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Abstract

Continual learning aims to improve the ability of modern learning systems to
deal with non-stationary distributions, typically by attempting to learn a series
of tasks sequentially. Prior art in the field has largely considered supervised or
reinforcement learning tasks, and often assumes full knowledge of task labels and
boundaries. In this work, we propose an approach (CURL) to tackle a more general
problem that we will refer to as unsupervised continual learning. The focus is on
learning representations without any knowledge about task identity, and we explore
scenarios when there are abrupt changes between tasks, smooth transitions from
one task to another, or even when the data is shuffled. The proposed approach
performs task inference directly within the model, is able to dynamically expand to
capture new concepts over its lifetime, and incorporates additional rehearsal-based
techniques to deal with catastrophic forgetting. We demonstrate the efficacy of
CURL in an unsupervised learning setting with MNIST and Omniglot, where
the lack of labels ensures no information is leaked about the task. Further, we
demonstrate strong performance compared to prior art in an i.i.d setting, or when
adapting the technique to supervised tasks such as incremental class learning.

1 Introduction

Humans have the impressive ability to learn many different concepts and perform different tasks
in a sequential lifelong setting. For example, infants learn to interact with objects in their environ-
ment without clear specification of tasks (task-agnostic), in a sequential fashion without forgetting
(non-stationary), from temporally correlated visual inputs (non-i.i.d), and with minimal external
supervision (unsupervised). For a learning system such as a robot deployed in the real world, it is
highly desirable to satisfy these desiderata as well. In contrast, learning algorithms often require
input samples to be shuffled in order to satisfy the i.i.d. assumption, and have been shown to
perform poorly when trained on sequential data, with newer tasks or concepts overwriting older
ones; a phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989; Goodfellow
et al., 2013). As a result, there has been renewed research focus on the continual learning problem
in recent years (e.g. Kirkpatrick et al., 2017; Nguyen et al., 2017; Zenke et al., 2017; Shin et al.,
2017), with several approaches addressing catastrophic forgetting as well as backwards or forwards
transfer—using the current task to improve performance on past or future tasks. However, most of
these techniques have focused on a sequence of tasks in which both the identity of the task (task
label) and boundaries between tasks are provided; moreover, they often focus on the supervised
learning setting, where class labels for each data point are given. Thus, many of these methods fail
to capture some of the aforementioned properties of real-world continual learning, with unknown
task labels or poorly defined task boundaries, or when abundant class-labelled data is not available.
In this paper, we propose to address the more general unsupervised continual learning setting (also
suggested separately by Smith et al. (2019)), in which task labels and boundaries are not provided
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Figure 1: Graphical model for
CURL. The categorical task
variable y is used to instantiate
a latent mixture-of-Gaussians
z, which is then decoded to x.

Figure 2: Diagram of the proposed approach, showing the
inference procedure and architectural components used.

to the learner, and hence the focus is on unsupervised task learning. The tasks could correspond to
either unsupervised representation learning, or learning skills without extrinsic reward if applied to
the reinforcement learning domain. In this sense, the problem setting is “unsupervised” in two ways:
in terms of the absence of task labels (or indeed well-defined tasks themselves), and in terms of the
absence of external supervision such as class labels, regression targets, or external rewards. The
two aspects may seem independent, but considering the unsupervised learning problem encourages
solutions that aim to capture all fundamental properties of the data, which in turn might encourage,
or reinforce, particular ways of addressing the task boundary problem. Hence the two aspects are
connected through the type of solutions they necessitate, and it is beneficial to consider them jointly.
We argue that this is an important and challenging open problem, as it enables continual learning
in environments without clearly defined tasks and goals, and with minimal external supervision.
Relaxing these constraints is crucial to performing lifelong learning in the real world.

Our approach, named Continual Unsupervised Representation Learning (CURL), learns a task-
specific representation on top of a larger set of shared parameters, and deals with task ambiguity by
performing task inference within the model. We endow the model with the ability to dynamically
expand its capacity to capture new tasks, and suggest methods to minimise catastrophic forgetting.
The model is experimentally evaluated in a variety of unsupervised settings: when tasks or classes
are presented sequentially, when training data are shuffled, and with ambiguous task boundaries
when transitions are continuous rather than discrete. We also demonstrate that despite focusing on
unsupervised learning, the method can be trivially adapted to supervised learning while removing the
reliance on task knowledge and class labels. The experiments demonstrate competitive performance
with respect to previous work, with the additional ability to learn without supervision in a continual
learning setting, and indicate the efficacy of the different components of the proposed method.

2 Model

We begin by defining the CURL model and training loss, then introduce methods to perform dynamic
expansion, and propose a generative replay mechanism to combat forgetting.

2.1 Inference over tasks

To address the problem, we utilise the following generative model (Figure 1):

y ∼ Cat(π),

z ∼ N (µz(y),σ
2
z(y)), (1)

x ∼ Bernoulli(µx(z)),

with the joint probability factorising as p(x,y, z) = p(y)p(z |y)p(x | z). Here, the categorical
variable y indicates the current task, which is then used to instantiate the task-specific Gaussian
parameters for latent variable z, which is then decoded to produce the input x. p(y) is a fixed
uniform prior, with component weights specified by π. In the representation learning scenario,
y can be interpreted as representing some discrete clusters in the data, with z then representing
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a mixture of Gaussians which encodes both the inter- and intra-cluster variation. Posterior infer-
ence of p(y, z |x) in this model is intractable, so we employ an approximate variational posterior
q(y, z |x) = q(y |x)q(z |x,y).

Each of these components is parameterised by a neural network: the input is encoded to a shared
representation, the mixture probabilities q(y |x) are determined by an output softmax “task inference”
head, and the Gaussian parameters for q(z |x,y = k) are produced by the output of a component-
specific latent encoding head (one for each component k). The component-specific prior parameters
µz(y) and σz(y) are parameterised as a linear layer (followed by a softplus nonlinearity for the
latter) using a one-hot representation of y as the input. Finally, the decoder is a single network that
maps from the mixture-of-Gaussians latent space z to the reconstruction x̂. The architecture is shown

in Figure 2, where for simplicity, we denote the parameters of the kth Gaussian by {µ(k),σ(k)}. The
loss for this model is the evidence lower bound (ELBO) given by:

log p(x) ≥ L = Eq(y,z |x) [log p(x,y, z)− log q(y, z |x)]

= Eq(y |x)q(z |x,y) [log p(x | z)]− Eq(y |x) [KL(q(z |x,y) || p(z |y))] (2)

−KL(q(y |x) || p(y))

The expectation over q(y |x) can be computed exactly by marginalising over the K categorical
options, but the expectation over q(z |x,y) is intractable, and requires sampling. The resulting Monte
Carlo approximation comprises a set of familiar terms, some of which correspond clearly to the
single-component VAE (Kingma & Welling, 2013; Rezende et al., 2014):

L ≈
K∑

k=1

component posterior︷ ︸︸ ︷
q(y = k |x)




component-wise reconstruction loss︷ ︸︸ ︷
log p(x | z̃(k)) −

component-wise regulariser︷ ︸︸ ︷
KL(q(z |x,y = k) || p(z |y = k))




−KL(q(y |x) || p(y))︸ ︷︷ ︸
Categorical regulariser

(3)

where z̃(k) ∼ q(z |x,y = k) is sampled using the reparametrisation trick. Of course, this can
be generalised to multiple samples in a similar fashion to the Importance-Weighted Autoencoder
(IWAE) (Burda et al., 2015).

Intuitively, this loss encourages the model to reconstruct the data and perform clustering where
possible. For a given data point, the model can choose to have high entropy over q(y |x), in which
case all of the component-wise losses must be low, or assign high q(y = k |x) for some k, and use
that component to model the datum well. By exploiting diversity in the input data, the model can
learn to utilise different components for different discrete structures (such as classes) in the data.

2.2 Component-constrained learning

While our main aim is to operate in an unsupervised setting, there may be cases in which one may
wish to train a specific component, or when labels can be generated in a self-supervised fashion. In
such cases where labels yobs are available, we can use a supervised loss, adapted from Eqn. 3:

Lsup = log p(x | z̃(yobs),y = yobs)− KL(q(z |x,y = yobs) || p(z |y = yobs))

+ log q(y = yobs |x). (4)

Here, instead of marginalising over y as in Equation 3, the component-wise ELBO (the first two
terms) is computed only for the known label yobs. Furthermore, the final term in the original ELBO is
replaced with a supervised cross-entropy term encouraging q(y |x) to match the label, which reduces
to the log posterior probability of the observed label. This loss will be utilised and further discussed
in Sections 2.3 and 2.4.

2.3 Dynamic expansion

To determine the number of mixture components, we opt for a dynamic expansion approach in
which capacity is added as needed, by maintaining a small set of poorly-modelled samples and
then initialising and fitting a new component to this set when it reaches a critical size. In a similar
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fashion to existing techniques such as the Forget-Me-Not process (Milan et al., 2016) and Dirichlet
process (Teh, 2010), we rely on a threshold to determine when to instantiate a new component.

More concretely, we denote a subset of parameters θ(k) = {θ
(k)
qy , θ

(k)
qz , θ

(k)
pz } corresponding to the

parameters unique to each component k (i.e. the kth softmax output in q(y |x) and the kth Gaussian
component in p(z |y) and q(z |y,x)). During training, any sample with a log-likelihood less than a
threshold cnew is added to set Dnew (where the log-likelihood is approximated by the ELBO). Then,
when the set Dnew reaches size Nnew, we initialise the parameters of the new component to the
current component k∗ that has greatest probability over Dnew:

θ(K+1) = θ(k
∗), k∗ = argmax

k∈{1,2,...,K}

∑

x∈Dnew

q(y = k |x). (5)

The new component is then tuned to Dnew, by performing a small fixed number of iterations of
gradient descent on all parameters θ, using the component-constrained ELBO (Eqn. 4) with label
K + 1.

Intuitively, this process encourages forward transfer, by initialising new concepts to the “closest”
existing concept learned by the model and then finetuning to a small number of instances. The
additional capacity used for each expansion is only in the top-most layer of the encoder, with ∼ 104

parameters, compared to ∼ 2.5 × 106 for the rest of the shared model. That is, while dynamic
expansion incorporates a new high-level concept, the underlying low-level representations in the
encoder, and the entire decoder, are both shared among all tasks.

2.4 Combatting forgetting via mixture generative replay

A shared low-level representation can mean that learning new tasks interferes with previous ones,
leading to forgetting. One relevant technique to address this is Deep Generative Replay (DGR) (Shin
et al., 2017), in which samples from a learned generative model are reused in learning. We propose to
adapt and extend DGR to the mixture setting to perform unsupervised learning without forgetting.
In contrast to the original DGR work, our approach is inherently generative, such that a generative
replay-based approach can be incorporated holistically into the framework at minimal cost. We note
that many other existing methods (e.g., Kirkpatrick et al. (2017)) could straightforwardly be adapted
to our approach, but our experiments demonstrated generative replay to be simple and effective.

To be more precise, during training, the model alternates between batches of real data, with samples
xdata ∼ D drawn from the current training distribution, and generated data, with samples xgen

produced by the previous snapshot of the model (with parameters θprev):

ygen ∼ π(y), zgen ∼ pθprev (z |ygen), xgen ∼ pθprev (x | zgen), (6)

where π represents a choice of prior distribution for the categorical y. While the uniform prior p(y)
is a natural choice, this fails to consider the degree to which different components are used, and can
therefore result in poor sample quality. To address this, the model maintains a count over components
by accumulating the mean of posterior q(y |x) over all previous timesteps, thereby favouring the
components that have been used the most. We refer to this process as mixture generative replay
(MGR).

While MGR ensures tasks or concepts that have been previously learned by the model are reused
for learning, it places no constraint on which components are used to model them. Given that each
generated datum xgen is conditioned on a sampled ygen, we can use ygen as a self-supervised
learning signal and encourage mixture components to remain consistent with respect to the model
snapshot, by using the component-constrained loss from Eqn. 4.

The only remaining question is when to update the previous model snapshot θprev. For this, we
explore two cases, with snapshots taken at periodic fixed intervals, or immediately before performing
dynamic expansion. The intuition behind the latter is that dynamic expansion is performed when
there is a sufficient shift in the input distribution, and consolidating previously learned information is
beneficial prior to adding a newly observed concept. This is also advantageous as it eliminates the
additional snapshot period hyperparameter.
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3 Related Work

Generative models A number of related approaches aim to learn a discriminative latent space
using generative models. Building on the original VAE (Kingma & Welling, 2013), Nalisnick et al.
(2016) utilise a latent mixture of Gaussians, aiming to capture class structure in an unsupervised
fashion, and propose a Bayesian non-parametric prior, further developed in (Nalisnick & Smyth,
2017). Similarly, Joo et al. (2019) suggest a Dirichlet posterior in latent space to avoid some of the
previously observed component-collapsing phenomena. Lastly, Jiang et al. (2017) propose Variational
Deep Embedding (VaDE) focused on the goal of clustering in an i.i.d setting. While VaDE has the
same generative process as CURL, it assumes a mean-field approximation, with y and z conditionally
independent given the input. In the case of CURL, conditioning z on y ensures we can adequately
capture the inter- and intra- class uncertainty of a sample within the same structured latent space z.

Continual learning A large body of work has addressed the continual learning problem (Parisi
et al., 2019). Regularisation-based methods minimise changes to parameters that are crucial for earlier
tasks, with some parameter-wise weight to measure importance (Kirkpatrick et al., 2017; Nguyen
et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Schwarz et al., 2018). Related techniques
seek to ensure the performance on previous data does not decrease, by employing constrained
optimisation (Lopez-Paz et al., 2017; Chaudhry et al., 2018) or distilling the information from old
models or tasks (Li & Hoiem, 2018). In a similar vein, other methods encourage new tasks to
utilise previously unused parameters, either by finding “free” linear parameter subspaces (He &
Jaeger, 2018); learning an attention mask over parameters (Serra et al., 2018); or using an agent
to find new activation paths through a network (Fernando et al., 2017). Expansion-based models
dynamically increase capacity to allow for additional tasks (Rusu et al., 2016; Yoon et al., 2017;
Draelos et al., 2017), and optionally prune the network to constrain capacity (Zhou et al., 2012;
Golkar et al., 2019). Another popular approach is that of rehearsal-based methods (Robins, 1995),
where the data distribution from earlier tasks is captured by samples from a generative model trained
concurrently (Shin et al., 2017; van de Ven & Tolias, 2018; Ostapenko et al., 2018). Farquhar & Gal
(2018) combine such methods with regularisation-based approaches under a Bayesian interpretation.
Alternatively, Rebuffi et al. (2017) learn class-specific exemplars instead of a generative model.
However, these methods usually require task identities, rely on well-defined task boundaries, and are
often evaluated on a sequence of supervised learning tasks.

Task-agnostic continual learning Some recent work has investigated continual learning without
task labels or boundaries. Hsu et al. (2018) and van de Ven & Tolias (2019) identify the scenarios of
incremental task, domain, and class learning; which operate without task labels in the latter cases,
but all focus on supervised learning tasks. Aljundi et al. (2019) propose a task-free approach to
continual learning related to ours, which mitigates forgetting using the regularisation-based Memory
Aware Synapses (MAS) approach (Aljundi et al., 2018), maintains a hard example buffer to better
estimate the regularisation weights, and detects when to update these weights (usually performed
at known task boundaries in previous work). Zeno et al. (2018) propose a Bayesian task-agnostic
learning update rule for the mean and variance of each parameter, and demonstrate its ability to
handle ambiguous task boundaries. However, it is only applied to supervised tasks, and can exploit
the “label” trick, inferring the task based on the class label. In contrast, Achille et al. (2018) address
the problem of unsupervised learning in a sequential setting by learning a disentangled latent space
with task-specific attention masks, but the main focus is on learning across datasets, and the method
relies on abrupt shifts in data distribution between datasets. Our approach builds upon this existing
body of work, addressing the full unsupervised continual learning problem, where task labels and
boundaries are unknown, and the tasks themselves are without class supervision. We argue that
addressing this problem is critical in order to tackle continual learning in challenging, real-world
scenarios.

4 Experiments

In the following sections, we empirically evaluate a) whether our method learns a meaningful
class-discriminable latent space in the unsupervised sequential learning setting, without forgetting,
even when task boundaries are unclear; b) the importance of the dynamic expansion and generative
replay techniques to performance; and c) how CURL performs on external benchmarks when
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(a) (b) (c)

Figure 3: a) Cluster accuracy for CURL variants on MNIST, measuring the contribution of mixture
generative replay (“MGR”) and dynamic expansion (“exp”); b) Accuracy per class, over time; c)
Class confusion matrix at the end of learning, for CURL w/ MGR & exp.

trained i.i.d or adapted to learn in a supervised fashion. Code for all experiments can be found at
https://github.com/deepmind/deepmind-research/.

4.1 Evaluation settings and datasets

One desired outcome of our approach is the ability to learn class-discriminative latent representations
from non-stationary input data. We evaluate this using cluster accuracy (the accuracy obtained when
assigning each mixture component to its most represented class), and with the accuracy of a k-Nearest
Neighbours (k-NN) classifier in latent space. The former measures the amount of class-relevant
information encoded into the categorical variable y, while the latter measures the discriminability of
the entire latent space without imposing structure (such as a linear boundary).

For the evaluation we extensively utilise the MNIST (LeCun et al., 2010) and Omniglot (Lake et al.,
2011) datasets, and further information can be found in Appendix B. We investigate a number of
different evaluation settings: i.i.d, where the model sees shuffled training data; sequential, where the
model sees classes sequentially; and continuous drift, similar to the sequential case, but with classes
gradually introduced by slowly increasing the number of samples from the new class within a batch.

4.2 Continual class-discriminative representation learning

We begin by analysing our approach, and follow this with evaluation on external benchmarks in later
sections. First, we measure the ability to perform class-discriminative representation learning in the
sequential setting on MNIST, where each of the classes is observed for 10000 training steps (further
experimental details can be found in Appendix C.1). Figure 4a shows the cluster accuracy for a
number of variants of CURL. We observe the importance of both dynamic expansion and mixture
generative replay (MGR) to learn a coherent representation without forgetting. Figure 4b shows the
class-wise accuracies during training, for the model with MGR and expansion. Interestingly, while
many existing continual learning approaches appear to forget earlier classes (see e.g. Nguyen et al.
(2017)), these classes are well modelled by CURL, and the confusion is more observed between
similar classes (such as 3s and 5s; or 7s and 9s). Indeed, this is reflected in the class-confusion matrix
after training (Figure 4c). This implies the model adequately addresses catastrophic forgetting, but
could improve in terms of plasticity, i.e., learning new concepts. Further analysis can be found in
Appendix A.1, showing generated samples; and Appendix A.2, analysing the dynamic expansion
buffers.

4.3 Ablation studies

Next, we perform an ablation study to gauge the impact of the expansion threshold for continual
learning, in terms of cluster accuracy and number of components used, as shown in Figure 3. As the
threshold value is increased, samples are more frequently stored into the “poorly-modelled” buffer,
and the model expands more aggressively throughout learning. Consequently, for sequential learning,
the number of components ranges from 12 to 71, the cluster accuracy varies up to a maximum of 84%,
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(a) (b) (c)

Figure 4: Ablation study for dynamic expansion on MNIST, showing (a) cluster accuracy; (b) 10-
NN error; and (c) number of components used; when varying the expansion threshold cexp. For
comparison, we also show the performance without expansion (“no exp”), but using the same number
of components as in the cexp = −200 case.

Benchmark MNIST Omniglot
Scenario # clusters Cluster acc (%) ↑ 10-NN error (%) ↓ # clusters Cluster acc (%) ↑ 10-NN error (%) ↓

MGR (fixed, T) 25.20±2.23 77.74±1.37 6.29±0.50 101.20±8.45 13.21±0.53 76.34±1.10

MGR (fixed, 0.1T) 37.60±2.15 49.14±3.95 14.95±0.73 131.60±15.74 12.13±1.54 81.21±2.06

MGR (dyn) 35.20±2.79 57.76±1.43 12.08±1.19 127.20±16.67 12.74±0.60 80.56±1.39

SMGR (fixed, T) 28.20±0.40 69.27±1.46 7.50±0.57 105.20±5.56 11.32±0.52 76.62±1.49

SMGR (fixed, 0.1T) 39.80±6.05 48.18±1.72 15.48±0.81 137.40±9.75 9.01±2.17 85.73±5.84

SMGR (dyn) 36.00±2.45 53.97±3.52 11.72±1.16 152.20±25.02 10.48±1.10 84.44±4.10

CURL (no MGR) 55.80±1.94 45.35±1.50 17.46±1.25 189.60±9.75 13.36±1.06 81.91±1.36

Table 1: Ablation study for mixture generative replay (MGR and SMGR), indicating the performance
and number of components used. All variants perform dynamic expansion

and the k-NN error also marginally decreases over this range. Furthermore, without any dynamic
expansion, the result is significantly poorer at 51% accuracy, and when discovering the same number
of components with dynamic expansion (25, obtained with an expansion threshold of −200), the
equivalent performance is at 77%. Thus, the dynamic expansion threshold conveniently provides a
tuning parameter to perform capacity estimation, trading off cluster accuracy with the memory cost of
using additional components in the latent mixture. Interestingly, if we perform the same analysis for
i.i.d. data (also in Figure 3), we observe a similar trade-off; though the final performance is slightly
poorer than when starting with an equivalent, fixed number of mixture components (22).

We also further analyse mixture generative replay (MGR) with an ablation study in Table 1. We
evaluate standard and self-supervised MGR (SMGR), and compare between the case where snapshots
are taken on expansion (i.e., no task information is needed), or at fixed intervals (either at T , the
duration of training on each class, or 0.1T , ten times more frequently). Intuitively, the period is
important as it determines how quickly a shifting data distribution is consolidated into the model: if
too short, the generated data will drift with the model, leading to forgetting. The results in Table 1
point to a number of interesting observations. First, both MGR and SMGR are sensitive to the
fixed snapshot period: the performance is unsurprisingly optimal when snapshots are taken as the
training class changes, but drops significantly when performed more frequently, and also uses a
greater number of clusters in the process. Second, by taking snapshots before dynamic expansion
instead, this performance can largely be recovered, and without any knowledge of the task boundaries.
Third, perhaps surprisingly, SMGR harms performance compared to MGR. This may be due to the
fact that mixture components already tend to be consistent in latent space throughout learning, and
SMGR may be reducing plasticity; further analysis can be found in Appendix A.3. Lastly, we can also
observe the benefits of MGR, with the MNIST case exhibiting far poorer performance and utilising
many more components in the process. Interestingly, the Omniglot case without MGR performs well,
but at the cost of significantly more components: expansion itself is able to partly address catastrophic
forgetting by effectively oversegmenting the data.
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Benchmark MNIST Omniglot
Scenario # clusters Cluster acc (%) ↑ 10-NN error (%) ↓ # clusters Cluster acc (%) ↑ 10-NN error (%) ↓

Seq. w/ MGR (fixed) 25.20±2.23 77.74±1.37 6.29±0.50 101.20±8.45 13.21±0.53 76.34±1.10

Seq. w/ MGR (dyn) 35.20±2.79 57.76±1.43 12.08±1.19 127.20±16.67 12.74±0.60 80.56±1.39

Cont. w/ MGR (fixed) 44.60±2.65 79.38±4.26 6.56±0.42 111.40±3.77 13.17±0.37 75.80±1.19

Cont. w/ MGR (dyn) 50.40±1.85 64.93±2.09 9.88±1.43 129.20±2.14 13.54±0.35 78.78±0.39

Table 2: Performance comparison between the sequential learning setting (with discrete changes in
class), versus the continuous drift setting (with class ratios gradually changing).

Figure 5: Mixture probabilities of the 5 components
used most throughout training, with discrete class
changes (left), and with continuous class drift (right).

Benchmark SplitMNIST
Evaluation Incr. Task Incr. Class

EWC 98.64±0.22 20.01±0.06

SI 99.09±0.15 19.99±0.06

MAS 99.22±0.21 19.52±0.29

LwF 99.60±0.03 24.17±0.33

GEM 98.42±0.10 92.20±0.12

DGR 99.50±0.03 91.24±0.33

iCARL - 94.57±0.11

CURL 99.10±0.06 92.59±0.66

Table 3: Supervised learning benchmark
on splitMNIST, for incremental task and
incremental class learning. 2

4.4 Learning with poorly-defined task boundaries

Next, we evaluate CURL in the continuous drift setting, and compare to the standard sequential
setting. The overall performance on MNIST and Omniglot is shown in Table 2, using MGR with
either fixed or dynamic snapshots. We observe that despite having unclear task boundaries, where
classes are gradually introduced, the continuous case generally exhibits better performance than the
case with well-defined task boundaries. We also closely investigate the mixture component dynamics
during learning, by obtaining the top 5 components (most used over the course of learning) and
plotting their posterior probabilities over time (Figure 5). From the discrete task-change domain
(left), we observe that probabilities change sharply with the hard task boundaries (every 10000 steps);
and many mixture components are quite sparsely activated, modelling either a single class, or a
few classes. Some of the mixture components also observe “echoes”, where the sharp change to a
new class in the data distribution activates the component temporarily before dynamic expansion is
performed. In the continuous drift case (right of Figure 5), the mixture probabilities exhibit similar
behaviours, but are much smoother in response to the gradually changing data distribution. Further,
without a sharp distributional shift, the “echoes” are not observed.

4.5 External benchmarks

Supervised continual learning While focused on task-agnostic continual learning in unsupervised
settings, CURL can also be trivially adapted to supervised tasks simply by training with the supervised
loss in Eqn. 4. We evaluate on the split MNIST benchmark, where the data are split into five tasks,
each classifying between two classes, and the model is trained on each task sequentially. If we
evaluate the overall accuracy after training, this is called incremental class learning; and if we provide
the model with the appropriate task label and evaluate the binary classification accuracy for each task,
this is incremental task learning (Hsu et al., 2018; van de Ven & Tolias, 2019). Experimental details
can be found in Appendix C.2. The results in Table 3 demonstrate that the proposed unsupervised
approach can easily and effectively be adapted to supervised tasks, achieving competitive results
for both scenarios. While all methods perform quite well on incremental task learning, CURL
is outperformed only by iCARL (Rebuffi et al., 2017) on incremental class learning, which was
specifically proposed for this task. Interestingly, the result is also better than DGR, suggesting that by
holistically incorporating the generative process and classifier into the same model, and focusing on
the broader unsupervised, task-agnostic perspective, CURL is still effective in the supervised domain.

2Performances of existing approaches are taken from studies by Hsu et al. (2018) and van de Ven & Tolias
(2019), using the better of the two.
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Benchmark MNIST (nz = 50) Omniglot (nz = 100)
Evaluation 3-NN error 5-NN error 10-NN error 3-NN error 5-NN error 10-NN error

VAE3 27.16±0.48 20.20±0.93 14.89±0.40 92.34±0.25 91.21±0.18 88.79±0.35

SBVAE3 10.01±0.52 9.58±0.47 9.39±0.54 86.90±0.82 85.10±0.89 82.96±0.64

DirVAE3 5.98±0.06 5.29±0.06 5.06±0.06 76.55±0.23 73.81±0.29 70.95±0.29

CURL (i.i.d) 4.40±0.34 4.22±0.28 4.23±0.30 78.18±0.47 75.41±0.34 72.51±0.46

VaDE (bigger net) 2.20 2.14 2.22 - - -

CURL w/ MGR (seq) 4.58±0.26 4.35±0.32 4.50±0.34 83.95±0.72 81.56±0.75 78.80±0.74

Raw pixels3 3.00 3.21 3.44 69.94 69.41 70.10

Table 4: Unsupervised learning benchmark comparison with sampled latents. We compare with a
number of approaches trained i.i.d, as well as CURL trained in the sequential setting.

Unsupervised i.i.d learning We also demonstrate the ability of the underlying model to learn in a
more traditional setting with the entire dataset shuffled, and compare with existing work in clustering
and representation learning: the VAE (Kingma & Welling, 2013), DirichletVAE (Joo et al., 2019),
SBVAE (Nalisnick & Smyth, 2017), and VaDE (Jiang et al., 2017). We utilise the same architecture
and hyperparameter settings as in Joo et al. (2019) for consistency, with latent spaces of dimension
50 and 100 for MNIST and Omniglot respectively; and full details of the experimental setup can be
found in Appendix C.3. We note that the k-NN error values are much better here than in Section 4.3;
this is due to a higher dimensional latent space and hence they cannot be directly compared (see
Appendix A.4).

The uppermost group in Table 4 show the results on i.i.d MNIST and Omniglot. The CURL generative
model trained i.i.d (without MGR, and with dynamic expansion) is competitive with the state-of-
the-art on MNIST (bettered only by VaDE, which incorporates a larger architecture) and Omniglot
(bettered only by DirVAE). While not the main focus of this paper, this demonstrates the ability
of the proposed generative model to learn a structured, discriminable latent space, even in more
standard learning settings with shuffled data. Table 4 also shows the performance of CURL trained
in the sequential setting. We observe that, despite learning from sequential data, these results are
competitive with the state-of-the-art approaches that operate on i.i.d. data.

5 Conclusions

In this work, we introduced an approach to address the unsupervised continual learning problem,
in which task labels and boundaries are unknown, and the tasks themselves lack class labels or
other external supervision. Our approach, named CURL, performs task inference via a mixture-
of-Gaussians latent space, and uses dynamic expansion and mixture generative replay (MGR)
to instantiate new concepts and minimise catastrophic forgetting. Experiments on MNIST and
Omniglot showed that CURL was able to learn meaningful class-discriminative representations
without forgetting in a sequential class setting (even with poorly defined task boundaries). External
benchmarks also demonstrated the method to be competitive with respect to previous work when
adapted to unsupervised learning from i.i.d data, and to supervised incremental class learning. Future
directions will investigate additional techniques to alleviate forgetting, and the extension to the
reinforcement learning domain.
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