
Supplementary Materials: Uncertainty on Asynchronous Time Event
Prediction

A Distributions

For reference, we give here the definition of the Dirichlet and Logistic-normal distribution.

A.1 Dirichlet distribution

The Dirichlet distribution with concentration parameters α = (α1, . . . , αK), where αi > 0, has the
probability density function:

f(x;α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) K∏
i=1

xαi−1i (A.1)

where Γ is a gamma function:

Γ(α) =

∫ ∞
0

αz−1e−αdz

A.2 Logistic-normal distribution (LN)

The logistic normal distribution is a generalization of the logit-normal distribution for the multidi-
mensional case. If y ∈ RC follows a normal distribution, y ∼ N (µ,Σ), then

x =

[
ey1∑C
i=1 e

yi
, . . . ,

eyC∑C
i=1 e

yi

]
follows a logistic-normal distribution.

B Behavior of the min kernel

The desired behavior of the min kernel function can easily be illustrated by considering the gram
matrix K and vector k, which are required to estimate µ and σ2 for a new time point τ . W.l.o.g.
consider M pseudo points τ1, . . . , τM such that w1 < · · · < wM . Since the new query point is
observed we assign it weight 1. It follows:
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
(B.2)

Assuming w1 = 0 returns k without the first row andK without the first row and column. Plugging
them back into equation 1 we can see that the point τ1 is discarded, as desired. In practice, the
weights have values from interval [0, 1] which in turn gives us the ability to softly discard points.
This is shown in Fig. 3 we can see that the mean line does not have to cross through the points with
weights < 1 and the variance can remain higher around them.

C Computation of the approximation for the uncertainty cross-entropy of
WGP-LN

Given true categorical distribution p∗i , and predicted pi(τ), the uncertainty cross-entropy can be
calculated as in Eq. 4. For the WGP-LN model pi(τ) = softmax(zi(τ)), where zi(τ) are logits
that come from a Gaussian process and follow a normal distribution N (µi(τ),Σi(τ)),. Therefore,
exp(zi(τ)) follows a log-normal distribution. We will use this to derive an approximation of the loss.
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From now on, we omit τ from the equations. Mean and variance for
∑C
c exp(zci) are then:

E

[∑C

c
exp(zci)

]
=
∑C

c
exp(µci + σ2

ci/2)

Var
[∑C

ci
exp(zci)

]
=
∑C

ci
(exp(σ2

ci)− 1) exp(2µci + σ2
ci)

(C.3)

The expectation of the cross entropy loss given that logits are following a normal distribution is

LUCE
i = E[LCE

i ] = E[log(exp(zci))]− E
[
log

(∑C

c
exp(zci)

)]
(C.4)

In general, given a random variable x, we can approximate expectation of log x by performing a
second order Taylor expansion around the mean µ:

E[log x] ≈ E

[
logµ+

(logµ)′

1!
(x− µ)︸ ︷︷ ︸

E[x−µ]=0

+
(logµ)′′

2!
(x− µ)2

]

≈ E[logµ]− Var[x]

2µ2

(C.5)

Using C.5 together with C.3 and plugging into C.4 we get a closed-form solution for the loss for
event i:

LUCE
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∗
i )− log
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∗
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(C.6)

D Non Expressiveness of RMTPP intensities

The intensity function has the following form in the RMTPP model [5]:

log λ0(t) = vT · hi + w(t− ti) + b (D.7)

The variables v, w and b are learned parameters and hi is given by the hidden state of an RNN. The
only dependence on t is (t− ti). RMTPP is then limited to monotonic intensity functions with respect
to time.

E Dirichlet Evolution

Our goal is to model the evolution of a distribution on a probability simplex. Fig. 1b shows this for
two classes. In general, we can do the same for multiple classes. Fig. 8 shows an example of the
Dirichlet distribution for three classes, and how it changes over time. This evolution is the output of
the FD-Dir model trained on the 3-G dataset, created to simulate the car example from Sec. 1 (see also
Fig. 13a in Appendix G). The three classes: overtaking, breaking and collision occur independently
of each other at three different times. The represent the corners of the triangle in Fig. 8.

We can distinguish three cases: (a) at first we are certain that the most likely class is overtaking; (b)
as time passes, the most likely class becomes breaking, (c) and finally collision. After that, we are in
the area where we have not seen any data and do not have a confident prediction (d).

(a) τ = 0 (b) τ = 0.5 (c) τ = 1. (d) τ = 2.

Figure 8: Dirichlet distribution at different time for the 3-G dataset with σ = 1.
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F Comparison of the classical cross-entropy and the uncertainty
cross-entropy

F.1 Simple classification task

In this section, we do not consider temporal data. The goal of this experiment is to show the benefit of
the uncertainty cross-entropy compare with the classical cross-entropy loss on a simple classification
task. As a consequence, we do not consider RNN in this section. We use a simple two layers neural
network to predict the concentration parameters of a Dirichlet distribution from the input vector.

Set-up. The set-up is similar to [15] and consists of two datasets of 1500 instances divided in three
equidistant 2-D Gaussians. One dataset contains non-overlapping classes (NOG) whereas the other
contains overlapping classes (OG). Given one input xi, we train simple two layers neural networks to
predict the concentration parameters of a Dirichlet distribution Dir(α1(xi), α2(xi), α3(xi)) which
model the uncertainty on the categorical distribution p(xi). On each dataset, we train two neural
networks. One neural network is trained with the classic cross-entropy loss LCE which uses only the
mean prediction p̄(xi). The second neural network is trained with the uncertainty cross-entropy loss
plus a simple α-regularizer:

LUCE +
∣∣α0(xi)−

∑
j

1xj∈Nw(xi)

∣∣
(F.8)

where xi is the input 2-D vector and Nw(xi) = {x′, ||x′−xi||22 < w} is its euclidean neighbourhood
of size w. We set w = 10−5 for the non-overlapping Gaussians and w = 10−2 for the overlapping
Gaussians.

Results. The categorical entropy −
∑
c pc(xi) log pc(xi) is a good indicator to know how certain is

the categorical distribution p(xi) at point xi. A high entropy meaning that the categorical distribution
is uncertain. For non overlapping Gaussians (Fig. 9a and 9b), we remark that both losses learn
uncertain categorical distribution only on thin borders. However, for overlapping Gaussians (See Fig.
9c and 9d),the uncertainty cross-entropy loss learns more uncertain categorical distributions because
of the thicker borders.

Other interesting results are the concentration parameters learned by the two models (Fig. 10, Fig. 11).
The classic cross-entropy loss learns very high value for α1(xi), α2(xi), α3(xi) which does match
with the true distribution of the data. In contrast, the uncertainty cross-entropy learn meaningful alpha
values for both datasets (delimiting the in-distribution areas for α0 and centred around the classes for
the others).

(a) NOG - CE - Cat. Ent. (b) NOG - UCE - Cat. Ent. (c) OG - CE - Cat. Ent. (d) OG - UCE - Cat. Ent.

Figure 9: The Figures 9a and 9b plot the entropy of the categorical distribution learned on a
classification task with three non-overlapping Gaussians. They show categorical entropy learned
with the classic cross-entropy and learned with the uncertainty cross-entropy. The Figures 9c and 9d
plot the entropy of the categorical distribution learned on a classification task with three overlapping
Gaussians. They show categorical entropy learned with the classic cross-entropy and learned with the
uncertainty cross-entropy.
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(a) CE - α0 (b) CE - α1 (c) CE - α2 (d) CE - α3

(e) UCE - α0 (f) UCE - α1 (g) UCE - α2 (h) UCE - α3

Figure 10: Concentration parameters of the Dirichlet distribution on a classification task with three
non-overlapping Gaussians. The figures 10a, 10b, 10c, 10d are α0, α1, α2, α3 learned with the
classic cross-entropy. The figures 10a, 10b, 10c, 10d are α0, α1, α2, α3 learned with the uncertainty
cross-entropy.

(a) CE - α0 (b) CE - α1 (c) CE - α2 (d) CE - α3

(e) UCE - α0 (f) UCE - α1 (g) UCE - α2 (h) UCE - α3

Figure 11: Concentration parameters of the Dirichlet distribution on a classification task with three
non-overlapping Gaussians. The figures 11a, 11b, 10c, 11d are α0, α1, α2, α3 learned with the
classic cross-entropy. The figures 11a, 11b, 10c, 11d are α0, α1, α2, α3 learned with the uncertainty
cross-entropy.
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F.2 Asynchronous Event Prediction

In this section, we consider temporal data. The goal of this experiment is again to show the benefit of
the uncertainty cross-entropy compared to the classical cross-entropy in the case of asynchronous
event prediction.

Set-up. For this purpose, we use the same set-up describe in the experiment Anomaly detection
& Uncertainty. We trained the model FD-Dir with three different type of losses: (1) The classical
cross-entropy (CE), (2) The classical cross-entropy with regularization described in section 2.3 (CE
+ reg) and (3) The classical uncertainty cross-entropy with regularization described in section 2.3
(UCE + reg).

Figure 12: Loss comparison in anomaly detection

Results. The results are shown in Fig. 12. The loss UCE + reg consistently improves the anomaly
detection based on the distribution uncertainty.

G Datasets

In this section we describe the datasets in more detail. The time gap between two events τ∗i = ti−ti−1
is first log-transformed before applying min-max normalization: τ̂i∗ =

τ ′i−min(τ∗
′
i )

(max(τ∗
′
i )−min(τ∗

′
i )

with

τ∗
′

i = log(τ∗i + ε), ε > 0.

3-G. We use C = 3 and draw from a normal distribution P (τ |ci) = N (i+ 1, 1.). This dataset tries
to imitate the setting from Fig. 13a as explained in 1. We generate 1000 events. Probability density is
shown in figure 13b. Models that are not taking time into account cannot solve this problem. Below
is the code. We create the Multi-G dataset similarly.
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(a) Car example explained in section 1 where prob-
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3-G: Probability density of events
Class 1
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Class 3

(b) Probability density of events in K-Gaussians
dataset. We can see that classes are independent of
history.

def generate():
data = np.zeros((1000, 2))
for i in range(1000):

i_class = np.random.choice(3, 1)[0]
time = np.random.normal(i_class + 1, 1.)
while time <= 0:

time = np.random.normal(i_class + 1, 1.)
data[i, 0] = i_class
data[i, 1] = time

return data
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Car Indicators. A sequence contains signals from a single car during one ride. We remove signals
that are perfectly correlated giving 6 unique classes in the end. Top 3 classes make up 33%, 32%, and
16% of a total respectively. From figure 14 we can see that the setting is again asynchronous.
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Car Indicators: Probability density of events
Class 1
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Figure 14: Probability density of events in Car Indicators dataset for 2 selected classes. Time is
log-transformed.

Graph. We generate graph G with 10 nodes and 48 edges between them. We assign variables µ
and σ to each transition (edge) between events (nodes). The time it takes to make a transition between
nodes i and j is drawn from normal distribution N (µij , σ

2
ij). By performing a random walk on the

graph we create 10 thousand events. This dataset is similar to K-Gaussians with the difference that a
model needs to learn the relationship between events together with the time dependency. Parts of the
trace are shown in figure 15.
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t

Random Graph: Event Sequence

Figure 15: Trace of events for random graph. Different colors represent different classes and width of
a single column represents the time that passed.

H Details of experiments

We test our models (WGP-LN, FD-Dir and DPP) against neural point process models (RMTPP
and Hawkes) and simple baselines (RNN and LSTM – getting only history as an input, F-RNN
and F-LSTM – having also the real time of the next event as an additional input; thus, they get a
strong advantage!). We test on real world (Stack Exchange, Car Indicators and Smart Home) and
synthetic datasets (Graph). We show that our models consistently outperform all the other models
when evaluated with class prediction accuracy and Time-Error.

H.1 Model selection

We apply the same tuning technique to all models. We split all datasets into train–validation–test
sets (60%− 20%− 20%), use the validation set to select a model and the test set to get final scores.
For Stack Exchange dataset we split on users. In all other datasets we split the trace based on
time. We search over dimension of a hidden state {32, 64, 128, 256}, batch size {16, 32, 64} and
L2 regularization parameter {0, 10−3, 10−2, 10−1}. We use the same learning rate 0.001 for all
models and an Adam optimizer [12], run each of them 5 times for maximum of 100 epochs with
early stopping after 5 consecutive epochs without improvement in the validation loss. For the number
of points M we pick 3 for WGP-LN and 20 for FD-Dir. WGP-LN and FD-Dir have additional
regularization (Eq. 7) with hyperparameters α and β. For both models we choose α = β = 10−3.
Model with the highest mean accuracy on the validation set is selected. We use GRU cell [4] for both
of our models. We trained all models on GPUs (1TB SSD).
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Table 1: Class accuracy comparison for all models on all datasets
Car Indicators Graph Smart Home Stack Exchange

FD-Dir 0.909 ± 0.005 0.701 ± 0.002 0.522 ± 0.013 0.522 ± 0.001
Dir-PP 0.912 ± 0.006 0.691 ± 0.006 0.415 ± 0.054 0.515 ± 0.002
WGP-LN 0.877 ± 0.010 0.685 ± 0.005 0.500 ± 0.017 0.519 ± 0.003

Hawkes 0.834 ± 0.022 0.585 ± 0.008 0.435 ± 0.017 0.513 ± 0.001
RMTPP 0.858 ± 0.004 0.257 ± 0.005 0.472 ± 0.016 0.492 ± 0.000
F-LSTM 0.855 ± 0.006 0.657 ± 0.002 0.411 ± 0.029 -
F-RNN 0.849 ± 0.013 0.615 ± 0.011 0.472 ± 0.035 -
LSTM 0.858 ± 0.010 0.251 ± 0.008 0.375 ± 0.026 -
RNN 0.838 ± 0.016 0.258 ± 0.008 0.437 ± 0.017 -

Table 2: Time-Error comparison for all models on all datasets
Car Indicators Graph Smart Home Stack Exchange

FD-Dir 0.115 ± 0.040 0.101 ± 0.001 0.111 ± 0.011 0.289 ± 0.019
WGP-LN 0.184 ± 0.047 0.120 ± 0.008 0.127 ± 0.010 0.077 ± 0.016
FD-Dir-PP 0.132 ± 0.031 0.106 ± 0.004 0.143 ± 0.022 0.375 ± 0.007

Hawkes 0.412 ± 0.091 0.158 ± 0.005 0.170 ± 0.035 0.507 ± 0.003
RMTPP 0.860 ± 0.004 0.257 ± 0.005 0.474 ± 0.016 0.721 ± 0.001
F-LSTM 0.277 ± 0.118 0.141 ± 0.002 0.209 ± 0.023 -
F-RNN 0.516 ± 0.105 0.146 ± 0.004 0.186 ± 0.011 -
LSTM 0.860 ± 0.010 0.251 ± 0.008 0.376 ± 0.026 -
RNN 0.841 ± 0.016 0.258 ± 0.008 0.439 ± 0.017 -

H.2 Results

Tables 1 and 2, together with Fig. 16 show test results for all models on all datasets for Class accuracy
and Time-Error.
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Figure 16: Class accuracy (top) and Time-Error (bottom) comparison across datasets

H.3 Time Prediction with Point Processes

The benefit of the point process framework is the ability to get the point estimate for the time τ̂ of the
next event:

τ̂ =

∫ ∞
0

tq(τ)dt (H.9)

where

q(τ) = λ0(τ) exp

(
−
∫ τ

0

λ0(s)ds

)
(H.10)
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The usual way to evaluate the quality of this prediction is using an MSE score. As we have already
discussed in Sec. 5, this is not optimal for our use case. Nevertheless, we did preliminary experiments
comparing our neural point process model FD-Dir-PP to others. We use RMTPP [5] since it achieves
the best results. On Car Indicators dataset our model has mean MSE score of 0.4783 while RMTPP
achieves 0.4736. At the same time FD-Dir-PP outperforms RMTPP on other tasks (see Sec. 5).
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