
Supplementary Materials of Paper #3691

Akinori Tanaka
Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP)

1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN

2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Department of Mathematics, Faculty of Science and Technology, Keio University

3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
akinori.tanaka@riken.jp

Abstract

We provide proofs of theorems used in the main body of the paper first. After that,
we show experimental details and some additional experimental results.

A Proofs

A.1 Proof of Theorem 1

We show a proof of Theorem 1 here by utilizing well known propositions in optimal transport [1, 2].
First, we show the following proposition for later use.

Proposition 1 Suppose π∗ and D∗ are optimal solutions of primal and dual problem respectively,
then the equation ∫

dxdy π∗(x,y)
[
||x− y||2 −

(
D∗(x)−D∗(y)

)]
= 0 (1)

is satisfied.

(Proof) Thanks to the strong duality, we have

E(x,y)∼π∗

[
||x− y||2

]
= Ex∼p

[
D∗(x)

]
− Ey∼pG

[
D∗(y)

]
. (2)

Now, let us remind that π∗(x,y) satisfies the marginality conditions p(x) =
∫
dy π∗(x,y) and

q(y) =
∫
dy π∗(x,y). It means we can replace the (RHS) of (2) by

E(x,y)∼π∗

[
D∗(x)−D∗(y)

]
. (3)

By transposing it to (LHS) of (2), it completes the proof.□
As a corollary of the proposition, we can show the first identity in Theorem 1,

||D∗||Lip = sup
{ |D∗(x)−D∗(y)|

||x− y||2

∣∣∣x ̸= y
}
= 1. (4)

First, let us remind that ||D∗||Lip ≤ 1 is automatically satisfied. It means for arbitrary x and y,[
||x− y||2 − |D∗(x)−D∗(y)|

]
≥ 0 (5)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

is satisfied. Next, −x ≥ −|x| is trivially true for arbitrary x ∈ R. By using this inequality with
x = D∗(x)−D∗(y), we conclude[

||x− y||2 −
(
D∗(x)−D∗(y)

)]
≥ 0. (6)

It means the integrand in the equation (1) is always positive or zero. Then, we can say

π∗(x,y) ̸= 0 ⇒
[
||x− y||2 −

(
D∗(x)−D∗(y)

)]
= 0, (7)

because if not, we cannot cancel its contribution in the integral (1). π∗ is probability density, so there
exists a pair (x,y) satisfying π∗(x,y) ̸= 0, and the pair realizes the absolute gradient 1. As already
noted, D∗ should satisfy ||D∗||Lip ≤ 1, so (7) means there exists two element x and y realizing this
upper bound, i.e. ||D∗||Lip = 1.

The second equation

T (y) = argmin
x

{
||x− y||2 −D∗(x)

}
, (8)

is also proved as a corollary of Proposition 1. But we need to use a help of the assumption in
Theorem 1, i.e. the existence of the deterministic solution T of the Monge’s problem. It means
π∗(x,y) is deterministic by a certain automorphism T and described by Dirac’s delta function1

with respect to x for given y, i.e.

π∗(x,y) ̸= 0 if x = T (y),
π∗(x,y) = 0 otherwise. (9)

Because of ||D∗||Lip = 1,

−D∗(y) ≤ ||x− y||2 −D∗(x) (10)

is satisfied for arbitrary x. On the other hand, thanks to the equality (7),

−D∗(y) = ||T (y)− y||2 −D∗(T (y)) (11)

should be satisfied. It means the (RHS) of (11) is the minimum value of (RHS) of (10), and it
completes the proof of (8).

The third identity

p(x) =

∫
dy δ

(
x− T (y)

)
q(y), (12)

can be got as a corollary of the following proposition.

Proposition 2 If π∗ is the deterministic solution of the primal problem, then it should be represented
by

π∗(x,y) = δ
(
x− T (y)

)
q(y) (13)

with the optimal transport map T : X → X .

(Proof) First of all, because of the assumption (9), π∗ should be proportional to δ(x − T (y)). To
satisfy the marginal conditions of π, we multiply a function of x,y to it:

π∗(x,y) = δ
(
x− T (y)

)
f(x,y). (14)

Thanks to the delta function, however, it is sufficient to take into account f(T−1(y),y) and let us
call it g(y), then

π∗(x,y) = δ
(
x− T (y)

)
g(y). (15)

1 If we do not consider Wasserstein-1 but Wasserstein-2, there is no need to assume the existence of T in
advance and it is called Brenier’s theorem [3].

2

Now, let us consider the marginal condition on y, i.e. integration over x should be equal to q(y):

q(y) =

∫
dx π∗(x,y) =

∫
dx δ

(
x− T (y)

)
g(y) = g(y). (16)

It completes the proof.□

In the above proof, we do not consider taking marginal along y which gives (12) by definition. One
may be suspicious on it. In fact, by directly integrating it over y, we get∫

dy δ
(
x− T (y)

)
q(y) =

q(y)

| det∇yT (y)|

∣∣∣
y=T−1(x)

. (17)

But it is known that the (RHS) actually agree with p(x). Physical meaning of this fact is simple.
Now, let T−1 : X → X is the optimal transportation from p(x) to q(y). The numerator of (17) is
just a map of mass of the probability density, and the denominator corresponds to the Jacobian to
guarantee its integration over x is 1.∫

dx
q(y)

| det∇yT (y)|

∣∣∣
y=T−1(x)

=

∫
d[T (y)]

q(y)

| det∇yT (y)|
=

∫
dy q(y) = 1. (18)

For more detail, see the chapter 11 in [1] for example.

A.2 Proof of Theorem 2

It is sufficient to show

VD(G,D) ≤ Ex∼p

[
D(x)

]
− Ey∼pG

[
D(y)

]
(19)

because the D̃(x) is defined by D̃(x) = D(x)/K. Below, we show this inequality in each case.

Logistic Because of the monotonicity of log,

− log(1 + ea) ≤ − log ea (20)

is satisfied for arbitrary a ∈ R. So the objective VD defined by logistic loss enjoys

VD(G,D) = −Ex∼p

[
log

(
1 + e−D(x)

)]
− Ey∼pG

[
log

(
1 + e+D(y)

)]
≤ −Ex∼p

[
log

(
e−D(x)

)]
− Ey∼pG

[
log

(
e+D(y)

)]
= Ex∼p

[
D(x)

]
− Ey∼pG

[
D(y)

]
. (21)

Hinge On the hinge loss, we use the inequality

min(0, u) ≤ u (22)

as follows.

VD(G,D) = Ex∼p

[
min

(
0,−1 +D(x)

)]
+ Ey∼pG

[
min

(
0,−1−D(y)

)]
≤ Ex∼p

[
− 1 +D(x)

]
+ Ey∼pG

[
− 1−D(y)

]
≤ Ex∼p

[
D(x)

]
− Ey∼pG

[
D(y)

]
. (23)

Gradient penalty The objective function for discriminator in WGAN-GP is

VD(G,D) = Ex∼p

[
D(x)

]
− Ey∼pG

[
D(y)

]
− penalty, (24)

and the penalty term is defined by

penalty = λEx

[∣∣∣∣∣∣∇xD(x)− 1
∣∣∣∣∣∣2] ≥ 0 (25)

for a certain positive value λ which immediately gives the inequality.

3

B Details on experiments

B.1 2d experiment

Training of GAN We use same artificial data used in [4]. 25 gaussians data is generated as
follows. First, we generate 100,000 samples from N (0,(1e-2)·I2×2). After that, we divide
samples to 25 classes of 4,000 sub-samples and rearrange their center to {−4,−2, 0,+2,+4} ×
{−4,−2, 0,+2,+4} ⊂ R2. To make the data variance 1, we divide all sample coordinates by
2.828. Swissroll data is generated by scikit-learn with 100,000 samples with noise=0.25. The swis-
sroll data coordinates are also divided by 7.5.

We only use WGAN-GP in this experiment. The number of update for D is 100 if number of iteration
is less than 25 and 10 otherwise per one update for G. We apply Adam with (α, β1, β2) = (1e-
4, 0.5, 0.9) to both of G and D. Under these setup, we train WGAN-GP 20k times with batchsize
256. We summarize the structure of our models in Table 1.

z ∼ U([−1, 1]2)

dense → 256 lReLU
dense → 256 lReLU
dense → 256 lReLU

dense → 2
(i) Generator

2d vector x ∈ R2

dense → 512 lReLU
dense → 512 lReLU
dense → 512 lReLU

dense → 1
(ii) Discriminator

Table 1: GAN architecture in 2d experiment.

DOT First, we calculate the Keff. We draw 100 pairs of independent samples (x,y) from pG for
calculating their gradient by l2-norm, and take the maximum gradient as Keff. In the experiment, we
run 10 independent trials and take mean value. Actual values of Keff are 1.68 for 25 gaussians and
1.34 for swissroll in the experiment.

To apply the target space DOT shown in Algorithm 1, we use Adam optimizer with (α, β1, β2) =
(0.01, 0, 0.9) for searching x in both of DOT and Naive transports. We run the gradient descent 100
times, and calculate the Earth-Mover’s distance (EMD) between randomly chosen 1,000 training
samples and 1,000 generated samples by each method. We repeat this procedure 100 times, and get
the mean value and std of the EMD.

EMD Earth Mover’s distance (EMD) can be regarded as a discrete version of the Wasserstein
distance. Suppose {xi}i=1,2,...,N and {yi}i=1,2,...,N are samples on X . EMD is defined by

EMD({xi}, {yj}) = min
π∈Π({xi},{yj})

N∑
i,j=1

πijd(xi, yj), (26)

where π is constraint on

πij ∈ {0, 1

N
},

N∑
i=1

πij =

N∑
j=1

πij =
1

N
. (27)

If we regard samples as discrete approximation of the distribution, EMD measures how two distri-
butions are separated. So if xi and yj are sampled from same distribution, the value is expected to
be close to zero. In our paper, we use python library [5] to calculate it. It used d(x, y) = ||x− y||22
by default.

B.2 Experiments on CIFAR-10 and STL-10

Training of GAN We use conventional CIFAR-10 dataset. On STL-10, we downsize it to 48× 48
instead of using the original size 96× 96. Each pixel is normalized so that it takes value in [−1, 1].

4

On WGAN and SNGAN, we apply 5 updates for D per 1 update of G and use Adam on G and
D with same hyperparameter: (α, β1, β2) = (0.0002, 0.0, 0.9). We use the gradient penalty on
WGAN with λ = 10.0. On SAGAN, we apply “two timescale update rule" [6], i.e. 1 update for
D per 1 update of G, and Adam with (αG, βG

1 , βG
2) = (0.0001, 0.0, 0.9) and (αD, βD

1 , βD
2) =

(0.0004, 0.0, 0.9). Under this setting, we update each GAN 150k times with batchsize 64, except
for ResNet SAGAN on STL-10 which is trained by 240k times in the same setup.

We use conventional DCGAN with or without self-attention (SA) layer and normalized layers by
spectral normalization (SN) and ResNet including SA layer. We use usual DCGAN architecture on
WGAN and SNGAN used in [7]. On SAGAN, we insert a self-attention layer on the layer with 128
channels because it enjoys the best performance within our trials. We show our DCGAN model in
Table 2 and ResNet in Table 3.

z ∼ U([−1, 1]128)

(SN)dense → BN → Mg ×Mg × 512

4× 4, str=2, pad=1, (SN)deconv. BN 256 ReLU

4× 4, str=2, pad=1, (SN)deconv. BN 128 ReLU

(128 SA with 16 channels)

4× 4, str=2, pad=1, (SN)deconv. BN 64 ReLU

3× 3, str=1, pad=1, (SN)deconv. 3 Tanh

(i) Generator

RGB image x ∈ [−1, 1]M×M×3

3× 3, str=1, pad=1, (SN)conv 64 lReLU
4× 4, str=2, pad=1, (SN)conv 128 lReLU

(128 SA with 16 channels)

3× 3, str=1, pad=1, (SN)conv 128 lReLU
4× 4, str=2, pad=1, (SN)conv 256 lReLU

3× 3, str=1, pad=1, (SN)conv 256 lReLU
4× 4, str=2, pad=1, (SN)conv 512 lReLU

3× 3, str=1, pad=1, (SN)conv 512 lReLU
(SN)dense → 1
(ii) Discriminator

Table 2: DCGAN model. In WGAN, we use bare dense, deconv, conv without self-attentions in
both generator and discriminator. In SNGAN, we use SNdense and SNconv in discriminator but bare
dense and deconv in generator without self-attentions. In SAGAN, all SN and SA are turned on. We
use the SA layer defined in Figure 1. We use (Mg,M) = (4, 32) in CIFAR-10, (Mg,M) = (6, 48)
in STL-10.

(width=w, hight=h, channels=c)

��

//

))

“key”
1× 1, 1, 0 SNconv s

→ (w ∗ h, s)

%%JJ
JJ

JJ
J

“query”
1× 1, 1, 0 SNconv s

→ (w ∗ h, s),
transpose

→ (s, w ∗ h)
��

//
“value”

1× 1, 1, 0 SNconv c
→ (w ∗ h, c)

��

matmul,
softmax along
“key” vectors,

transpose,
→ (w ∗ h,w ∗ h)

wwnnn
nnn

n

⊕

��

matmul → (w, h, c)
×β

oo

Figure 1: c self-attention with s channels.

5

z ∼ N(0, I128n×128n)

SNdense → ReLU Mg ×Mg × 128n

SNResBlock up 128n

SNResBlock up 128n

SNResBlock up 128n

128n SA with16n channels

ReLU, BN, 3× 3 (SN)conv, 3 Tanh

(i) Generator

RGB image x ∈ [−1, 1]M×M×3

SNResBlock down1 128

SNResBlock down2 128

SNResBlock down3 128

SNResBlock down3 128
128 SA with 16 channels

ReLU, SNdense → 1

(ii) Discriminator

Table 3: ResNet model. In this paper, we concentrate on ResNet with spectral normalization and
self attention trained by CIFAR-10 (n, Mg,M)=(2, 4, 32), SLT-10(n, Mg,M)=(1, 6, 48). See Figure
2 and Figure 3 for definitions of ResBlocks.

DOT First of all, let us pay attention to the implementation of SN proposed in [7]. The algorithm
gradually approximate SN by Monte Carlo sampling based on forward propagations, and does not
give well normalized weights in the beginning, so we should be careful to apply DOT on such
network. One easy way is just running forward propagations a few times. Before each DOT, we run
forward propagation on G and D to thermalize the SN layers. We apply SGD update with2 lr=0.01.
In Table 1 of the main paper, we update each generated samples with 20 times for DCGAN, 10 times
for ResNet.

To get keff, we draw 100 pairs of samples (x,y)i, calculate maximum gradient, and define it as keff.
However, there seems no big difference to use keff in high precision or not. To compare them, we
executed keff = 1 DOT and summarize scores (IS, FID) on 0, 10 and 20 updates.

updates = 0 # updates = 10 # updates = 20
trial1(keff = 1.00) 6.47(05), 27.83 7.17(07), 24.31 7.35(01), 24.06
trial2(keff = 0.86) 6.53(08), 27.84 7.21(01), 24.06 7.45(05), 24.14

WGAN-GP(CIFAR-10, lr=0.01)
Number of updates # updates = 0 # updates = 10 # updates = 20
trial1(keff = 1.00) 7.44(01), 20.71 7.63(05), 18.38 7.69(09), 17.74
trial2(keff = 0.39) 7.45(09), 20.74 7.85(08), 16.57 7.97(14), 15.78

SNGAN(ns)(CIFAR-10, lr=0.01)
Number of updates # updates = 0 # updates = 10 # updates = 20
trial1(keff = 1.00) 7.4(01), 20.32 7.6(07), 19.3 7.61(08), 19.01
trial2(keff = 0.34) 7.45(08), 20.47 7.81(08), 17.72 8.02(16), 17.12

SNGAN(hi)(CIFAR-10, lr=0.01)
Number of updates # updates = 0 # updates = 10 # updates = 20
trial1(keff = 1.00) 7.66(07), 25.09 7.92(14), 23.1 8.02(12), 22.48
trial2(keff = 0.28) 7.75(07), 25.37 8.35(11), 21.27 8.5(01), 20.57

SAGAN(ns)(CIFAR-10, lr=0.01)
Number of updates # updates = 0 # updates = 10 # updates = 20
trial1(keff = 1.00) 7.46(01), 26.08 7.75(11), 24.12 7.87(09), 23.33
trial2(keff = 0.21) 7.52(06), 25.78 8.2(08), 21.45 8.38(05), 21.21

SAGAN(hi)(CIFAR-10, lr=0.01)

As one can see, lower keff makes improvement faster. But please note that if it is too small, the DOT
may be equivalent just decreasing −D(x), and easily increase FID.

2 lr corresponds to ϵ in the main paper.

6

��

// BN, ReLU

��
2× 2, 2, 0 unpooling

��

2× 2, 2, 0 unpooling

��
3× 3, 1, 1 (SN)conv,

ReLU

��

BN, ReLU

��

⊕

��

3× 3, 1, 1 (SN)conv,
ReLU

oo

(SN)ResBlock up

��

// 3× 3, 1, 1 (SN)conv

��
4× 4, 2, 1(SN)conv

��

ReLU

��
⊕

��

4× 4, 2, 1(SN)convoo

(SN)ResBlock down1

Figure 2: ResBlocks

��

// ReLU,
3× 3, 1, 1 (SN)conv

��

4× 4, 2, 1 (SN)conv

��
⊕

��

ReLU,
4× 4, 2, 1 (SN)conv

oo

(SN)ResBlock down2

��

// ReLU,
3× 3, 1, 1 (SN)conv

��

⊕

��

ReLU,
3× 3, 1, 1 (SN)conv

oo

(SN)ResBlock down3

Figure 3: ResBlocks

On the lr of gradient decent, it is better to take small value as possible. For example, the history of
DOT for ResNet on STL-10 is as follows.

updates = 0 # updates = 10 # updates = 20
Inception score 9.33(08) 10.03(14) 10.00(12)
FID 41.91 39.48 40.53

In this model we use N (0, I128×128) as the prior pZ and apply the projection of the gradient to
conduct DOT updates. But our projection update is an approximation, and the slightly bad scores on
20 updates may be caused by z getting out of the support because of too large lr. On the other hand,
our DCGAN model has U [−1, 1]128 as the prior, and there is no need of the projection. In this case,
for example, SAGAN(hi)’s history is

updates = 0 # updates = 10 # updates = 20
Inception score 9.29(13) 10.11(14) 10.29(21)
FID 45.78 41.09 40.51

and each score improved even after 10 updates. We show some results on DOT histories with
different lr in Figure 4, Figure 5, Figure 6 also. As we can see from Figure 4, larger lr makes
improvement faster, e.g. IS 7.40 reaches 8.88 and FID 22.37 reaches 17.61 at 10 update point, but
it easily makes bad scores when we increase the number of updates, e.g. IS 8.88 at 10 reaches 7.79
and FID 17.61 at 10 reaches 58.64 at 90 update point. This is resolved by taking lower lr, but too
low lr makes improvement too slow as we can see in Figure 6.

7

Inception score and FID Inception score is defined by

IS({xi}i) = exp

N∑
i=1

1

N

(
D̂(p(d|xi)||p(d))

)
, (28)

where p(d|x) is the output values of the inception model, and p(d) is marginal distribution of
p(d|x)pG(x). This is one of well know metrics on GAN, and measures how the images {xi}i look
realistic and how the images have variety. Usually, higher value is better.

The second well know metric is the Fréchet inception distance (FID). This value is the Wasserstein-2
distance between dataset and {xi}i=1,2,...,N in the 2,048 dimensional feature space of the inception
model by assuming the distribution is gaussian. To compute it, we prepare the 2,048 dimensional
mean vector mw and covariant matrix Cw of the corresponding dataset, and calculate m and C by
feeding {xi}i=1,2,...,N to the inception model. Then, the FID is calculated by

FID({xi}i) = ||m−mw||22 + Tr(C +Cw − 2(CCw)
1/2). (29)

Note that the square root of the matrix is taken under matrix product, not component-wise root as
usually taken in numpy. Lower FID is better.

DOT vs Naive Here, we compare the latent space DOT and the latent space Naive improvement:

T naive
D◦G(zy) = argminz

{
− 1

keff
D ◦G(z)

}
. (30)

As one can see from Figure 5 and Figure 6, both the DOT and the naive transport (30) improve
scores. In Figure 5,DOT and Naive keep improving the inception score, on the other hand, the FID
seems saturated around 40∼50 updates. After that, one can see both of transports do not improve
FID. Even worse, FID starts to increase both cases at some point of updates. Compared to the naive
update, however, DOT can suppress it, but increasing FID at some update point seems inevitable.
So, keeping lr low value as possible seems important as we have already noted.

DOT vs MH-GAN There are some methods of post-processing using trained models of GAN
[8, 9]. In this section, we focus on the Metropolis-Hastings GAN (MH-GAN) [9] which is relatively
easy to implement. In MH-GAN, we first calibrate the trained discriminator by logistic regression,
and use it as approximator of the accept/reject probability in the context of the Markov-Chain Monte-
Carlo method for sampling. We calibrate D by using 1, 000 training data and 1, 000 generated data,
and run MC update 500 times.

CIFAR-10 STL-10
bare MH-GAN bare MH-GAN

WGAN-GP 6.5(08), 27.93 7.23(11), 36.14 8.71(13), 49.98 8.98(13), 48.03
SNGAN(ns) 7.42(09), 20.73 7.16(01), 23.24 8.62(15), 41.35 8.0(11), 46.27
SNGAN(hi) 7.44(08), 20.53 8.23(12), 18.57 8.78(01), 40.11 10.02(08), 36.34
SAGAN(ns) 7.69(08), 24.97 7.87(07), 22.48 8.63(08), 48.33 9.79(12), 44.44
SAGAN(hi) 7.52(06), 25.77 7.92(09), 23.75 9.32(11), 45.66 9.73(19), 49.1

Table 4: (Inception score, FID) by usual sampling (bare) and MH-GAN in within our DCGAN
models. The bold letter scores correspond increasing inception score and decreasing FID.

We succeed in improving almost all inception scores except for SNGAN(ns) cases. On FID, how-
ever, MH-GAN sometimes downgrade it (taking higher value compared to its original value). By
comparing Table 4 and Table 1 in the main body of this paper, DOT looks better in all cases, but
we do not insist our method outperform MH-GAN here because our DOT method needs tuning
parameters ϵ, keff besides tuning the number of update.

B.3 On runtimes

We just used gradient of G and D, so it scales same as the backprop. For reference, we put down
real runtimes (seconds/30updates) here by Tesla P100:

Swissroll CIFAR-10 (SN-DCGAN) STL-10 (SN-DCGAN) ImageNet
0.310(02) 1.04(01) 1.05(01) 2.52(01)

The error is estimated by 1std on 10 independent runs.

8

References
[1] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business

Media, 2008.

[2] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019.

[3] Cédric Villani. Topics in optimal transportation. Number 58. American Mathematical Soc.,
2003.

[4] Henning Petzka, Asja Fischer, and Denis Lukovnikov. On the regularization of wasserstein
gans. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[5] R’emi Flamary and Nicolas Courty. Pot python optimal transport library, 2017.

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 6626–6637, 2017.

[7] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normaliza-
tion for generative adversarial networks. In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[8] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian J. Goodfellow, and Augustus Odena.
Discriminator rejection sampling. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[9] Ryan D. Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. Metropolis-hastings
generative adversarial networks. In Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pages 6345–6353,
2019.

9

Figure 4: History of inception scores and FID during each transport with lr = 0.05, k ≈ 0.29 with
SNGAN model trained by CIFAR-10. Too large lr causes bad behavior.

Figure 5: History of inception scores and FID during each transport with lr = 0.005, k ≈ 0.31
with SNGAN model trained by CIFAR-10.

Figure 6: History of inception scores and FID during each transport with lr = 0.001, k ≈ 0.28 with
SNGAN model trained by CIFAR-10. Too low lr causes slowing down the speed of improvement.

10

