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A Derivation of optimization algorithm

In this section we derive the closed-form updates for the proximal method stated in (2.11). In
particular, recall that forall 1 < 5,1 <p

= (AR — M) /1AW 6], x A,

where A% = A% — nVL(A%) and 2, = max{0,z},r € R represents the positive part of x.

Proof of 2.11). Let A% = A°M — nV L(A°9), and let f;; denote the loss decomposed over each
7,1 block so that

1
fiu(Aj) = mHAJ’l_A(j)'lld||%+||Ajl||Fa (A1)
and
g?w = Aar;gRrﬁing Fin(Ao). (A2)
gl

The loss f;;(Aj;) is convex, so the first order optimality condition implies that:

0€dfj (A}Y), (A3)
where 0 f;; (Aj;) is the subdifferential of fj; at Aj;. Note that O f;; (Aj;) can be expressed as:
1 (o)
Ofu(Aj) = o (Aj = ASY) + Z, (A.4)
where N
TauTe if Aji # 0
Zy = (A.5)
{Zjl ERMXM: ||Zjl||F < 1} ifAjl =0.

Claim 1 I || A%]| » > A1 > 0, then A 2 0.

We verify this claim by proving the contrapositive. Suppose A% = 0, then by (A.3) and (A.5), there
exists a Z;; € RM*M guch that || Z;;||» < 1 and

L

0 p—
AnT)

A+ Zj.
Thus,

so that Claim 1 holds.
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Combining Claim 1 with (A3) and (A:3), for any j, 1 such that || AS¢|| z > An7, we have

0= i ( new Aold) AneW
A7) IIA“"’WIIF
which is solved by
new ||A01d||F - n77 1d
j? = HAoldH (J)l (A.6)

Claim 2 If [| A% < A, then AZ™ =

Again, we verify the claim by proving the contrapositive. Suppose A;iw # 0, then first order
optimality implies the updates in @) However, taking the Frobenius norm of both sides of the
equation gives [|ANY||p = ||A°1d|| F — Apn which implies that HA‘]’lldH F— Ay > 0.

The updates in (Z.11)) immediately follow from combining Claim 2 and (A-6). O



B Proof of theoretical properties

We provide the proof of Theorem [3.1] which states that under certain conditions, our estimator
consistently recovers E/'a. We follow the framework introduced in Negahban et al.| (2012), but first
introduce some necessary notation.

We use ® to denote the Kronecker product. For A € RPMXPM et § = vec(A) € RP*M* and
0* = vec(AM), where AM is defined in Section 2.2. Let G = {G}i=1,... N be a set of indices,
where Ng = p? and G; C {1,2,--- ,p>M?} is the set of indices for § which correspond to the ¢-th

M x M submatrix of AM . Thus, if t = (j — 1)p+1, then fg, = vec (A;;) € RM” where A is the
(j,1)-th M x M submatrix of A. Denote the group indices of 6* that belong to blocks corresponding
to Ea as Sg C {1,2,---, Ng}. Note that we define Sg using Ea and not Eaam, so as stated in
Assumption[3.3] [Sg| = s. We further define the subspace M as

M:={0 GRPQMQ\GQ =0forallt ¢ Sg}, (B.1)
and its orthogonal complement with respect to the usual Euclidean inner product is
ML= {6 e R¥M |95, = Oforall t € Sg}. (B.2)

For a vector 6, let 4 and 0,1 be the projection of # on the subspaces M and M, respectively.
Let (-, -) represent the usual Euclidean inner product. Let

Ng
R(0) == 10c,|2 % [0]1.2- (B.3)
t=1

For any v € RP*M 2, the dual norm of R is given by

R*(v) = sup {u, v) = sup (u,v), (B.4)

werr M2\ (03 (W) R(u)<1

and the subspace compatibility constant of M with respect to R is defined as

R
(M) := sup (u) (B.5)
wem\{oy [ulz2
B.1 Proof of theoreom[3.1]
Let 0o = max{|Z5M|  |BY"M]| _}. Suppose that
|SX,JVI _ EX,M‘OO S 6,
Y, M Y, M (B.6)
|STM — 2| o <0,
for some appropriate choice of . Then
(Y M @ My —(2¥M @ BXM)| < 6% + 260100, (B.7)
and
|vec (SYM — §XMy _ yec (VM — XMy < 26, (B.8)
Because by assumption lim/,oo (M) = 0, there exists some M large enough so that

2v(M) < 7, for 7 defined in Assumption In particular, we suppose for such M, that
1 A5 +16M2s(0maz)?

5 < Z\/ min e

high probability for large n.

— Omaz- Later, we show using Lemma |C.2| that this occurs with

Problem (2.7)) can be written in following form:

0, € argmin £(0) + A\, R(0), (B.9)
gcRP®M?
where 1
L) = 59T(5Y7M ® 8XMYp — 9T vec(SYM — §XM), (B.10)



The loss £(0) is convex and differentiable with respect to 6, and it can be easily verified that R(+)
defines a vector norm. For h € RP*M 2, the error of the first-order Taylor series expansion of L is:

SL(h,0%) == L(O" + h) — L(6%) — (VLO), h)

_ IpT(s¥M @ g XMy, ®1D
5 :

Using the form of (B-10), we see that VL(0) = (S¥'M @ SXM)§ — vec(SY'M — SX:M) "and by
LemmalC.T} we have

RY(VLO")) = max

=12, ,Ng

(B.12)

[(SY,M ® SX,M)H* _ VeC(SY,M _ SX,M)]Gt ’2 '

We now show an upper bound for R*(V L(6*)). First, note that
(BYM @ XMy _ yec(RVM — XMy = yec(RXMAMPYVM _ (VM _ 3 XMy —

Letting (-),; denote the (7, [)-th submatrix, we have

[(8YM @ §XM)g" — veo(s¥M — 5¥M)]

2
_ ‘[(SKM ® SX7M o EY’M ® EX,]VI)G* — vec ((SY’M o EY’M) o (SXJ\/[ _ EX,M))]Gt
S ||(SX’A/IAMSY’M _ EX’MAMZY’M)jl _ (SY’M _ ZY,M)jl _ (SX,JVI _ ZX,M)leF

S ||(SX’MAMSY’M _ EX,MA]\/IEY,]\/I)jl”F + ||(SY’M _ EY’M)jl”F + ||(SX’M o EX,M()él ‘1‘13'7')

2

For any M x M matrix A, |A||lr < M|A|x, so
|[(87M @ §%2)9" — vee(s¥M — XM |
S M H(SX,MAMsY,]\/I o EX,MAMEY,M)jl|OO + |(SY,M o EY’M)leX)
+ |(SX’M _ EX,M)jl|OO]

<M HSX,MAMSY,M _ ZX,MAMZY,M’oo n |SY,M _ ZY,M‘OO n |SX,M _ ZX,Mloo] )

Now, note that for any A € R*** and v € R¥, we have |Av|o, < |A|oo|v]1, thus we further have
|SX,MA]\/15Y,M o EX’MAMEY7M|OO _ H(SY’M ® SX’M) o (EX’M ® EY’M)] vec (AI\/I)‘OO
< ‘(SY,M ® SX,M) _ (EX,M ® EY’M)|O<,|VGC (AM)|1
_ ‘(SY’M ® SX’M) _ (EX,]VI ® EY’M)|OO|AM|1.
Combining the inequalities gives an upper bound uniform over G (i.e., for all G;):
M(SY,M © Mg _ yec(SYM — SX,M)]Gt .
<M [|(SYM @ SHM) — (SXM @ SV JAM]y 4 |§VM — VM|

+|SX,]V[ o EX,M|DO] ,

which implies

R* (V,C(G*)) § M [|(SY’M ® SX’M) o (2X7M ®2Y’M)|00|AN[‘1 + ‘SY’M _ ZY,JV[‘OO

B.14
XM X ] (B.19)

Assuming |SXM — XM | < §and |SYM — 2V M| < § implies
R* (VL(0%)) < M[(6% 4 260 maz)|AM |1 + 26], (B.15)



where 0 < 6§ < ¢;3.

Setting
An = 2M [(8° 4 260 maz) |AM ], +26] (B.16)

then implies that X, > 2R* (VL(6*)). Thus, invoking Lemma 1 in Negahban et al.| (2012),
h = 6, — 0* must satisfy

where M is defined in (B-I). Equivalently,

Pl < 3llhadllr,2 + 41100 [1,2- (B.18)

By the definition of v in Assumption we have

2= 3105l < oo+ 1)/2— 9)v < . (B.19)
t¢Sg

1674

Next, we show that £ (h, 6*), as defined in (B:TT)), satisfies the Restricted Strong Convexity property
defined in definition 2 in Negahban et al. (2012). That is, we show an inequality of the form:
§L(h,0%) > r|h|3 — w?% (6F) whenever h satisfies (B.I8).

By using Lemma[C.3] we have

HT(SY’M ®SX,M)9 _ GT(ZY’M ®2X’1\/I)6+ eT(SY,J\/[ ® SX,M _ EY,I\/I ® ZX’M)Q
> eT(EY,]\/I ® ZX,M)& _ |0T(SY,]\/I ®SX,M _ EY’M ® ZX’M)9|
> Aninl0l3 — M2V @ S5 — VM @ BOM| 1017 5,

where the last inequality holds because Lemmaand N = Amin (B5M) X A\ pin (2YM) =
Amin (BYM @ XMy > 0, Thus,

1
6L(h,0") = ihT(SY’M ® SXM)p
1 1
> yfnmlhlé - §M2ISY’M ® M —xVM @ BEM| |11 5.

By Lemma[C.4]and (BI8), we have

IR01F 5 = (Ihadllz + hpae[l12)?
< 16([[ Pz + 103 [1.2)°
< 16(V/s]|hll2 + p*v)?
< 32s]|h||2 + 32p°v.

Combining with the equation above, we get

- Qmin

1
SL(h,0%) > [A* —16M?s|SYM @ §XM _ s VM szM|OO} |h|2
i 16M2p4V2|SY,M ® §X:M _ .M ® EX,M‘
. * (B.20)
> [ o = 8M25 (8103 + Sy + 107, )] Ih2

2 min max

— 16M2p4y2 ((5152 + 020 max + 610rYnax) :



Thus, appealing to (B.7), the Restricted Strong Convexity property holds with
1
Ke = =\ —8M?s (52 + 250m(w) ,

2 min

we = AMp?v/62 + 2604z

When § < 1 ’\:”"HE"IC;[;;(U””)Z) — Oumaz then k2 > 0. By Theorem 1 of Negahban et al.|(2012)
C.4l letting A, = 2M [(6 + 20042 ) |AM]1 + 28], as in (B:T6), ensures

(B.21)

and Lemma

IAM — AM|Z = ||6x, — 6713

22 A
SO UAM) + = (2w +4R(0)))
9)\§ o £ (B.22)
nS n
- HQL + R (W% + 2102’/)
=1T.

Note that I is function of § through \,, (defined in (B:16)), # ., and w.. For fixed M, v(M) and p,
k — 0asd — 0, so there exists a §y > 0 such that § < &g implies

I < (1/2)r — v,

- {1\/&% + 160250 mar)® Cl} (B.23)
4 max )

M?2s
for any ¢; > 0. When these hold, there exists an
en € T+v,7— T +v)), (B.24)
and when thresholding with this €,, we claim EAJM = EA. We prove this claim below.

Note that we have ||A;; — A%HF < |A = AM ||z < T forany (j,1) € V2. Recall that
Ex = {0G,) €V [|Ciillus > 0,5 # 1} (B.25)

We first prove that Ex C Exar. Forany (j,1) € Ea, by the definition of v and 7 in Assumption
we have ||CjAl||HS > 7 and HA%HF > HCjAl”HS — v. Thus, we have

1Ajlle > 1A 17— 1A — A |p
> (|Citllns — 1A — AJf |l — v
>r—I'—v
> €p.

The last inequality holds because we have assumed that e,, € (I' + v(M), 7 — (T + v(M))). Thus,
by definition of Ean shown in (2.9), we have (j,1) € Exn which further implies that Ex C Eawm.

We then show EAM C EA. Let EZM and E3 denote the complement set of E Am and Ea. For any
(4,1) € E4. which also means that (I, j) € ES, by (B.23), we have ||CjAl||Hs = 0, thus

1Al < IIAY1F + 185 — A lp
<|ICtlus + 185 =AY | +v
<I'+v
< €p.
Again, the last inequality holds because because we have assumed that ¢, satisfies (B.24). Thus,
by definition of Exn, we have (j,1) & Eanm or (j,1) € EX,,. This implies that EX C E},, or
E Am C Ea. Combing with previous conclusion that FA C E 'AMm, the proof is complete.



We now show that for any d, there exists some n large enough so that, (B-6), (B.7) and (B-8) occur
with high probability. In particular, let

5§ = 1M1+6X\/2(10gp+logM+logn)
Ve n

where lim,,_, §(n) = 0. Thus, there exists some n large enough such that §, = d(n) satisfies

(B:23). Then, Lemma|[C.2]implies that there exists some c1, ¢z such that (B:6), (B.7) and (B-8) holds
for 6 < ¢, with probability 1 — 2cy /n?.

, (B.26)



C Lemmas in the proof of theoretical properties

Lemma C.1. For R(-) norm defined in (B3)), its dual norm R*(-), defined in (B-4), is
R*(v) = max lvg, |2 (C.1)
2]\/]2
Proof. Forany v : |Ju|;2 < 1and v € RP” ", we have

Ng

(v,u) = Z<tha uc,)

t=1

Ng
<> lva,loluc, 2
t=1
Ng
< (tLHQl’é.lf?(’Ng |th|2> ; |uGt|2

= (e, o)

< .
< pax lva, |2

1,2

To complete the proof, we to show that this upper bound can be obtained. Let t* =
argmax,_, 5 ... n, |VG, |, and select u such that

It follows that ||u|l1,2 = 1 and (v, u) = |vg,. |2 = maxe—1_. N, |VG, |2 O

Lemma C.2. Let

J (0, M3, 8,1, 02) = cap® M2 exp { —end =292}, (€2

B = min{fBx,By} where Bx and Py are as defined in Assumption and Opgy =

max{ox ., o8 Y where oX . and o, .. are as defined in Section

max’ max

There exists positive constants, ¢; and co, such that for 0 < § < c1, with probability at least
1 —2f (min{nx,ny },p, M, ¥, 3, c1, ca) the following statements hold simultaneously:

|SX,M _ZX’M‘OO S 6,

[SVM VM| < (C.3)
|(SYM @ XMy _ (oYM @ XMy < 62 4 200,00, (C4)

and
|vec (SYM — §XMy _ yec (VM — XMy < 26, (C.5)

Proof. Denote the (j,1)-th M x M submatrix of XM by Sjl(’M and the (k, m)-th entry of Sﬁ’M

by 65M for j,l=1,...,pand k,m = 1,..., M. We use similar notation for 2% §Y-M and

jl,km
ZY,I\/I

The statement in (C.3) holds directly by applying Theorem 1 in Qiao et al. (2019) to S*M and S¥-M
and combining the statements with a union bound.



To show (C.4), note that (C3) then implies

XM SV M _n XM Y. M | < XM X]VIHAYM Y,M
051, km9 41 k'm/ Lm0 krm/ | S 1950 km = 50 km 9500 ke — T00 k'm!
XM (| AY,M Y,M
| ]l kaU il k'm ’_O-"l’,k’m|
|AYM ||AXM _ XM|
O krm 951 km — 9 j1,km

< |SXM—ZXM|OO‘SY’M—ZY’M|OO

gY:M _ EY,M|OO §X.M _ EX,M‘

+ Umaz| + Umaa:‘

< 6% + 200 man-

For (C3), note that

SY,JVI _ SX,JV[) ZY’M _ ZX,M)‘OO _ ‘(SX’M o ZX’M) _ (SY’M _ ZY,M)|OO

< ‘SX’M _ 2X,M|Oo + |SY’M _ 2Y,M|C>O
< 24.

| vec ( — vec (

O

Lemma C.3. For a set of indices G = {G}1=1,... Ny, suppose || - ||1,2 is defined in (B3). Then for
any matrix A € RP*M*xP’M* gnq 9 € RPM?

|07 A6 < M?| Al [10]17 »- (C.6)

Proof.
\HTAG\: E E A;;0:0;
i g
<D A0
i g

< | Alos (Z 91-|>2

%

= [Aloo (%g: > |9kl)2

t=1 keG

Ng 2
= |Aloo <Z ||9th|1>
t=1
Ng
< Al <ZM||9Gt”2>

t=1
= M?| Al |0]]7 -

2

In the penultimate line, we use the property that for any vector v € R™, |v|; < v/n|v|s. O

Lemma C.4. Suppose M is defined as in (BI). For any 0 € M, we have ||0]12 < /5|0
Furthermore, for ¥(M) as defined in (B3), we have U(M) = /s.

Proof. By definition of M and || - ||1,2, we have



1012 =" 0c,l2+ Y 0.l

teSg t¢Sg

= lba.l

teSg

<Vs | Y 106,13

teSg
= Vs/0]2.
In the penultimate line, we appeal to the Cauchy-Schwartz inequality. To show ¥(M) = /s, it

suffices to show that the upper bound above can be achieved. Select § € RP*M* guch that 0c, |2 = c,
Vit € Sg, where ¢ is some positive constant. This implies that ||f]|; 2 = sc and |f]2 = \/sc so that

16]11.2 = /5|6]2. Thus, T(M) = /5.

O

10



D More simulation results
D.1 AUC table of simulations in section [4.1]

Table 1: The mean area under the ROC curves. Standard errors are shown in parentheses.

FuDGE AIC BIC Multiple
P Modell

30 0.99(0.01) 0.75(0.17) 0.5(0) 0.71(0.11)
60 0.91(0.06) 05(0) 05(0) 0.56(0.1)
90  0.82(0.1) 0.50)  0.5(0) 0.55(0.09)
120 0.64(0.06)  0.50)  0.5(0) 0.53(0.04)

P Model2

30 0.9(0.08) 0.59(0.06) 0.5(0) 0.53(0.14)
60 09(0.07)  050) 05(0) 0.48(0.11)
90 0.88(0.08)  0.5(0)  05(0) 0.46(0.08)
120 0.86(0.07)  0.50)  0.5(0) 0.46(0.12)

P Model3

30 0.87(0.06) 0.69(0.06) 0.5(0) 0.83(0.08)
60 0.83(0.09) 0.58(0.07) 0.5(0) 0.77 (0.09)
90  0.74(0.1) 0.50)  0.5(0) 0.57(0.1)
120 0.74(0.08) 0.5(0.02) 0.5(0) 0.55(0.05)

D.2 AUC table of simulations in section

Table 2: The mean area under the ROC curves of example that multiple network strategy works better.
Standard errors are shown in parentheses

p FuDGE Multiple

30 0.99 (0) 1 (0)
60  0.98 (0.01) 1 (0)
90 0.87(0.09) 1(0.01)
120 0.73(0.12)  0.94 (0.09)
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