
Appendix

A Comparison: β-Update Scheme in REWO and in GECO
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Figure 9: β-update scheme: ∆βt = βt − βt−1 as a function of βt−1 and Ĉt − κ2 for ν = 1 and
τ = 3.

B Pendulum

B.1 Training Process with Alternative β-Update Scheme

An alternative way to define the β-update scheme such that β ≤ 1 (λ ≥ 1) is to use Eq. (5) with

λt = 1 + γt, where γt = γt−1 · exp
(
ν · (Ĉt − κ2)

)
. (14)

As in Sec. 2, ν is defined as the update’s learning rate. This leads to the following β-update scheme:

βt =
1

1 + τ · γt
, (15)

where τ is a slope parameter. However, the β-update defined in Eq. (11) is easier to tune, leading to
better results. Furthermore, Eq. (11) allows to choose any β > 0 as starting value.
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Figure 10: VHP + REWO (with different β-update scheme): (left) latent representation of the
pendulum data at different iteration steps when optimising LVHP(θ, φ,Θ,Φ;β). The top row shows
the approximate posterior, where the colour encodes the rotation angle of the pendulum. The bottom
row shows samples from the hierarchical prior. (right) β as a function of the iteration steps; the red
lines mark the visualised iteration steps.
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B.2 Training Process with/without WU

Figure 11: VHP (no REWO/GECO/WU): latent representation of the pendulum data at different
iteration steps when optimising LVHP(θ, φ,Θ,Φ;β = 1). The top row shows the approximate
posterior, where the colour encodes the rotation angle of the pendulum. The bottom row shows
samples from the hierarchical prior. It took 27,500 iterations until the model learned a representation
of the data. However, the latent representation is less informative than in Fig. 2(a).

Figure 12: VHP + WU (20 epochs): latent representation of the pendulum data at different iteration
steps when optimising LVHP(θ, φ,Θ,Φ;β). The top row shows the approximate posterior, where
the colour encodes the rotation angle of the pendulum. The bottom row shows samples from the
hierarchical prior. The model started to learn a representation (iter=2000) but the fast increase β
led to an over-regularisation by the KL term, resulting in a less informative representation than in
Fig. 2(a).

Figure 13: VHP + WU (200 epochs): latent representation of the pendulum data at different iteration
steps when optimising LVHP(θ, φ,Θ,Φ;β). The top row shows the approximate posterior, where
the colour encodes the rotation angle of the pendulum. The bottom row shows samples from the
hierarchical prior. The learned latent representation less informative than in Fig. 2(a).
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B.3 OLS Regression on Learned Latent Representations

Fig. 14 shows the joint angle versus arcsin(z2/r), where z2 is the second component of the latent
space and the radius r is estimated from the learned latent representation.
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Figure 14: Verifying the learned latent representations of the VHP trained with REWO, GECO, or
WU: OLS regressions on encodings of the pendulum data. The absolute errors are shown in Tab. 1.

B.4 VHP with ELBO instead of IW Bound
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Figure 15: VHP + REWO (with ELBO instead of IW bound in the second stochastic layer):
(left) latent representation of the pendulum data at different iteration steps when optimising
LVHP(θ, φ,Θ,Φ;β). The top row shows the approximate posterior, where the colour encodes
the rotation angle of the pendulum. The bottom row shows samples from the hierarchical prior.
(right) β as a function of the iteration steps; the red lines mark the visualised iteration steps. The
model compensates the less expressive posterior qΦ(ζ|z) in the second stochastic layer by restricting
qφ(z|x), which leads to poor latent representations.

B.5 Latent Representations Learned by VHP and IWAE

Figure 16: Latent respresentation of VHP + REWO (left), VHP + GECO (middle), and IWAE
(right): approximate posterior (top) and prior (bottom). The colour encodes the rotation angle of the
pendulum.
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C CMU Human Motion

C.1 Latent Representations Learned by VHP and IWAE

The prior and aggregated approximate posterior of the three methods are shown in Fig. 17. As
expected, for both the VHP and VampPrior the latent representations of different movements are
separated. In both cases the learned prior matches the aggregated posterior. By contrast, the IWAE is
restricted by the Gaussian prior and cannot represent the different motions separately in the latent
space.

Figure 17: Latent representation of human motion data: VHP + REWO (left), VampPrior (middle),
and IWAE (right); approximate posterior (top) and prior (bottom). The colour encodes the five human
motions. The different sample densities are caused by a different amount of data points for each
motion.

C.2 Graph-Based Interpolation

(a) VHP + REWO

(b) VampPrior

(c) IWAE

Figure 18: Movement interpolation. The different colours correspond to Fig. 5. Discontinuities are
marked by blue boxes.
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D Quantitative Results

D.1 Training Efficiency

Figure 19: NLL vs rate vs distortion on static MNIST

D.2 Active Units

Furthermore, we evaluate whether REWO prevents over-pruning of the latent variables [30].
Following [27], we evaluate KL(qΦ(ζj |x) || p(ζj)) for different optimisation strategies, where∏
j qΦ(ζj |x) = qΦ(ζ|x). We show the results for the inner latent variable on several datasets in

Fig. 20.
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(a) static MNIST
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(b) dynamic MNIST
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(c) Fashion-MNIST
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(d) OMNIGLOT

Figure 20: Expected KL divergence between approximate posterior and prior for REWO algorithm
(left) and WU (right). The latent dimensions are sorted by the KL divergence and the histograms are
shown on a logarithmic scale.
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E Faces and Chairs

(a) VHP + REWO

(b) IWAE

Figure 21: Faces: interpolations along the learned latent manifold with a latent space of 32 dimensions.

(a) VHP + REWO

(b) IWAE

Figure 22: Chairs: interpolations along the learned latent manifold with a latent space of 32 dimen-
sions.
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F Model Architectures

Table 3: Model architectures. GatedFC/GatedConv denote pairs of fully-connected/convolutional
layers multiplied element-wise, where one of the layers (gate) always uses sigmoid activations.

DATASET OPTIMISER ARCHITECTURE

PENDULUM ADAM INPUT 256(FLATTENED 16×16)
1e-4 LATENTS 2

qφ(z|x) FC 256, 256, 256, 256. RELU ACTIVATION.
pθ(x|z) FC 256, 256, 256, 256. RELU ACTIVATION. GAUSSIAN.
qΦ(ζ|z) FC 256, 256, 256, 256, RELU ACTIVATION.
pΘ(z|ζ) FC 256, 256, 256, 256, RELU ACTIVATION.
OTHERS κ = 0.02, ν = 5, K = 16.
GRAPH 1,000 NODES, 18 NEIGHBOURS.

CMU HUMAN ADAM INPUT 50
1e-4 LATENTS 2

qφ(z|x) FC 256, 256, 256, 256. RELU ACTIVATION.
pθ(x|z) FC 256, 256, 256, 256. RELU ACTIVATION. GAUSSIAN.
qΦ(ζ|z) FC 256, 256, 256, 256, RELU ACTIVATION.
pΘ(z|ζ) FC 256, 256, 256, 256, RELU ACTIVATION.
OTHERS κ = 0.02, ν = 1, K = 32.
GRAPH 2,530 NODES, 15 NEIGHBOURS.

FACES, ADAM INPUT 64×64×1
CHAIRS 5e-4 LATENTS 32

qφ(z|x) CONV 32×5×5(STRIDE 2) , 32×3×3(STRIDE 1), 48×5×5(STRIDE 2).
48×3×3(STRIDE 1), 64×5×5(STRIDE 2), 64×3×3(STRIDE 1).
96×5×5(STRIDE 2), 96×3×3(STRIDE 1), FC 256. RELU ACTIVATION

pθ(x|z) DECONV REVERSE OF ENCODER. RELU ACTIVATION. BERNOULLI.
qΦ(ζ|z) FC 256, 256, RELU ACTIVATION.
pΘ(z|ζ) FC 256, 256, RELU ACTIVATION.
OTHERS κ = 0.2, ν = 1, K = 16.
GRAPH 10,000 NODES (FACES), 8,637 NODES (CHAIRS), 18 NEIGHBOURS.

DYNAMICMNIST, ADAM INPUT 28×28×1
STATICMNIST, 5e-4 LATENTS 32
FASHION-MNIST, qφ(z|x) GATEDCONV 32×7×7(STRIDE 1) , 32×3×3(STRIDE 2),
OMNIGLOT 64×5×5(STRIDE 1), 64×3×3(STRIDE 2), 6×3×3(STRIDE 1)

pθ(x|z) GATEDFC 784, GATEDCONV 64×3×3(STRIDE 1),
64×3×3(STRIDE 1), 64×3×3(STRIDE 1), 64×3×3(STRIDE 1).
LINEAR ACTIVATION. BERNOULLI.

qΦ(ζ|z) GATEDFC 256, 256, LINEAR ACTIVATION.
pΘ(z|ζ) GATEDFC 256, 256, LINEAR ACTIVATION.
OTHERS κ = 0.18 (DYNAMICMNIST, STATICMNIST, OMNIGLOT),

κ = 0.31 (FASHION-MNIST),
ν = 1, K = 16.
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