
A Proofs

A.1 Proof of Theorem 3.2

The proof is along the lines of the one for the standard UCB algorithm cf. [4] but requires a couple of
key modifications. Firstly, we need to control the error due to the fact that each agent decides which
arm to pull with some delay, because only information after it is mixed is used. Secondly, we need to
control the error due to the fact that agents only have approximations of mk

t and nkt , that is, to the
true sum of rewards and number of times each arm was pulled respectively.

We present two lemmas before the proof. Their proofs can be found in Appendix A.2. Note the
running consensus operation is linear. The linearity of P allows us to think about each reward as
being at each node weighted by a number. For each reward, since P is a gossip matrix the sum of the
weights across all the nodes is 1 and the weights approach 1/N quickly.
Lemma A.1. Fix an arm k, a node i, and a time step t. Let Y1, . . . , YD be independent random
variables coming from the distribution associated to arm k, which we assume subgaussian with
variance proxy σ2 and mean µk. Let ε > 0 be arbitrarily small and less than η−1

7(η+1) , for η > 1, and
let s > 1. Let wj be a number such that |wj − 1

N | < ε/N , where j = 1, . . . , D. Then

P

[∑
wjYj∑
wj

≥ µk +

√
4ησ2 ln s

N
∑
wj

]
≤ 1

sη+1
and P

[∑
wjYj∑
wj

≤ µk −

√
4ησ2 ln s

N
∑
wj

]
≤ 1

sη+1
,

where the sums go from j = 1 to j = D.

At time t and at node i, we want to use the variables αi and ai defined in Algorithm 1 to decide the
next arm to pull in that node. Consider the rewards computed by all the nodes until C steps before
the last time αi and ai were updated. Let Jkt be the number of these rewards that come from arm
k and let Xk

j , 1 ≤ j ≤ Jkt be such rewards. We can see each of the Xk
j as being at node i at the

beginning of iteration t multiplied by a weight wkt,i,j . Every weight we are considering corresponds to

a reward that has been mixing for at least C = d ln(2N/ε)√
2 ln|λ2|−1

e steps. This ensures
∣∣wkt,i,j − 1

N

∣∣ < ε
N

by Lemma 3.1, so the previous lemma can be applied to these weights.

Define the empirical mean of arm k at node i and time t as

µ̂kt,i :=

∑Jk
t
j=1 w

k
t,j,iX

k
j∑Jk

t
j=1 w

k
t,j,i

,

Let UCB(t, s, k, i) := µ̂kt,i +
√

4ησ2 ln s
N

∑
j w

k
t,i,j

and let It,i be the random variable that represents the arm

pulled at time t by node i, which is the one that maximizes UCB(t, s, k, i), for a certain value s.
Lemma A.2. Let k∗ and k be an optimal arm and a suboptimal arm respectively. We have

P

(
It,i = k,N

∑
j

wkt,i,j >
16ησ2 ln s

∆2
k

)
≤ 2Nst

sη+1
.

where Nst =
∑K
k=1 J

t
k is the number of rewards obtained by all the nodes until C steps before the

last time αi and ai were updated.

Now we proceed to prove the theorem.
Proof (Theorem 3.2). For every t ≥ K we can write t uniquely as K + Cqt + rt, where qt ≥ 0 and
0 ≤ rt < C. In such a case it is

st = K max (1(qt > 0), 1/N) + C(qt − 1)1(qt > 1),

where st is defined in Lemma A.2. The time step s that we use to compute the upper confidence
bounds at time t is s = Nst. It is fixed every C iterations. For t ≥ K +C, the value st +C is equal
to the last time step in which the variables αi and ai were updated. Thus by definition Jkt = nkst .
Remember nkt,i is the number of times arm k is pulled by node i up to time t, and nkt =

∑N
i=1 n

k
t,i.

Since R(T) =
∑K
k=1 ∆kE[nkT] it is enough to bound E[nkT] for every k = 1, . . . ,K.

1

Let k be fixed and denote At,i the event {It,i = k}. We have

E[nkT] = N + E

[
N∑
i=1

T∑
t=K+1

1(At,i)

]

= N + E

[
N∑
i=1

T∑
t=K+1

1

(
At,i, 1 ≤

16ησ2 ln(stN)

N
∑
j w

k
t,i,j∆

2
k

)
+ 1

(
At,i, 1 >

16ησ2 ln(stN)

N
∑
j w

k
t,i,j∆

2
k

)]
1
≤ N + E

[
N∑
i=1

T∑
t=K+1

1

(
At,i, n

k
st ≤

16ησ2 ln(TN)

∆2
k/(1 + 2ε)

)]
+N

T∑
t=K+1

2

(stN)η

2
< N +

16ησ2 ln(TN)

∆2
k/(1 + 2ε)

+ 2NC +
2NC

Kη

(
1 +

1

Nη

)
+

2

(NC)η−1

∞∑
r=bK/Cc+1

1

rη

3
.

ησ2 ln(TN)

∆2
k/(1 + ε)

+
N ln(N/ε)√

ln(1/ |λ2|)
+

η

η − 1
.

For the bound of the first summand in 1 note that
∣∣wkt,i,j − 1

N

∣∣ < ε/N and that Jkt = nkst . Thus(
N
∑
j

wkt,i,j

)−1

≤
(
nkst (1− ε)

)−1 ≤ (1 + 2ε) /nkst .

We have used ε < 1/2 for the last step, which is a consequence of ε < η−1
7(η+1) for η > 1. The bound

for the second summand uses Lemma A.2. For the bound of the expectation in 2 , note that, by
definition, At,i for 1 ≤ t ≤ T can only happen nkt times but

nkt ≤ nkst +N(t− st) ≤ nkst + 2NC.

So 1
(
It,i+1 = k, nkst <

8ησ2 ln(TN)
∆2

k/(1+2ε)

)
can be 1 at most 8ησ2 ln(TN)

∆2
k/(1+2ε)

+ 2NC times. The term 2NC

accounts for the delay of the algorithm. In the second part of inequality 2 we substitute st by its
value and for t > K + 2C we bound it by the greatest multiple of C that is less than st. For 3 ,
note that the sum over r is bounded by ζ(η), where ζ(·) is the Riemann zeta function. Then we use
ζ(x) < x

x−1 for all x > 1, cf. [18], Proposition 16.1.2. Substituting the value of C and the values
η = 2, ε = 1/22 then yields the bound. The finite-time bound follows by bounding the Riemann zeta
function as above and bounding 1/Nη , 1/Kη and 1/(NC)η−1 by 1. �

A.2 Other proofs

Lemma 3.1. Let P be a communication matrix with real eigenvalues such that 1>P = 1>, P1 = 1
and whose second largest eigenvalue in absolute value is−1 < λ2 < 1. Let v be in theN -dimensional
simplex and let C = dln(2N/ε)/

√
2 ln(1/|λ2|)e. Agents can compute, after C communication steps,

a polynomial qC of degree C which satisfies

‖qC(P)v − 1/N‖2 ≤ ε/N.

Proof. Define the Chebyshev polynomials as T0(t) = 1, T1(t) = t and Tr(t) = 2tTr−1(t)− Tr−2(t)
for r > 1. Then, define

qr(t) =
Tr(t/|λ2|)
Tr(1/|λ2|)

.

Let κ = 1+|λ2|
1−|λ2| , and C =

⌈
ln(2N/ε)√
2 ln(1/|λ2|)

⌉
. Then for any t ∈ [−|λ2|, |λ2|] the polynomial qC satisfies:

qC(t)
1
≤ 2

(√
κ−1√
κ+1

)C
1 +

(√
κ−1√
κ+1

)2C
< 2

(√
κ− 1√
κ+ 1

)C 2
≤ 2exp (− log(2N/ε)) ≤ ε

N
.

2

See [5] for 1 . Inequality 2 is true since
(

1 + −2√
(1+x)/(1−x)+1

)1/
√

2 ln(1/x)

≤ e−1 for x ∈

[0, 1), because the expression is monotone and the limx→1− of it is e−1. It is also qC(1) = 1.
This implies that the absolute value of all the eigenvalues of the matrix qC(P) is less than ε

N but
for the greatest, which is 1. The previous property implies

∥∥qC(P)− 1
N 11

>
∥∥

2
≤ ε

N , see [37].
Alternatively, the latter can be proven easily if qC(P)− 1

N 11
> is diagonalizable and then the result

can be straightforwardly extended to all matrices since the property is continuous and the set of
diagonalizable matrices is dense. Finally, for v in the N -dimensional simplex we have

‖qC(P)v − 1/N‖2 =

∥∥∥∥qC(P)v − 1

N
11>v

∥∥∥∥
2

≤
∥∥∥∥qC(P)− 1

N
11>

∥∥∥∥
2

‖v‖2 ≤
ε

N

Note that the polynomial qr(P) can be computed iteratively as

wr+1qr+1(P) =
2

|λ2|
wrPqr(P)− wr−1qr−1(P), (3)

for r ≥ 1 where wr = Tr(1/|λ2|). By the properties of the Chebyshev polynomial, wr can be
computed iteratively as w0 = 1, w1 = 1/|λ2| and wr+1 = 2wr/|λ2| − wr−1 for r > 1.

Also note that if we have a vector u ∈ RN we can slightly modify the recursion in Equation (3) to
compute qC(P)u using the gossip protocol C times:

yr+1 =
wr
wr+1

2

|λ2|
Pyr −

wr−1

wr+1
yr−1

for r > 1, where we denote yr = qr(P)u ∈ RN . In order to simplify the code we want to allow
the computation of y1 with the same recursion. In such a case we can use by convention w−1 = 0,
y−1 = 0 but also we need to set w0 = 1/2 and y0 = u/2 temporarily during the computation of y1,
the first iteration, instead of having w0 = 1 and y0 = u. Pseudocode for an iteration of this recursion
at node i is provided in Algorithm 2, in which we have called y′r = 2/|λ2|Pyr. The multiplication
by P is performed using the gossip protocol. Agent i only computes the i-th entry of yr+1, namely
yr+1,i, and only uses her local information and the entries of yr corresponding to her neighbors. �

Lemma A.1. Fix an arm k, a node i, and a time step t. Let Y1, . . . , YD be independent random
variables coming from the distribution associated to arm k, which we assume subgaussian with
variance proxy σ2 and mean µk. Let ε > 0 be arbitrarily small and less than η−1

7(η+1) , for η > 1, and
let s > 1. Let wj be a number such that |wj − 1

N | < ε/N , where j = 1, . . . , D. Then

P

[∑
wjYj∑
wj

≥ µk +

√
4ησ2 ln s

N
∑
wj

]
≤ 1

sη+1
and P

[∑
wjYj∑
wj

≤ µk −

√
4ησ2 ln s

N
∑
wj

]
≤ 1

sη+1
,

where the sums go from j = 1 to j = D.

Proof. Since Yj is subgaussian with variance proxy σ2 we have that wjYj/(
∑
wj) is subgaussian

with variance proxy w2
jσ

2/(
∑
wj)

2. Therefore, using subgaussianity and the fact that the random
variables Yj , for j = 1, . . . , D, are independent we obtain by Hoeffding’s inequality for subgaussian
random variables

P

[∑
wjYj∑
wj

≥ µk +

√
4ησ2 ln s

N
∑
wj

]
≤ exp

(
− (4ησ2 ln s)/(N

∑
wj)

2σ2
∑
w2
j/(
∑
wj)2

)
=

1

s2η/(NW)

where W :=
∑
w2
j/
∑
wj . Using

∣∣wj − 1
N

∣∣ < ε/N we obtain

η/(NW) = η

(
N

∑
w2
j∑

wj

)−1

≥ η
(
N
D((1 + ε)/N)2

D((1− ε)/N)

)−1

=
η(1− ε)
(1 + ε)2

>
η + 1

2
.

The last step is a consequence of ε < η−1
7(η+1) . The first result follows. The second inequality is

analogous. �

3

Lemma A.2. Let k∗ and k be an optimal arm and a suboptimal arm respectively. We have

P

It,i = k,N
∑
j

wkt,i,j >
16ησ2 ln s

∆2
k

 ≤ 2stN

sη+1
.

where Nst =
∑K
k=1 J

t
k is the number of rewards obtained by all the nodes until C steps before the

last time αi and ai were updated.

Proof. It is enough to bound P (UCB(t, s, k∗, i) ≤ µk∗) and P
(
µ̂kt,i > µk +

√
4ησ2 ln s
N

∑
wj

)
, since if

these two events are false we can apply 1 and 3 in the following and obtain It,i 6= k:

UCB(t, s, k, i) = µ̂kt,i +

√
4ησ2 ln s

N
∑
j w

k
t,i,j

1
≤ µk + 2

√
4ησ2 ln s

N
∑
j w

k
t,i,j

2
< µk + ∆k

= µk∗

3
< UCB(t, s, k∗, i).

Inequality 2 is true since N
∑
j w

k
t,i,j >

16ησ2 ln s
∆2

k
⇐⇒

√
4ησ2 ln s

N
∑

j w
k
t,i,j

< ∆
2 .

Now since 1 ≤ J tk ≤ Nst we have by the union bound and Lemma A.1

P (UCB(t, s, k∗, i) ≤ µk∗) ≤ P
(
∃` ∈ {1, . . . , Nst} : J tk = `, UCB(t, s, k∗, i) ≤ µk∗

)
≤

Nst∑
`=1

P
(
UCB(t, s, k∗, i) ≤ µk∗ |J tk = `

)
≤

Nst∑
`=1

1

sη+1
=
Nst
sη+1

.

The bound of P
(
µ̂kt,i > µk +

√
4ησ2 ln s
N

∑
wj

)
is analogous.

�

Theorem A.3 (Instance Independent Regret Analysis of DDUCB). The regret achieved by the
DDUCB algorithm is

R(T) .
√
KTNσ2 ln(TN) +K

NΛ lnN√
ln(1/ |λ2|)

,

where Λ is an upper bound on the gaps ∆k, k = 1, . . . ,K. Here, . does not only hide constants but
also η and ε.

Proof. Define D1 as the set of arms such that their respective gaps are all less than
√

K
TN σ

2 ln(TN)

and D2 as the set of arms that are not in D1. Then we can bound the regret incurred by pulling arms
in D1, in the following way

∑
k∈D1

E[nkT]∆k ≤
√

K

TN
σ2 ln(TN)

∑
k∈D1

E[nkT]

≤
√
KTNσ2 ln(TN)

4

Using Theorem 3.2 we can bound the regret obtained by the pulls done to arms in D2:∑
k∈D2

E[nkT]∆k .
∑
k∈D2

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

∆k

≤
∑
k∈D2

√
TNσ2 ln(TN)

K
+

NΛ ln(N)√
ln(1/ |λ2|)

≤
√
KTNσ2 ln(TN) +K

NΛ ln(N)√
ln(1/ |λ2|)

.

Adding the two bounds above yields the result.

�

B Extended Version of Theorem 3.2

Theorem 3.2. Let P be a communication matrix with real eigenvalues such that 1>P = 1>,
P1 = 1 whose second largest eigenvalue measured in absolute value is λ2, with |λ2| < 1. Let η > 1,
and let ε > 0 be arbitrarily small and less than η−1

7(η+1) . Consider the distributed multi-armed bandit
problem with N nodes, K actions and subgaussian rewards with variance proxy σ2. The algorithm
DDUCB with C = d ln(2N/ε)√

2 ln|λ2|−1
e and upper confidence bound with exploration parameter η satisfies

1. The finite-time bound on the regret:

R(T) <
∑

k:∆k>0

16η(1 + 2ε)σ2 ln(TN)

∆k
+

(
N(6C + 1) +

2η

(η − 1)

) K∑
k=1

∆k.

2. The sharper finite-time bound on the regret:

R(T) <
∑

k:∆k>0

16η(1 + 2ε)σ2 ln(TN)

∆k

+

(
N(2C + 1) +

2NC

Kη

(
1 +

1

Nη

)
+

2η

(η − 1)(NC)η−1

) K∑
k=1

∆k.

3. The corresponding asymptotic bound:

R(T) .
∑

k:∆k>0

η(1 + ε)σ2 ln(TN)

∆k
+

(
N ln(N/ε)√

ln(1/ |λ2|)
+

η

η − 1

)
K∑
k=1

∆k.

4. In particular, if we choose the value η = 2 and we choose ε = 1
22 we have the finite-time

bound

R(T) <
∑

k:∆k>0

32(1 + 1/11)σ2 ln(TN)

∆k
+

(
N(6C + 1) + 4

) K∑
k=1

∆k.

5. The corresponding asymptotic bound

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)√
ln(1/ |λ2|)

K∑
k=1

∆k.

6. With the same choice of η and ε, mixing βi and bi in an unaccelerated way (cf. Algorithm 4)
with C = dln(N/ε)/ ln(1/|λ2|)e the regret is :

R(T) .
∑

k:∆k>0

σ2 ln(TN)

∆k
+

N ln(N)

ln(1/ |λ2|)

K∑
k=1

∆k.

5

The proof given in Appendix A.1 yields all these results straightforwardly. For Theorem 3.2.6,
Equation (2) must be used instead of Lemma 3.1. Note that for the unaccelerated version of the
algorithm the denominator of the second summand of the regret does not contain a square root. The
accelerated version of the algorithm improves on this by making the dependence of the regret on the
spectral gap much smaller in the regimes in which the spectral gap is small, that is, when the problem
is harder. This is very important for scaling issues, since the spectral gap decreases with N in many
typical topologies.

C Example for the Regret Comparison in Remark 3.4

If we take P to be symmetric, it is
∑N
j=1

εjc
N =

∑N
j=2

λ2
j

1−λ2
j

. Consider the graph G to be a cycle with

an odd number of nodes (and greater than 1) and take as P the matrix such that Pij = 1/2 if i = j±1
mod N and Pij = 0 otherwise. Then P is a circulant matrix and their eigenvalues are cos (2πj/N),

j = 0, 1, . . . , N − 1. Then λ2
2

1−λ2
2

= cot2
(

2π
N

)
≥ N2

4π2 − 2
3 and λ2

3

1−λ2
3

= cot2
(

4π
N

)
≥ N2

16π2 − 2
3 .

As a consequence, B is greater than the corresponding summand in Theorem 3.2.3 in our bound by
at least a summand which is Θ(N7/2). On the other hand our summand is Θ(N2 logN). In addition,
A is greater than the corresponding summand in Theorem 3.2.3 by a factor of Θ(N2).

The bounds above can be proven by a Taylor expansion: x2 cot2
(

1
x

)
= 1− 2x2

3 + ξ4

15 , for x > 0 and
ξ ∈ [0, x]. So cot2

(
1
x

)
≥ 1

x2 − 2
3 . The bounds above are the latter for x = N

2π and x = N
4π .

D Case |λ2| < 1/e in the comparison of the term B in Remark 3.4

He finish here the case left in the comparison performed in Remark 3.4. As in the main paper,
note that γ

γ−1 ≥ 1 and 1
1−|λ2| ≥

1
ln(|λ2|−1)

so we lower bound B for comparison purposes as

B ≥ N
(

1 +
λ′2

ln(
√
N/λ′2)

)
, where λ′2 :=

√
N |λ2| ∈ [0,

√
N). We use the regret in Theorem 3.2.6

for which, regardless of the value of λ2, the second summand of the regret multiplying
∑K
k=1 ∆k is

N lnN/ ln(1/ |λ2|) ≤ 2B. The inequality is true since the second line below is holds

2B ≥ 2N

(
1 +

λ′2
ln(
√
N/λ′2)

)
≥ N lnN

ln(
√
N/λ′2)

⇔ lnN − 2 ln(λ′2) + 2λ′2 ≥ lnN.

Note that if |λ2| > 1/e, the accelerated version of the algorithm incurs even lower regret (cf.
Theorem 3.2.3). Problems with a lower spectral gap (i.e. greater |λ2|) are harder problems since the
mixing process is slower. The accelerated version improves on the harder regime |λ2| ∈ [1/e, 1).

E Variants of DDUCB

Here we present the code used to exemplify variants proposed in Remark 3.5. Algorithm 3 ensures
further mixing by the property ‖P sv − 1/N‖2 ≤ |λ2|s explained in Equation (2).

Algorithm 3 Unaccelerated communication and mixing step. unaccel_mix(xi, i)

1: Send xi to neighbors
2: Receive corresponding values xj , ∀j ∈ N (i)
3: return

∑
j∈N (i) Pijxj

6

Algorithm 4 Unaccelerated version of Decentralized Delayed UCB at node i.
1: ζi ← (X1

i , . . . , X
K
i) ; zi ← (1, . . . , 1)

2: C = dln(N/ε)/ ln(1/|λ2|)e
3: αi ← ζi/N ; ai ← zi/N ; βi ← ζi ; bi ← zi
4: γi ← 0 ; ci ← 0 ; δi ← 0 ; di ← 0
5: t← K ; s← K
6: while t ≤ T do
7: k∗ ← arg maxk∈{1,...,K}

{
αk

i

aki
+
√

2ησ2 ln s
Naki

}
8: for r from 0 to C − 1 do
9: u← Play arm k∗, return reward

10: γk
∗

i ← γk
∗

i + u ; ck
∗

i ← ck
∗

i + 1
11: βi ← unaccel_mix(βi, r, i) ; bi ← unaccel_mix(bi, r, i)
12: t← t+ 1
13: if t > T then
14: return
15: end if
16: end for
17: s← (t− C)N
18: δi ← δi + βi ; di ← di + bi ; αi ← δi ; ai ← di
19: βi ← γi ; bi ← ci ; γi ← 0 ; ci ← 0
20: end while

Algorithm 5 Accelerated Decentralized Delayed UCB at node i with some variants.
1: ζi ← (X1

i , . . . , X
K
i) ; zi ← (1, . . . , 1)

2: C = dln(2N/ε)/
√

2 ln(1/|λ2|)e
3: αi ← ζi/N ; ai ← zi/N ; βi ← ζi ; bi ← zi
4: γi ← 0 ; ci ← 0 ; δi ← 0 ; di ← 0
5: t← K ; s← K
6: while t ≤ T do
7: for r from 0 to C − 1 do
8: k∗ ← arg maxk∈{1,...,K}

{
αk

i

aki
+
√

2ησ2 ln s
Naki

}
9: u← Play arm k∗, return reward

10: γk
∗

i ← γk
∗

i + u ; ck
∗

i ← ck
∗

i + 1
11: βi ← mix(βi, r, i) ; bi ← mix(bi, r, i)
12: t← t+ 1
13: // It also works adding this:
14: // αk

∗

i ← αk
∗

i + u/N ; ak
∗

i ← ak
∗

i + 1/N
15: // s← s+ 1
16: // and / or this:
17: // δi ← unaccel_mix(δi, i) ; di ← unaccel_mix(di, i)
18: if t > T then
19: return
20: end if
21: end for
22: s← (t− C)N
23: δi ← δi + βi ; di ← di + bi ; αi ← δi ; ai ← di
24: βi ← γi ; bi ← ci ; γi ← 0 ; ci ← 0
25: end while

7

F Estimation of the number of nodes

The total number of nodes can be estimated at the beginning of the algorithm, with high probability.
Given a value per node, the gossip protocol allows for the computation at each node of the average of
those values. If a node starts with a number u 6= 0 and the rest of the nodes start with the value 0,
then using the gossip protocol after some iterations makes the nodes hold an approximation of the
value u/N . The approximation improves exponentially in the number of steps (cf. Equation (2), for
instance) and does not depend on N , but in the spectral gap. To recover N , the value u is broadcast at
the same time the values are being mixed, so at each time step a node receives from her neighbors the
mixing value and u. Since we want to run this procedure in a decentralized way, we cannot tell which
node should start with the value u, so we make every node compute a number ui at random and
they start broadcasting and mixing it. However, during the mixing process, we make each node only
keep and mix the value corresponding to the minimum ui so at the end of this process, each node
only contains u = minui and the approximate value of u/N , if no two nodes started with minui,
which only occurs with low probability. The procedure can be repeated to increase the probability of
success.

The approximations of N can be broadcast and nodes could use the minimum and maximum as lower
and upper bounds on N . The algorithm really only needs upper and lower bounds on N . The delay
constant C would be computed with the upper bound on N and the upper confidence bound would
be computed using the lower bound, which translates to using a greater exploration parameter η.
Since our analysis was done in general for the delay and the exploration parameters, the bounds in
Theorem 3.2 hold, substituting the delay and exploration parameters by the new values.

G Experiments

We have observed that the accelerated method performs well with the recommended values for the
exploration parameter η and the parameter ε that measures the precision of the mixing after a stage.
So we use these recommended values, that are η = 2, ε = 1

22 .

The distributions of the arms in the bandit problem used in the experiments are Gaussian with
variance 1. There is one arm with mean 1 and 16 other arms with mean 0.8. We have executed
the algorithms for cycle graphs of size 100 and 200 and for square grids of size 100 and 225. We
compare executions of coopUCB [25] using different exploration parameters with DDUCB with
the fixed exploration parameter η = 2 and observe that DDUCB outperforms every execution of
coopUCB. Each algorithm for each setting was executed 10 times. Average regret is shown in the
figures. The experiments we present are representative of the regret behavior we have observed in a
greater variety of scenarios upon different choices of means, number of arms and variance. Using
different exploration parameters for coopUCB did not make it show a behavior as effective as the one
observed for DDUCB. We tuned γ, the exploration parameter of coopUCB, to get best results for that
algorithm and report also γ = 2 for comparison purposes. In the figures one can observe that after a
few stages, DDUCB algorithms learn with high precision which the best arm is and the regret curve
that is observed afterwards shows an almost horizontal behavior. After 10000 iterations, coopUCB
not only accumulates a greater regret but the slope indicates that it still has not learned effectively
which the best arm is. The graphs for coopUCB γ = 1.01 and γ = 1.001 are very similar but the
smaller γ = 1.001 seems to work slightly better.

The constant C for the unaccelerated method is usually excessively large, so we found it is convenient
to heuristically decrease it, or equivalently to use a different value of ε. Experiments shown below,
Figure 2 and Figure 3, are the same as the plots in the main paper in a bigger format. The parameter
ε for the unaccelerated method was picked so that the value of C for is the same for both the
unaccelerated and the accelerated method. We used the recommended modification of DDUCB
consisting of adding to the variables αi and ai the information of the pulls that are done times 1/N

The matrix P was chosen according to [14]. That is, we define the graph Laplacian as L =
I − D−1/2AD−1/2, where A is the adjacency matrix of the communication graph G and D is a
diagonal matrix such that Dii contains the degree of node i. Then for regular graphs, if we call δ the
common degree of every node, we pick P = I − δ

δ+1L. For non regular graphs, like the square grid
we used, letting δmax be the maximum degree of the nodes we pick P = I − 1

δmax+1D
1/2LD1/2.

These matrices always satisfy the assumptions needed on P . For reference, for our choice of P , the

8

inverse of the spectral graph of the cycle is O(N2) and it is O(N) for the grid [14]. Note that for an
expander graph it is O(1).

Figure 2: Simulation of DDUCB and coopUCB for a cycle graph of 100 nodes (left), 200 nodes
(right).

Figure 3: Simulation of DDUCB and coopUCB for a square grid of 100 nodes (left) and 225 nodes
(right)

9

H Notation

N Number of agents.
T Number of time steps.
K Number of actions.
P Communication matrix.
λ1, λ2, . . . , λN Eigenvalues of P sorted by norm, i.e. |λ1| >

|λ2| ≥ |λ3| ≥ · · · ≥ |λn|. It is always λ1 =
1 > |λ2|.

µ1 ≥ µ2 ≥ · · · ≥ µK Means of arms’ distributions.
∆i Reward gaps, i.e. µ1 − µi.
αi, ai Normalized delayed sum of rewards and number

of pulls that are mixed. Normalization accounts
for a division by N .

βi, bi Sum of rewards and number of pulls done that are
being mixed.

γi, ci Sum of new rewards and new number of pulls.
πkt Vectors in RN whose i-th entry is the current re-

ward obtained at time t by node i if arm k was
pulled; it is 0 otherwise.

pkt Vector in RN whose i-th entry is 1 if arm k was
pulled at time t by node i, or 0 otherwise.

C Number of steps that define the stages of the algo-
rithm.

Xk
j Reward obtained by pulling arm k for the j-th time.

If arm k is played several times in one time step
lower indices are assigned to agents with lower
indices.

nkt,i Number of times arm k is pulled by node i up to
time t.

nkt
∑n
i=1 n

k
t,i.

mk
t Sum of rewards coming from all the pulls done to

arm k by the entire network up to time t.
It,i Action played by agent i at time t.
Jkt Number of rewards that come from arm k that were

computed up to C steps before the last time the
variables αi and ai were updated if current time is
t.

10

