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Abstract

We present a simple yet effective end-to-end trainable deep network with geometry-
inspired convolutional operators for detecting vanishing points in images. Tradi-
tional convolutional neural networks rely on aggregating edge features and do not
have mechanisms to directly exploit the geometric properties of vanishing points
as the intersections of parallel lines. In this work, we identify a canonical conic
space in which the neural network can effectively compute the global geometric
information of vanishing points locally, and we propose a novel operator named
conic convolution that can be implemented as regular convolutions in this space.
This new operator explicitly enforces feature extractions and aggregations along
the structural lines and yet has the same number of parameters as the regular 2D
convolution. Our extensive experiments on both synthetic and real-world datasets
show that the proposed operator significantly improves the performance of vanish-
ing point detection over traditional methods. The code and dataset have been made
publicly available at https://github.com/zhou13/neurvps.

1 Introduction
Vanishing point detection is a classic and important problem in 3D vision. Given the camera
calibration, vanishing points give us the direction of 3D lines, and thus let us infer 3D information of
the scene from a single 2D image. A robust and accurate vanishing point detection algorithm enables
and enhances applications such as camera calibration [10], 3D reconstruction [18], photo forensics
[35], object detection [19], wireframe parsing [48, 49], and autonomous driving [28].

Although there has been a lot of work on this seemingly basic vision problem, no solution seems to
be quite satisfactory yet. Traditional methods (see [46, 27, 41] and references therein) usually first
use edge/line detectors to extract straight lines and then cluster them into multiple groups. Many
recent methods have proposed to improve the detection by training deep neural networks with labeled
data. However, such neural networks often offer only a coarse estimate for the position of vanishing
points [26] or horizontal lines [45]. The output is usually a component of a multi-stage system and
used as an initialization to remove outliers from line clustering. Arguably the main reason for neural
networks’ poor precision in vanishing point detection (compared to line clustering-based methods) is
likely because existing neural network architectures are not designed to represent or learn the special
geometric properties of vanishing points and their relations to structural lines.

To address this issue, we propose a new convolutional neural network, called Neural Vanishing Point
Scanner (NeurVPS), that explicitly encodes and hence exploits the global geometric information of
vanishing points and can be trained in an end-to-end manner to both robustly and accurately predict
vanishing points. Our method samples a sufficient number of point candidates and the network then
determines which of them are valid. A common criterion of a valid vanishing point is whether it
lies on the intersection of a sufficient number of structural lines. Therefore, the role of our network
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is to measure the intensity of the signals of the structural lines passing through the candidate point.
Although this notion is simple and clear, it is a challenging task for neural networks to learn such
geometric concept since the relationship between the candidate point and structural lines not only
depend on global line orientations but also their pixel locations. In this work, we identify a canonical
conic space in which this relationship only depends on local line orientations. For each pixel, we
define this space as a local coordinate system in which the x-axis is chosen to be the direction from
the pixel to the candidate point, so the associated structural lines in this space are always horizontal.

We propose a conic convolution operator, which applies regular convolution for each pixel in this
conic space. This is similar to apply regular convolutions on a rectified image where the related
structural lines are transformed into horizontal lines. Therefore the network can determine how to use
the signals based on local orientations. In addition, feature aggregation in this rectified image also
becomes geometrically meaningful, since horizontal aggregation in the rectified image is identical to
feature aggregation along the structural lines.

Based on the canonical space and the conic convolution operator, we are able to design the convolu-
tional neural network that accurately predicts the vanishing points. We conduct extensive experiments
and show the improvement on both synthetic and real-world datasets. With the ablation studies, we
verify the importance of the proposed conic convolution operator.

2 Related Work
Vanishing Point Detection. Vanishing point detection is a fundamental and yet surprisingly chal-
lenging problem in computer vision. Since initially proposed by [3], researchers have been trying
to tackle this problem from different perspectives. Early researches estimate vanishing points using
sphere geometry [3, 30, 40], hierarchical Hough transformation [36], or the EM algorithms [46, 27].
Researches such as [43, 33, 4, 1] use the Manhattan world assumptions [12] to improve the accuracy
and the reliability of the detection. [2] extends the mutual orthogonality assumption to a set of mutual
orthogonal vanishing point assumption (Atlanta world [37]).

The dominant approach is line-based vanishing point detection algorithms, which are often divided
into several stages. Firstly, a set of lines are detected [8, 42]. Then a line clustering algorithm [32]
are used to propose several guesses of target vanishing point position based on geometric cues. The
clustering methods include RANSAC [5], J-linkage [41], Hough transform [20], or EM [46, 27]. [50]
uses contour detection and J-linkage in natural scenes but only one dominate vanishing point can be
detected. Our method does not rely on existing line detectors, and it can automatically learn the line
features in the conic space to predict any number of vanishing points from an image.

Recently, with the help of convolutional neural networks, the vision community has tried to tackle the
problem from a data-driven and supervised learning approach. [9, 6, 47] formulate the vanishing point
detection as a patch classification problem. They can only detect vanishing points within the image
frame. Our method does not have such limitation. [45] detects vanishing points by first estimating
horizontal vanishing line candidates and score them by the vanishing points they go through. They
use an ImageNet pre-trained neural network that is fine-tuned on Google street images. [26] uses
inverse gnomonic image and regresses the sphere image representation of vanishing point. Both work
rely on traditional line detection algorithms while our method learns it implicitly in the conic space.

Structured Convolution Operators. Recently more and more operators are proposed to model
spatial and geometric properties in images. For instance the wavelets based scattering networks
(ScatNet) [7, 39] are introduced to ensure certain transform (say translational) invariance of the
network. [22] first explores geometric deformation with modern neural networks. [14, 23] modify the
parameterization of the global deformable transformation into local convolution operators to improve
the performance on image classification, object detection, and semantic segmentation. More recently,
structured and free-form filters are composed [38]. While these methods allow the network to learn
about the space where the convolution operates on, we here explicitly define the space from first
principle and exploit its geometric information. Our method is similar to [22] in the sense that we
both want to rectify input to a canonical space. The difference is that they learn a global rectification
transformation while our transformation is local. Different from [14, 23], our convolutional kernel
shape is not learned but designed according to the desired geometric property.

Guided design of convolution kernels in canonical space is well practiced for irregular data. For
spherical images, [11] designs operators for rotation-invariant features, while [24] operates in the
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Figure 1: Illustration of sampled locations of 3 × 3 conic con-
volutions. The bright yellow region is the output pixel and v
stands for the vanishing point. Upper and lower figures illus-
trate the cases when the vanishing point is outside and inside the
image, respectively.

3x3, 64/128/256/256, Conic Conv
(BN, ReLU)

3x3, stride 2 
Max Pooling

x4

1x1, 32, Conv
(BN, ReLU)

1024, FC
(ReLU)

Hourglass Backbone

Image

R, FC
(Sigmoid)

1024, FC
(ReLU)

Vanishing Points

Output

Figure 2: Illustration of the overall network structure. The num-
ber of each convolutional block is the kernel size and output
dimension respectively. The number of fully connected layer
block is the output dimension. The kernel size of Max Pooling
layer is 3 and stride is 2. Batch normalization and ReLU acti-
vation are appended after each conv/fc layer except the last one
use sigmoid as activation.

space defined by longitude and latitude, which is more meaningful for climate data. In 3D vision,
geodesic CNN [31] adopts mesh convolution with the spherical coordinate, while TextureNet [21]
operates in a canonical space defined by globally smoothed principal directions. Although we are
dealing with regular images, we observe a strong correlation between the vanishing point and the
conic space, where the conic operator is more effective than regular 2D convolution.

3 Methods

3.1 Overview

Figure 2 illustrates the overall structure of our NeurVPS network. Taken an image and a vanishing
point as input, our network predicts the probability of a candidate being near a ground-truth vanishing
point. Our network has two parts: a backbone feature extraction network and a conic convolution
sub-network. The backbone is a conventional CNN that extracts semantic features from images.
We use a single-stack hourglass network [34] for its ability to possess a large receptive field while
maintaining fine spatial details. The conic convolutional network (Section 3.4) takes feature maps
from the backbone as input and determines the existence of vanishing points around candidate
positions (as a classification problem). The conic convolution operators (Section 3.3) exploit the
geometric priors of vanishing points, and thus allow our algorithm to achieve superior performance
without resorting to line detectors. Our system is end-to-end trainable.

Due to the classification nature of our model, we need to sample enough number of candidate points
during inference. It is computationally infeasible to directly sample sufficiently dense candidates.
Therefore, we use a coarse-to-fine approach (Section 3.5). We first sample Nd points on the unit
sphere and calculate their likelihoods of being the line direction (Section 3.2) of a vanishing point
using the trained neural network classifier. We then pick the top K candidates and sample another Nd

points around each of their neighbours. This step is repeated until we reach the desired resolution.

3.2 Basic Geometry and Representations of Vanishing Points

The position of a vanishing point encodes the line 3D direction. For a 3D ray described by o + λd in
which o is its origin and d is its unit direction vector, its 2D projection on the image is

z

[
px
py
1

]
=

[
f 0 cx

f cy
1

]
︸ ︷︷ ︸

K

·(o + λd), (1)
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Figure 3: Illustration of vanishing points’ Gaussian sphere representation of an image from the SU3
wireframe dataset [49] and our multi-resolution sampling procedure in the coarse-to-fine inference.
In the right three figures, the red triangles represent the ground truth vanishing points and the dots
represent the sampled locations.

where px and py are the coordinates in the image space, z is the depth in the camera space, K
is the calibration matrix, f is the focal length, and [cx, cy]T ∈ R2 is the optical center of the
camera. The vanishing point is the point with λ→∞, whose image coordinate is v = [vx, vy]T :=
limλ→∞[px, py]T ∈ R2. We can then derive the 3D direction of a line in term of its vanishing point:

d = [vx − cx vy − cy f ]
T ∈ R3. (2)

In the literature, a normalized line direction vector d is also called the Gaussian sphere representation
[3] of the vanishing point v. The usage of d instead of v avoids the degenerated cases when
d is parallel to the image plane. It also gives a natural metric that defines the distance between
two vanishing points, the angle between their normalized line direction vectors: arccos |dTi dj | for
two unit line directions di,dj ∈ S2. Finally, sampling vanishing points with the Gaussian sphere
representation is easy, as it is equivalent to sampling on a unit sphere, while it remains ambiguous
how to sample vanishing points directly in the image plane.

3.3 Conic Convolution Operators in Conic Space

In order for the network to effectively learn vanishing point related line features, we want to apply
convolutions in the space where related lines can be determined locally. We define the conic space
for each pixel in the image domain as a rotated regular local coordinate system where the x-axis is the
direction from the pixel to the vanishing point. In this space, related lines can be identified locally by
checking whether its orientation is horizontal. Accordingly, we propose a new convolution operator,
named conic convolution, which applies the regular convolution in this conic space. This operator
effectively encodes global geometric cues for classifying whether a candidate point (Section 3.6) is a
valid vanishing point. Figure 1 illustrates how this operator works.

A 3× 3 conic convolution takes the input feature map x and the coordinate of convolution center v
(the position candidates of vanishing points) and outputs the feature map y with the same resolution.
The output feature map y can be computed with

y(p) =

1∑
δx=−1

1∑
δy=−1

w(δx, δy) · x(p + δx · t + δy ·Rπ
2
t), where t :=

v − p

‖v − p‖2
∈ R2. (3)

Here p ∈ R2 is the coordinates of the output pixel, w is a 3 × 3 trainable convolution filter,
Rπ

2
∈ R2×2 is the rotational matrix that rotates a 2D vector by 90◦ counterclockwise, and t is the

normalized direction vector that points from the output pixel p to the convolution center v. We use
bilinear interpolation to access values of x at non-integer coordinates.

Intuitively, conic convolution makes edge detection easier and more accurate. An ordinary convolution
may need hundreds of filters to recognize edge with different orientations, while conic convolution
requires much less filters to recognize edges aligning with the candidate vanishing point because
filters are firstly rotated towards the vanishing point. The strong/weak response (depends on the
candidate is positive/negative) will then be aggregated by subsequent fully-connected layers.

3.4 Conic Convolutional Network

The conic convolutional network is a classifier that takes the image feature map x and a candidate
vanishing point position v̂ as input. For each angle threshold γ ∈ Γ, the network predicts whether
there exists a real vanishing point v in the image so that the angle between the 3D line directions v
and v̂ is less than the threshold γ. The choice of Γ will be discussed in Section 3.5.

4



Figure 2 shows the structure diagram of the proposed conic convolutional network. We first reduce
the dimension for the feature map from the backbone to save the GPU memory footprint with an
1 × 1 convolution layer. Then 4 consecutive conic convolution (with ReLU activation) and max-
pooling layers are applied to capture the geometric information at different spatial resolutions. The
channel dimension is increased by a factor of two in each layer to compensate the reduced spatial
resolution. After that, we flatten the feature map and use two fully connected layers to aggregate the
features. Finally, a sigmoid classifier with binary cross entropy loss is applied on top of the feature to
discriminate positive and negative samples with respect to different thresholds from Γ.

3.5 Coarse-to-fine Inference

o

φrn

nr

n⊥r,2

n⊥r,1
drn

−θrn

Figure 4: Illustration of the variables
used in uniform spherical cap sampling.

With the backbone and the conic convolutional network, we
can compute the probability of vanishing point over the hemi-
sphere of the unit line direction vector d̂ ∈ S2, as shown in
Figure 3. We utilize a multi-resolution strategy to quickly
pinpoint the location of the vanishing points. We use R rounds
to search for the vanishing points. In the r-th round, we uni-
formly sample Nd line direction vectors on the surface of the
unit spherical cap with direction nr and polar angle γr using
the Fibonacci lattice [17]. Mathematically, the n-th sampled
line direction vector can be written as

drn = cosφrnnr + sinφrn(cos θrnn
⊥
r,1 + sin θrnn

⊥
r,2),

φrn := arccos
(
1 + (cosαr − 1) ∗ n/Nd

)
,

θrn := (1 +
√

5)πn,

in which n⊥r,1 and n⊥r,2 are two arbitrary orthogonal unit vectors that are perpendicular to nr, as shown
in Figure 4. We initialize n1 ← (0, 0, 1) and γ1 ← π. For the round r + 1, we set the threashold
γr+1 ← ρmaxw∈S2 minn arccos | 〈w,drn〉 | and nr+1 to the drn whose vanishing point obtains the
best score from the conic convolutional network classifier with angle threshold γ = γr+1. Here, ρ is
a hyperparameter controlling the distance between two nearby spherical caps. Therefore, we set the
threshold set Γ in Section 3.3 to be {γr+1 | r ∈ {1, 2, . . . , R}} accordingly.

The above process detects a single dominant vanishing point in a given image. To search for more
than one vanishing point, one can modify the first round to find the best K line directions and use the
same process for each line direction in the remaining rounds.

3.6 Vanishing Point Sampling for Training

During training, we need to generate positive samples and negative samples. For each ground-truth
vanishing point with line direction d and threshold γ, we sample N+ positive vanishing points
and N− negative vanishing points. The positive vanishing points are uniformly sampled from
S+ = {w | w ∈ S2 : arccos | 〈w,d〉 | < γ} and the negative vanishing points are uniformly
sampled from S− = {w | w ∈ S2 : γ < arccos | 〈w,d〉 | < 2γ}. In addition, we sample N∗
random vanishing points for each image to reduce the sampling bias. The line directions of those
vanishing points are uniformly sampled from the unit hemisphere.

4 Experiments

4.1 Datasets and Metrics

We conduct experiments on both synthetic [49] and real-world [50, 13] datasets.

Natural Scene [50]. This dataset contains images of natural scenes from AVA and Flickr. The
authors pick the images that contain only one dominating vanishing point and label their locations.
There are 2,275 images in the dataset. We divide them into 2,000 training images and 275 test images
randomly. Because this dataset does not contain the camera calibration information, we set the focal
length to the half of the sensor width for vanishing point sampling and evaluation. Such focal length
simulates the wide-angle lens used in landscape photography.

ScanNet [13]. ScanNet is a 3D indoor environment dataset with reconstructed meshes and RGB
images captured by mobile devices. For each scene, we find the three orthogonal principal directions
for each scene which align with most of the surface normals and use them to compute the vanishing
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points for each RGB image. We split the dataset as suggested by ScanNet v2 tasks, and train the
network to predict the three vanishing points given the RGB image. There are 266,844 training
images. We randomly sample 500 images from the validation set as our test set.

SU3 Wireframe [49]. The “ground-truth” vanishing point positions in real world datasets are often
inaccurate. To systematically evaluate the performance of our algorithm, we test our method on the
recent synthetic SceneCity Urban 3D (SU3) wireframe dataset [49]. This photo-realistic dataset is
created with a procedural building generator, in which the vanishing points are directly computed
from the CAD models of the buildings. It contains 22,500 training images and 500 validation images.

Evaluation Metrics. Previous methods usually use horizon detection accuracy [2, 29, 45] or pixel
consistency [50] to evaluate their method. These metrics are indirect for this task. To better understand
the performance of our algorithm, we propose a new metric, called angle accuracy (AA). For each
vanishing point from the predictions, we calculate the angle between the ground-truth and the
predicted one. Then we count the percentage of predictions whose angle difference is within a
pre-defined threshold. By varying different thresholds, we can plot the angle accuracy curves. AAθ

is defined as the area under the curve between [0, θ] divided by θ. In our experiments, the upper
bound θ is set to be 0.2◦, 0.5◦, and 1.0◦ on the synthetic dataset and 1◦, 2◦, and 10◦ on the real
world dataset. Two angle accuracy curves (coarse and fine level) are plotted for each dataset. Our
metric is able to show the algorithm performance under different precision requirements. For a fair
comparison, we also report the performance in pixel consistency as in the dataset paper [50].

4.2 Implementation Detail

We implement the conic convolution operator in PyTorch by modifying the “im2col + GEMM”
function according to Equation (3), similar to the method used in [14]. Input images are resized to
512× 512. During training, the Adam optimizer [25] is used. Learning rate and weight decay are set
to be 4 × 10−4 and 1 × 10−5, respectively. All experiments are conducted on two NVIDIA RTX
2080Ti GPUs, with each GPU holding 6 mini-batches. For synthetic data [49], we train 30 epochs
and reduce the learning rate by 10 at the 24-th epoch. We use ρ = 1.2, N+ = N− = 1 and N∗ = 3.
For the Natural Scene dataset, we train the model for 100 epochs and decay the learning rate at 60-th
epoch. For ScanNet [13], we train the model for 3 epochs. We augment the data with horizontal flip.
We set Nd = 64 and use RSU3 = 5, RNS = 4, and RSN = 3 in the coarse-to-fine inference for the
SU3 dataset, the Natural Scene dataset, and the ScanNet dataset, respectively. During inference, the
results from the backbone network can be shared so only the conic convolution layers need to be
forwarded multiple times. Using the Nature Scene dataset as an example, we conduct 4 rounds of
coarse-to-fine inference, in each of which we sample 64 vanishing points. So we forward the conic
convolution part 256 times for each image during testing. The evaluation speed is about 1.5 vanishing
points per second on a single GPU.

4.3 Ablation Studies on the Synthetic Dataset
AA0.2◦ AA0.5◦ AA1.0◦ mean median

LSD [16] 27.9 47.9 61.5 3.89◦ 0.21◦

REG 2.2 6.5 15.0 2.07◦ 1.48◦

CLS 2.2 9.1 23.7 1.77◦ 0.99◦

Conic×2 10.5 28.9 50.3 0.78◦ 0.43◦

Conic×4 47.5 74.2 86.3 0.15◦ 0.09◦

Conic×6 49.1 74.0 86.2 0.14◦ 0.09◦

Table 1: Ablation study of our method. “REG” denotes
the baseline that directly regress line direction in the
camera space. “CLS” denotes the baseline that do van-
ishing point classification using image feature and its
coordinate. Conic×K denotes our methods with varying
number of conic convolution layers.

Comparison with Baseline Methods. We
compare our method with both traditional line
detection based methods and neural network
based methods. The sample images and results
can be found in Figure 3 and supplementary ma-
terials. For line-based algorithms, the LSD with
J-linkage clustering [42, 41, 16] probably is the
most widely used method for vanishing point
detection. Note that LSD is a strong competi-
tor on the synthetic SU3 dataset as the images
contain many sharp edges and long lines.

We aim to compare pure neural network meth-
ods that only rely on raw pixels. Existing meth-
ods such as [9, 15, 6] can only detect vanishing
points inside images. [45, 26] rely on an external line map as initial inputs. To the best of our
knowledge, there is no existing pure neural network methods that are general enough to handle our
case. Therefore, we propose two intuitive baselines. The first baseline, called REG, is a neural
network that direct regresses value of d using chamfer-`2 loss, similar to [49]. We change all the
conic convolutions to traditional 2D convolutions to make the numbers of parameters be the same.
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Figure 5: Angle accuracy curves for different methods on the SU3 wireframe dataset [49].
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Figure 6: Angle accuracy curves for different methods on the Natural Scene dataset [50].
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Figure 7: Angle accuracy curves for different methods on the ScanNet dataset [13].

7



The second baseline, called CLS, uses our fine-to-coarse classification approach. We change all the
conic convolutions to their traditional counterparts, and concatenate d to the feature map right before
feeding it to the NeurVPS head to make the neural network aware of the position of vanishing points.

The results are shown in Table 1 and Figure 5. By utilizing the geometric priors and large-scale
training data, our method significantly outperforms other baselines across all the metrics. We note
that, compared to LSD, neural network baselines perform better in terms of mean error but much
worse for AA. This is because line-based methods are generally more accurate, while data-driven
approaches are more unlikely to produce outliers. This phenomenon is also observed in Figure 5b,
where neural network baselines achieve higher percentage when the angle error is larger than 4.5◦.

Effect of Conic Convolution. We now examine the effect of different numbers of conic convolution
layers. We test with 2/4/6 conic convolution layers, denoted as Conic×2/4/6, respectively. For
Conic×2, we only keep the last two conic convolutions and replace others as their plain counterparts.
For Conic×6, we add two more conic convolution layers at the finest level, without max pooling
appended. The results are shown in Table 1 and Figure 5. We observe that the performance keeps
increasing when adding more conic convolutions. We hypothesize that this is because stacking
multiple conic convolutions enables our model to capture higher order edge information and thus
significantly increase the performance. The performance improvement saturates at Conic×6.

4.4 NeurVPS on the Real World Datasets
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Figure 8: Consistency measure on
the Nature Scene dataset [50].

Natural Scene [50] We validate our method on real world datasets
to test its effectiveness and generalizability. The results of angle
accuracy on the Natural Scene dataset [50] are shown in Table 2
and Figure 6. We also compare the performance in the consistency
measure, a metric used by the baseline method (a contour-based
clustering algorithm, labeled as vpdet) in the dataset paper [50] in
Figure 8. Our method outperforms this strong baseline algorithm
vpdet by a fairly large margin in term of all metrics. Our exper-
iment also shows that the naive CNN baselines under-perform
vpdet until the angle tolerance is around 4◦. This is consistent
with the results from [50], in which vpdet is better than the pre-
vious deep learning method [45] in the region that requires high
precision. Such phenomena indicates that our geometry-aware network is able to accurately locate
vanishing points in images, while naive CNNs can only roughly determine vanishing points’ position.

AA1◦ AA2◦ AA10◦ mean median

REG 2.4 9.9 58.8 5.09◦ 3.20◦

CLS 4.4 14.5 62.4 5.80◦ 2.79◦

vpdet [50] 18.5 33.0 60.0 12.6◦ 1.56◦

Ours 29.1 50.3 85.5 1.83◦ 0.87◦

Table 2: Performance of algorithms on the Natural Scene
dataset [50]. vpdet is the method from the dataset paper.

AA1◦ AA2◦ AA10◦ mean median

LSD [16] 1.7 5.4 24.8 12.6◦ 11.8◦

REG 1.5 5.1 45.1 6.9◦ 5.0◦

CLS 2.0 8.1 55.9 5.3◦ 3.6◦

Ours 3.4 11.5 61.7 4.5◦ 3.0◦

Table 3: Performance of algorithms on ScanNet [13].

ScanNet [13] The results on the ScanNet
dataset [13] are shown in Table 3 and Figure
7. For baseline of traditional methods, we only
compare our method with LSD + J-linkage be-
cause other methods such as [50] are not directly
applicable when there are three vanishing points
in a scene. Our results reduced the mean and
median error by 6 and 4 times, respectively. The
angle accuracy also improves by a large mar-
gin. The ScanNet [13] is a large dataset, so both
CLS and REG works reasonable good. How-
ever, because the traditional convolution cannot
fully exploit the geometry structure of vanish-
ing points, the performance of those baseline
algorithms is worse than the performance of our
conic convolutional neural network. It is also
worth mentioning that errors of ground truth
vanishing points of the ScanNet dataset are quite large due to the inaccurate 3D reconstruction
and budget capture devices, which probably is the reason why the performance gap between conic
convolutional networks and traditional 2D convolutional networks is not so significant.

One drawback of our data-driven method is the need of large amount of training data. We do not
evaluate our method on datasets such as YUD [15], ECD [2], and HLW [44] because there is no
suitable public dataset for training. In the future, we will study how to exploit geometric information
under unsupervised or semi-supervised settings hence to alleviate the data scarcity problem.
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