
We thank the three reviewers for their constructive comments. The following are our responses to reviewers’ comments.1

—To Reviewer #1—2

Re. the notion of orthonormality: When we designed our method, we followed the original forms of existing metric3

learning models and thus did not use the additional orthonormality constraints. Actually, metric learning aims to find4

embedding directions (see Fig. 1 in our paper) so that the resulting metric can faithfully preserve the intrinsic distances5

of data pairs. The directions with necessarily high variations for the subsequent classification are usually favored by6

many dimension reduction techniques such as PCA.7

Re. simplifying derivations and proofs: As the reviewer suggested, in the final paper, we will try our best to simplify8

the derivations of gradients, and carefully expand the proofs to make them easier to understand.9

Re. the complexity, runtime, and code release: The matrix multiplication complexities of Eq. (14) and Eq. (16) are10

O(c2hmd) and O(Lchmd), respectively. Here h and d are the batch-size and data dimension correspondingly, and the11

constants c and L are independent of the size of datasets. Since the measurer line number m is always set to be smaller12

than d, the total complexity of our algorithm is O(hd2), which is the same as most of the baseline methods. The results13

of CPU hours (Core Duo 2.93GHz desktop with 16G RAM) on MVS dataset (105 training pairs and 104 test pairs) are14

presented in Table I, which show that our method requires comparable runtime with existing methods. We will release15

the code if this paper is accepted.16

Table I: Runtime comparisons.

Methods Training Test
LMNN 2.35h 0.12h
ITML 1.96h 0.12h
DDML 3.65h 0.18h
PML 1.92h 0.15h
ODML 2.12h 0.12h
BDML 2.69h 0.12h
CDML 2.59h 0.16h

Table II: Classification error rates (%) (lower is better) and verification AUC values (higher is better) of compared methods.

Methods Classification Tasks Verification Tasks
Letter Autompg Australia Glass Balance Segment Pub. LFW MVS

Npairs 4.32±0.51• 25.94±3.64• 16.32±0.12• 27.29±0.24• 9.09±0.12• 7.13±2.32• 90.1 87.9 73.7
Angular 3.55±0.61• 23.24±0.73• 15.32±2.56 28.12±0.23• 8.19±0.64• 6.19±3.64• 91.6 88.8 72.4
DAML 3.21±0.66• 22.23±0.61• 17.09±1.14• 24.12±3.54 9.03±0.64• 4.03±0.89• 91.5 88.1 76.6
Hard-Aware 3.11±0.23• 22.92±1.14• 16.32±1.14• 22.09±5.64 8.14±1.02 5.24±2.65• 91.9 88.5 73.2
CDML 2.09±0.64 15.32±6.11 12.22±2.54 22.12±4.64 5.01±2.64 1.23±0.32 92.4 89.1 77.1

—To Reviewer #2—17

Re. the interpretation should be regarded as a good motivation: Thanks for your suggestions. We will modify our18

claim on interpretation (i.e., Line 101) from the viewpoint of motivation. “which might be more intuitive than the19

previous interpretations.” −→ “which offers a clear way to handle the nonlinear data with geometric structures.”20

Re. more recent baselines and DDML training details: As the reviewer suggested, we add new experiments for21

comparing the baseline methods “Npairs Loss” and “Angular Loss” reported in “Making Classification Competitive22

for Deep Metric Learning”(arXiv 2018, recommended by the reviewer). We also add two latest baselines “Deep23

Asymmetric Metric Learning(DAML) via Rich Relationship Mining”(CVPR 2019) and “Hardness-Aware Deep Metric24

Learning”(CVPR 2019) for further comparisons. The six classification datasets and three verification datasets in our25

paper are used here. Table II lists the error rates on classification tasks (“•” denotes a significantly better result at the26

significance level 0.05) and AUC values on verification tasks for various methods. Obviously, our CDML outperforms27

the recent baselines in most cases. We believe that the above new results further improve the fairness and sufficiency of28

our experiments, and we will duly add them in our final paper. For the training of DDML details, the regularization29

parameter λwas tuned via searching the grid {10−2, 10−1, 1, 10, 102} by observing the model performance on validation30

set. Other configurations such as network architectures, weight initializations, and SGD-related parameters were set as31

recommended by the authors of “Discriminative Deep Metric Learning for Face Verification in the Wild”(CVPR 2014).32

—To Reviewer #3—33

Re. the solution and Theorem 2/3: The theoretical analyses on generalization bound usually focus on the ideal case34

when the globally optimal solution is obtained, although the models are nonconvex such as “Learning Latent Space35

Models with Angular Constraints”(ICML 2017) and “Fast Generalization Error Bound of Deep Learning from a Kernel36

Perspective”(ICML 2018). We thus follow such common practice and also discuss the ideal case in our theoretical37

analysis. The globally optimal solution might not be acquired by our method practically due to the non-convexity of38

objective function, and this practical phenomenon is also observed in above prior works.39

Re. discussing tensor A and function B(λ): The tensor A is predefined to smooth and stabilize the learning of40

polynomial coefficients. We can treat it as a constant which restricts the high variations of the learning parameter41

M within a small hypothesis space. In our experiments, A is simply fixed to 0, i.e., using the original Frobenius-42

norm regularizer. For the function B(λ), its expression has been shown in Eq. (B.14) in supplemental materials as43

B(λ)=2EX ,Z(supM∈F(λ)εZ(M)−εX(M))/EX ,Z(supM∈Rm×d×cεZ(M)−εX(M)). This expression reveals that44

when the regularization parameter λ increases, the hypothesis space F(λ) shrinks, so the numerator in the above45

expression decreases (the denominator does not change as it is irrelevant to λ), which further leads to a smaller B(λ)46

and a tighter upper bound. We will add the above discussions in the final paper.47

Re. declaration for “supervised metric learning”: Thanks. We will carefully declare that our paper focuses on48

supervised metric learning in the Introduction section.49




