
Author Rebuttal for NeurIPS 2019 Submission #9641

We thank all the reviewers for their positive comments and valuable suggestions. This paper presents a linear-time2

learnable tree filter to capture long-range dependencies while preserving structural details for semantic segmentation.3

In the initial review, all reviewers agreed with the novelty and contributions of the learnable tree filter. We respond4

to all the comments as follows. In addition, we will carefully revise the manuscript to improve its readability before5

the final submission. As required by R5, an executable example (the same anonymous link as that in Supplementary6

Materials) has been provided. All the source code will be released to the community soon.7

Response to Reviewer #18

Q1: How to generate MST and initialize the weights? Details of muti-groups in Fig. 2?9

A1: Sorry for the confusion. Actually, the weights used for MST construction and filtering are different. The MST10

is constructed upon the low-level feature in encoder (defined as Ml in L141 and illustrated in Fig. 2). The weights11

for filtering do not need to be initialized, but are calculated based on high-level semantics (defined as Xl in L143 and12

illustrated in Fig. 2) in every step. Multi-groups in Fig. 2 represents calculating multiple groups of weights for the filter,13

which allows it to be sensitive to different components (please refer to L145-146 and Sec. 3.2 for more details).14

Q2: Can the proposed tree filter be used in encoder? How would the results be like?15

A2: Yes, it can be used in encoder. Actually, the experiments in Tab. 3 (when OS is 8) are conducted with encoder only.16

In addition, we inject the Tree Filtering module into C3-C5 of ResNet-50 and achieve a 71.7% mIoU, which is inferior17

to that in Tab. 3 (a 72.5% mIoU when applied to the decoder). It means higher-level semantic matters for the filter18

weights (decoder contains richer semantic cues, identical with the design in L40-43). This will be made clear.19

Q3: The evaluations on ADE20K?20

A3: Thanks for this suggestion. During rebuttal, we evaluate our methods using a ResNet-50 backbone on the ADE20K21

val set, and list the results in Tab. 7. This table will be added in the final version.22

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000

Ru
n 

tim
e (

m
s)

Vertex Number 

Non-local
Tree Filter (16 groups)

Figure 5: Runtime comparisons on Tesla V100.

Backbone TF MS mIoU (%) Pixel Acc (%)

ResNet-50
7 7 35.0 76.5
3 7 40.0 79.3
3 3 41.1 80.2

Table 7: Results on the ADE20K val set. TF denotes
multi-stage Tree Filtering modules with decoder. MS in-
dicates multi-scale testing strategy. All the experiments
are conducted with a vanilla ResNet-50 backbone (with-
out dilated convolutions or the ASPP module).

Response to Reviewer #423

Q1: Additional improvements over the PSP and Non-local module?24

A1: Different from PSP [3] and Non-local [12] module, the proposed Tree Filtering module also preserves structural25

details when capturing long-range dependencies (refer to the qualitative analysis in Ablation Study and Supplementary26

Materials). To verify the effectiveness, we conduct experiments with additional PSP and Non-local module, and achieve27

1.1% and 0.7% absolute gain (75.4% for PSP+TF and 74.9% for NL+TF), respectively.28

Q2: Performance comparison.29

A2: Thanks for your comments. Actually, we adopt vanilla ResNet-101 without dilated convolutions or Dense blocks30

(adopted by PSANet [31] and DenseASPP [32]) as our backbone in Tab. 5 and Tab. 6. Of course, we will give more31

competitive results with stronger backbones as well as revise our claim in the final version.32

Response to Reviewer #533

Q1: Why the computational complexity of MST construction (Bor̊uvka’s algorithm) is linear?34

A1: Sorry for not having clarified this point clearly. Generally, the Bor̊uvka’s algorithm runs in O(E log V ). Never-35

theless, as illustrated in Fig. 1, we build MST from a 4-connected planar graph. When the input graph is planar, the36

computational complexity can be reduced to linear using Contractive Bor̊uvka’s algorithm. Of course, this can also be37

achieved by other algorithms (e.g., [Karger et.al., JACM, 1995]). We will clarify it in the final version.38

Q2: Provide the minimal working example and compare empirical runtime with other methods.39

A2: Following your suggestion, we have already provided the executable code (the same anonymous link with that in40

Supplementary Materials) as well as a benchmark for runtime comparison. We also illustrate the comparison against41

the non-local operation in Fig. 5. To clarify more details, we will release our source code to the community.42

Q3: How to select hyper-parameters?43

A3: For network training, we just follow traditional protocols (refer to Sec. 3.1) without bells-and-whistles. While for44

the proposed Tree Filtering module, we conduct ablation studies (especially for the equipped stage and group number in45

Sec. 3.2) and choose the best-performed combination of hyper-parameters.46


