)− h(x(i))
))2

+
η2

K
+ η2

≤
(

1

K

K∑
i=1

(
|(x− x(i))

′β∗|+ |h(x)− h(x(i))|
))2

+
η2

K
+ η2

≤
(
w̄τ

b
+
√
pw̄ +

Lw̄

B̄

)2

+
η2

K
+ η2

(2)

The above bound used both Thms. B.1 and B.2, whose statements hold with probabilities no less than
δ and 1− I1−p0(N −K + 1,K) w.r.t. sampling, respectively. Let A and B the events corresponding
to the statements of Thms. B.1 and B.2 being satisfied. Using bar to denote complement, and the
union bound, it follows that (2) holds with probability

P(A ∩ B) = 1− P(A ∩ B) = 1− P(Ā ∪ B̄) ≥ δ − I1−p0(N −K + 1,K).

The probability bound can be easily derived using Markov’s inequality.

B.4 Proof of Theorem 3.1

Proof. The proof borrows ideas from Theorem 1.5 in [2]. Define Wm , e−ξŷm(x)/
∑M
j=1 e

−ξŷj(x),

and φ ,
∑M
m=1 e

−ξŷm(x)e−ξym(x). Then,

φ =
( M∑
j=1

e−ξŷj(x)
) M∑
m=1

Wme
−ξym(x)

≤
( M∑
j=1

e−ξŷj(x)
) M∑
m=1

Wm

(
1− ξym(x) + ξ2y2

m(x)
)

=
( M∑
j=1

e−ξŷj(x)
)(

1− ξ
M∑
m=1

Wmym(x) + ξ2
M∑
m=1

Wmy
2
m(x)

)

≤
( M∑
j=1

e−ξŷj(x)
)
e−ξ

∑M
m=1Wmym(x)+ξ2

∑M
m=1Wmy

2
m(x),

where the first inequality uses the fact that for x ≥ 0, e−x ≤ 1− x+ x2, and the last inequality is
due to the fact that 1 + x ≤ ex. Next let us examine the sum of exponentials:

M∑
j=1

e−ξŷj(x) ≤
M∑
j=1

(
1− ξŷj(x) + ξ2ŷ2

j (x)
)

= M
(

1− ξ 1

M

M∑
j=1

ŷj(x) + ξ2 1

M

M∑
j=1

ŷ2
j (x)

)
≤Me−ξ

1
M

∑M
j=1 ŷj(x)+ξ2 1

M

∑M
j=1 ŷ

2
j (x).

Using the two bounds above, for any k ∈ [M ], we have

e−ξŷk(x)−ξyk(x) ≤ φ

≤Me
−
ξ
∑M
j=1 ŷj(x)

M +
ξ2

∑M
j=1 ŷ

2
j (x)

M −ξ
M∑
m=1

Wmym(x)+ξ2
M∑
m=1

Wmy
2
m(x)

.

(3)

4



Taking the logarithm on both sides of (3) and dividing by ξ, we obtain

1

M

M∑
m=1

ŷm(x) +

M∑
m=1

e−ξŷm(x)∑
j e
−ξŷj(x)

ym(x) ≤ ŷk(x) + yk(x)

+ ξ

(
1

M

M∑
m=1

ŷ2
m(x) +

M∑
m=1

e−ξŷm(x)∑
j e
−ξŷj(x)

y2
m(x)

)
+

logM

ξ
.

B.5 Proof of Theorem 3.2

Proof. By the sub-Gaussian assumption we have:

P

(∑
k

e−ξŷk(x)∑
j e
−ξŷj(x)

ŷk(x) > xco − T (x)

)
≤ P

(
max
k

ŷk(x) > xco − T (x)
)

= P
(⋃

k

{
ŷk(x) > xco − T (x)

})
≤
∑
k

P
(
ŷk(x) > xco − T (x)

)
≤
∑
k

exp
(
−
(
xco − T (x)− µŷk(x)

)2
2C2

k(x)

)
.

(4)

Note that the probability in (4) is taken with respect to the measure of the training samples. We essen-
tially want to find the largest threshold T (x) such that the probability of the expected improvement
being less than T (x) is small. Given a small 0 < ε̄ < 1 and due to (4), to satisfy

P

(∑
k

e−ξŷk(x)∑
j e
−ξŷj(x)

ŷk(x) > xco − T (x)

)
≤ ε̄,

it suffices to set: ∑
k

exp

(
−
(
xco − T (x)− µŷk(x)

)2
2C2

k(x)

)
≤ ε̄. (5)

A sufficient condition for (5) is:

exp

(
−
(
xco − T (x)− µŷm(x)

)2
2C2

m(x)

)
≤ ε̄

M
, ∀m ∈ [M ],

which yields that,

T (x) ≤ xco − µŷm(x)−
√
−2C2

m(x) log(ε̄/M), ∀m ∈ [M ]. (6)
Given that T (x) is non-negative, we set the largest possible threshold satisfying (6) to:

T (x) = max

(
0, min

m

(
xco − µŷm(x)−

√
−2C2

m(x) log(ε̄/M)
))

.

When using a deterministic policy (ξ →∞), for any m ∈ [M ], we have

P(min
m

ŷm(x) > xco − T (x)) = P
(⋂
m

{
ŷm(x) > xco − T (x)

})
≤ P(ŷm(x) > xco − T (x))

≤ exp
(
−
(
xco − T (x)− µŷm(x)

)2
2C2

m(x)

)
.

Similarly, to make
P
(
min
m

ŷm(x) > xco − T (x)
)
≤ ε̄,

we set:

T (x) = max

(
0, min

m

(
xco − µŷm(x)−

√
−2C2

m(x) log ε̄
))

,

which establishes the desired result.
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C Numerical Experiments Details

C.1 Cohort Selection

The patients that meet the following criteria are included in the hypertension dataset:

• Patients present in the system for at least 1 year;

• Received at least one type of cardiovascular medications, including ACE inhibitors, An-
giotensin Receptor Blockers (ARB), calcium channel blockers, diuretics, α-blockers and
β-blockers, and had at least one medical record 10 days before this prescription.

• Had at least one recorded diagnosis of hypertension (corresponding to the ICD-9 diagnosis
codes 401-405);

• Had at least three measurements of the systolic blood pressure.

C.2 Predictive Performance of Various Models

We use four metrics to evaluate the predictive power of various models on the test set:

• The R-square:

R2(y, ŷ) = 1−
∑Nt
i=1(yi − ŷi)2∑Nt
i=1(yi − ȳ)2

,

where y = (y1, . . . , yNt) and ŷ = (ŷ1, . . . , ŷNt) are the vectors of the true (observed) and
predicted outcomes, respectively, with Nt the size of the test set, and ȳ = (1/Nt)

∑Nt
i=1 yi.

• The Mean Squared Error (MSE):

MSE(y, ŷ) =
1

Nt

Nt∑
i=1

(yi − ŷi)2.

• The Mean Absolute Error (MeanAE) that is more robust to large deviations than the MSE
since the absolute value function increases more slowly than the square function over large
(absolute) values of the argument.

MeanAE(y, ŷ) =
1

Nt

Nt∑
i=1

|yi − ŷi|.

• The MedianAE which can be viewed as a robust measure of the MeanAE, computing the
median of the absolute deviations:

MedianAE(y, ŷ) = Median (|yi − ŷi|, i = 1, . . . , Nt) .

The out-of-sample performance metrics of the various models on the hypertension dataset are shown
in Table 1, where the numbers in the parentheses show the improvement of DRLR informed K-NN
compared against other methods. Huber refers to the robust regression method proposed in [3, 4],
and CART refers to the Classification And Regression Trees. Huber/OLS/LASSO + K-NN means
fitting a K-NN regression model with a Huber/OLS/LASSO-weighted distance metric. We note that
in order to produce well-defined and meaningful predictive performance metrics, the dataset used to
generate Table 1 did not group the patients by their prescriptions. A universal model was fit to all
patients using the prescription as one of the predictors. Nevertheless, it would still be considered as a
fair comparison as all models were evaluated on the same dataset. The results provide supporting
evidence for the validity of our DRLR+K-NN model that outperforms all others in all metrics, and is
thus used for predicting the outcomes of counterfactual treatments.
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