Appendix

A Figures

Figure 1: An example of a tent function and its corresponding regular subdivision. Notice that the
regular subdivision is not a regular triangulation.

Figure 2: Changing the height of the tent poles can change the induced regular subdivision (shown in
purple).

B Sampling Algorithm

The algorithm used in the proof of Lemma 3 is concerned mainly with part (1) in its statement. The
pseudocode of this sampling procedure is given in Algorithm 2.

Using the notation from Algorithm 2, part (2) is easier to describe and we thus omit the pseudocode.
We note that the following exposition of Algorithm 2 assumes that the input vector y is bounded. In
the execution of Algorithm 1, ||y|| is bounded linearly by the number of SGD iterates. Thus, the
dependence of the sampling runtime on ||y|| increases the overall runtime by at most a polynomial.

We now present the proof of Lemma 3. The pseudocode of the sampling procedure is given in
Algorithm 2. As stated in Section 4.1.2, Algorithm 2 uses subroutines for approximating the volume
of a convex body given by a membership oracle, and a procedure for sampling from the uniform
distribution supported on such a body. For these procedures we use the algorithms by [48], which are
summarized in Theorems 2 and 3 respectively.

Theorem 2 ([48]). The volume of a convex body K in R?, given by a membership oracle, can be
approximated to within a relative error of § with probability 1 — T using

d - poly(logd, 1/4,log(1/7))

13



oracle calls.

Theorem 3 ([48]). Given a convex body K C R%, with oracle access, and some § > 0, we can
generate a random point v € K that is distributed according to a distribution that is at most § away
[from uniform in total variation distance, using

d® - poly(log d, 1/9)
oracle calls.

Forall X = Xi,...,X,, € R y € R", and z € R?, we use the notation Hx () = exp(hx,,(7)).

In order to use the algorithms in Theorems 2 and 3 in our setting, we need a membership oracle
for the superlevel sets of the function H x ,. Such an oracle can clearly be implemented using the
LP (3.4). We also need a separation oracle for these superlevel sets, which is given in the following
lemma:

Lemma 4 (Efficient Separation). There exists a poly(n, d) time separation oracle for the superlevel
sets of Hx () = exp(hx y(x)).

Proof. To construct our separation oracle, we will rely on the covering LP that is dual to the packing
LP used to evaluate a tent function. The dual to the packing LP looks for the hyperplane that is above
all the (X}, y;) that has minimal y at x. More specifically, it is the following LP:

minimize Sy + Z?zl B

subjectto 3 € R4 3y + Z?zl BiXi; >y, i €[n],
where X; ; is the j-th coordinate of the vector X;. Now suppose that we are interested in a super
level set Ly, (I). We can use the above LP to compute hx () (and thus Hx ,(x)) and check if it
is in the superlevel set. Suppose that it is not, then there will be a solution 8 € R?*! whose value is
below In, say In ! — § for some § > 0. Consider an x’ in the halfspace 3y + Z;l:l Bijzi <Inl—4/2
which has z in the interior. Since x does not appear in the objective, [ is a feasible solution for the
dual LP (B.1) with y, 2/, and so hy(z’) < Inl — 6/2, which implies that 2’ is not in the superlevel
set. Therefore, S +>_; B2 = Inl — /2 is a separating hyperplane for x and the level set. This
completes the proof. O

(B.1)

Given all of the above ingredients, we are now ready to prove the main result of this section.

Proof of Lemma 3. We first prove part (1) of the assertion. To that end we analyze the sampling
procedure described in Algorithm 2. Recall that m = 1 + [||y||o0 |, and for any 4 € [m], we define
the superlevel set

Li={zeR?: Hx ,(x) > My, -27'}.
For any = € R? recall that
Gxy(z) = My, 27 Hos M, MHxa @)

For any A C R%, let x4 : R? — {0, 1} be the indicator function for A. It is immediate that for all
T € R,

GX,y(w) - J\[HX,y Zz_iXLi(x)
=1

m
= Mg, , ZQ_iXL,, () +27™xr,(m)  (since Hx y(x) =0forallz ¢ L,,)

i=1
Let
m .
c= Z 27'vol(L;) + 27" vol(Lyy,).
i=1
We have
m .
/ Gxy(r)dz = Mg, , <Z 27 "vol(L;) + 2mvol(Lm)> = Mg, c (B.2)
R - \izt
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Let
Gxy(x) = Gxy(@) /(M ).
It follows by (B.2) that G X,y 1s a probability density function.
Let D be the probability distribution on {1,. .., m}, where
Prropll =i] = { ;?lfff)/]i()L'j)_féc_m/c iii iirll’ come
For any i € [m], let u; be the uniform probability density function on L;. To sample from Gx _,, we
can first sample I ~ D, and then sample Z ~ uj.

Recall that px  : R? — R is the probability density function obtained by normalizing Hx ,; that
is, for all z € R? we have

Pxy(7) = Hx y(2)/c,
where

c’:/ Hx y(z)dx.
Rd

Consider the following random experiment: first sample Z ~ éy, and then accept with probability
Hx ,(Z)/Gx.(Z); conditioning on accepting, the resulting random variable Z € R is distributed

according to ﬁx,y. Note that since for all z € R%, Gx ,(7)/2 < Hx () < Gx (), it follows
that we always accept with probability at least 1/2. Let « be the probability of accepting. Then

0= [ Gy a) (Hxy ()G ) o
Rd

and thus

Hy y(x)da = / Gy (2)(Hx (1)) Gox (1))
R(l Ril

=My [ Goxy(0)Hicy )/ Gy o))
]R«],
= MHX&/ca . (B.3)

By Theorem 2, for cach i € [m], we compute an estimate, vol(L;), to vol(L;), to within relative
error &, using poly(d, 1/8,1og(1/7")) oracle calls, with probability at least 7/, where 7/ = 7/n®, for
some constant b > 0 to be determined; moreover, by Theorem 3, we can efficiently sample, using
poly(d, 1/§) oracle calls, from a probability distribution @; with ||u; — ;|| < §. Each of these oracle
calls is a membership query in some superlevel set of Hx ,. This membership query can clearly be
implemented if we can compute that value H,, at the desired query point , which can be done in
time poly(n, d) using LP (3.4). Thus, each oracle call takes time poly(n, d). Let

&= "27ol(L;) + 27 "vol(Ly). (B.4)
=1

Since for all i € [m], vol(L;)/(1 +§) < \gl(Li) < wvol(L;)(1 + §), it is immediate that
c/(1+9)<c<c(l+9).
Recall that Algorithm 2 uses the probability distribution D on [m], where
Pr, (=] = { vol(L,) 2fE el m—1)
2-vol(Ly,)-27™/c ifi=m
Consider the following random experiment, which corresponds to Steps 5-6 of Algorithm 2: We first

sample I ~ D, and then we sample Z ~ ;. The resulting random vector Z € R is distributed
according to

Gxy(x) = % (Z 27 vol(L )iy () + z-mva(L,n)am(x)) :
=1
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Next, consider the following random experiment, which captures Steps 5—8 of Algorithm 2: We
sample Z ~ G x,y» and we accept with probability Hx (Z)/Gx 4 (Z). Let Hyx .y be the resulting

probability density function supported on R¢ obtained by conditioning the above random experiment
on accepting. Let & be the acceptance probability. We have

6= [ (Hyy(o)/Gxy (@) Gla)de
Rd

We have
m—1 vol
1Dy = Duly = 3 2 [l vollL) | 4y g, |¥0MEn) _ Yol(L)
i=1 ¢ ‘ ‘
Y gt [Vl volL( D)y o |0l ol(En)(1+0)
= c c¢/(1+49) ¢ ¢/(1+9)
m—1
l L 1 L’"L
SZQ ’LVO( )35+2 2mM35
i=1 ¢ ‘
= 36.

It follows that
1Gxy = Gxyl < [|1Di = Dif| + max[lu; — tfly < 30 + 6 < 49,

Hy,(2) :
<
Jait Gx y(2) ‘GX*Q Gyl )‘d‘l /R

Note that px  (z) /a = Gix, (2) G245 and Hx, (2)/8 = G x, () G242 and so

1Hx,y = pxylh < <||HX7y/04 —pxy/alli +[px.y/a - px7y/a||1) (by the triangle inequality)
= (||Hx,y/0é —pxy/al+[1/a— 1/04)
= Ol/]Ri(HX,y(x)/GX,y(l’))|GX’y(q;) _pX,y(II?)| T |a B &|/a

<llpxy = Gxyll + 2[a — 4]

< 124,
which establishes that the random vector Z that Algorithm 2 outputs is distributed according to a
probability distribution ¢ such that ||¢~> — px,yll1 < 104, as required.

Gy () Gy ()] do < |Gy Gyl < 45

In order to bound the running time, we observe that all the steps of the algorithm can be implemented
in time poly(n, d, ||y|loo, 1/9,10g(1/7)). The most expensive operation is approximating the volume
of a superlevel set L; and sampling for L;, using Theorems 2 and 3. By the above discussion, using
LP (3.4) and Lemma 4 each of these operations can be implemented in time poly(n, d, 1/4,log(1/7)).
The algorithm succeeds if all the invocations of the algorithm of Theorem 2 are successful; by the
union bound, this happens with probability at least 1 — 7/poly(n) = 1 — 7'n’poly(n) > 1 — 7,
where the inequality follows by choosing some sufficiently large constant b > 0. This establishes
part (1) of the Lemma.

It remains to prove part (2). By (B.3) we have that v = My,  co. Algorithm Ay proceeds as
follows. First, we compute My, . By the convexity of hx ,, it follows that the maximum value
of My, , is attained on some sample point x;; that is, My, = maX;e[n) Hx y(7;). Since we
can evaluate H,, in polynomial time using LP (3.4), it follows that we can also compute My, in
polynomial time. Next, we compute ¢ using formula B.4. Arguing as in part (1), this can be done
in time poly(n, 1/6,log(1/7)), and with probability at least 1 — 7/2. Finally, we estimate &. The
value of & is precisely the acceptance probability of the random experiment described in Steps 5-8
of Algorithm 2. Since o > 1/2, and |ov — &] < 44, it follows that for § < 1/16, we can compute
an estimate @ of the value of @&, to within error 1 4+ O(J), with probability at least 1 — 7/2, after
O(log(1/7)) repetitions of the random experiment. The output of algorithm Ay is 7' = My,  ca.
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We obtain that, with probability at least 1 — 7, we have
v = Mp, ,ca < My, ,c(1+0)a(l+0(5)) =14 0(9)),
and
V' = Mpy ,ca > My, ,(c/(1+6))(e/(1+0(3))) = v/(1 +0(3)) ,
which concludes the proof. O

C Introduction To Exponential Families

In this section, we give a brief overview of exponential families that covers just the material necessary
to appreciate the connection between exponential families and the log-concave maximum likelihood
problem. We refer to [61] for a more complete treatment of exponential families.

An exponential family parameterized by 6 € R™ with sufficient statistic T'(x), with carrier density h
measurable and non-negative is a family of probability distributions of the form

po(z) = exp((T'(2), 6) — A(0))h().
The log-partition function A(#) is defined to normalize the integral of the density

A(0) = log/exp(<T(:r),9>)h(m)dx.

It makes sense to restrict our attention to values of 0 that give a valid probability density. The sct of
Canonical Parameters © is defined such that © = {6 | A() < oo}.

We say that an exponential family is minimal if 6, # 65 implies py, # pg,. This is necessary and
sufficient for statistical identifiability.

One reason exponential families are well studied is that we have an algorithm that computes the
maximum likelihood estimate via a convex program.

The maximum likelihood parameters 6* for a set of iid samples X, ..., X, are:
f* = arg max Hpg(Xi) = arg max log Hpg(Xi)
0 ; 0 ;

= arggnaxZ(T(Xi), 0) —nA(0) — Zlog h(z;) = arg;nax <% ZT(X,'),6'> — A(9)

(C.1)

We refer to the optimization in Equation (C.1) as the exponential maximum likelihood optimization.
The last equation helps highlight why 7'(z) is referred to as the sufficient statistic. No other
information is needed about the data points to compute both the likelihood and the maximum
likelihood estimator.

One reason why exponential families are important is that the geometry of the optimization in
Equation (C.1) has several nice properties.

Fact 3. A(6) of exponential families satisfies the following properties: (a) A() € C* on ©. (b)
A(0) is convex. (c) AA(0) = Eqp(o)[T'()]. (d) If the exponential family is minimal, A(0) is strictly
convex.

Note that properties (b), (¢) are very similar to the definition of locally exponential families. The
fact that tent distributions maintain some of these properties is exactly what enables the efficient
algorithm in this paper.

C.1 Analogy Between Log-Concave MLE and Exponential Family MLE

In the case of exponential families, at each time step, the algorithm maintains a distribution (from
the hypothesis class) and generates a single sample from this distribution. The sufficient statistic
of the exponential family can then be used to compute a subgradient. The computational efficiency
follows from the convexity of the log-likelihood function, and existence of efficient samplers and
procedures for computing the sufficient statistic. We portray this stochastic gradient method for
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exponential families, together with the analogous form of our algorithm for log-concave distributions.

Exponential Family MLE Log-Concave MLE
Optimization Formulation: Optimization Formulation:
max(p,y) ~log [exp (@) de  mix{Ly) ~log [ exp (T, (@).1) da

Algorithm 3 Stochastic First Order Algorithm  Algorithm 4 Stochastic First Order Algorithm
function COMPUTEEXPFAMMLE(X,...X,) function COMPUTELOGCONMLE(X},...X},)

Y < Yinit y<+0
for i < 1,m do for i <+ 1,m do

s~ p(y) > sample s~ p(X,y)

y < y+mn (u—T(s)) b subgradient Yy y+m (21, — Txy(s))
return y return y

D Learning Multivariate Log-Concave Densities

In this section, we combine our Theorem 1 with known sample complexity bounds to give the
first computationally efficient and sample near-optimal proper learner for multivariate log-concave
densities.

Recall that the squared Hellinger loss between two distributions with densities f, g : R — R is

h*(f.g) = (1/2) - [pu(\/F(z) — /g(x))*dz. Combined with the known rate of convergence of
the log-concave MLE with respect to the squared Hellinger loss [16, 23], Theorem 1 implies the

following:

Theorem 4. Fixd € 7, and 0 < ¢,7 < 1. Let n = ((d2/e)ln(1/r)))(d+l)/2. There is an
algorithm that, given n iid samples from an unknown log-concave density fo € Fy, runs in poly(n)

time and outputs a log-concave density h* € F, such that with probability at least 1 — T, we have
that h?(h*, fy) < e.

We note that Theorem 4 yields the first efficient proper learning algorithm for multivariate log-concave
densities under a global loss function. The proof follows by combining Theorem 1 with the following
lemma:

Lemma 5. Let n = Q4((1/¢) ln(l/(er)))(d+1)/2. Let [, be the MLE of n samples drawn from
fo € Fa Let h* be a log-concave density that is supported on the convex hull of the samples with
0(h*) > U(fn) — €/16 . Then with probability at least 1 — T over the samples, h*>(h*, fo) < e.

We write f,, for the empirical density over the samples X1, ..., X,,. The proof is a minor modification
of the arguments in Section 3 of [16], using the following lemma [23]:

Lemma 6 (Theorem 4 from [23]). For any t > 0, we have except with probability 2 exp(—2t2) that
for any convex set C,

|£n(C) = fo(C)| < Oa(n™/ 1) 4 t/\/n .

Proof. The proof follows Section 3 of [16], except that we need to replace Lemma 10 of that paper

with Lemma 6 and that we use h* in place of f,,. We will sketch the proofl here and highlight the
modified components of that proof.

Lemma 10 of [16] had that, except with probability 7/3, for all convex sets C, |f,(C) —
£o(C)] < €/32In(100n%/72). We take n = Qq ((1/€)In(1/(er)) /% and t = /In(6/7)/2
in Lemma 6 and so n~ %@+ — Oy(e/In(1/er)) = Og(e¢/In(n/7) and t/y/n <
VIn(7)(e/(In(er)))~(4+1/2 < O(e/In(n/T)) for d > 2. With a sufficiently large constant in

the Q4, we obtain that | f,,(C) — fo(C)| < ¢/K In(100n*/72) except with probability 7/3 where K
is a constant large enough to make the subsequent proof work.

This gives the improved sample complexity. We now need to argue that replacing fAn with h* does
not affect the proof.
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Corollary 9 of [16] gave that except with probability 7/10, all samples lie in a set .S, which is
the set where fo(2) > Pmin fOr pmin = My, / (n*100/72), where we use the notation M ¢ for the

maximum value of a density f.. When this holds both f,, and A* are supported on S. Examination
of the proof of Lemma 18 from [16] shows that we can relax the inequality ng) < U(fo) to
0(f) < £(fo) — €/16 for any f with maximum value My has My = Q(In(100n"/72)). In partuclar,

since f(h*) > g(fn)) - E/16 > E(fo) - 6/16, we have M- = 0(111(100714/7—2))‘
Then we define g;,(x) supported on S as the normalisation of max{pmyin, h*(x)} for x € S. The

proof of Lemma 17 in [16] required only that ﬁl is supported on S and so we can obtain the same
result for g, and h*(z)} i.e. that gn(x) = o max{pmin, h*(x)} for 1 — €/32 < a < 1 and that the
total variation distance is small,

drv (gn, h*) < 3¢/64 . D.1)

Note that since the superlevel sets of In max{pmin, h*(z)} are convex, we can use our application of
Lemma 6 to bound the error in it’s expectation as

|Ex~ s [1s In(max{h*(X), pmin})] — Ex~y,[ls In(max{h*(X), pmin })]| < (Mp+ — Pmin)e/K ln(100n4/7'2)

<e/d (D.2)
for large enough K.
We now follow the proof of Lemma 19 in [16]. We have that
Ex~f[Ingn(X)] = Ex~y,[ls(x) In(amax{pmin. h* (z)})]
> Ex~,[ls(z) Inmax{pmin, h*(z)}]—€/16 (sincea > 1 —€/32)
> Ex~j,[ls In(max{h*(X), pmin})|—€/16
> Exw, [Ls In(max{h* (X), pmin})]~3¢/16 by (D.2)
1 ,
> = Zlnh (X:)—3¢/16
1 ~
> ) I fu(Xi)—e/4
7
1
= Zln fo(X;)—€/4
> Ex~g,[In fo(X)]—3¢/8. (using Lemma 14 of [16])
(D.3)

Thus, we obtain that

KL(follg) = Ex~ o[ fo(X)] = Exn o [Ingn(X)] < 3¢/8. (D.4)
For the next derivation, we use that the Hellinger distance is related to the total variation distance and

the Kullback-Leibler divergence in the following way: For probability functions k1, ky : R — R,
we have that h%(ky, k2) < drv (K1, k2) and h?(k1, ko) < KL(ky||k2). Therefore, we have that

h(fo, h*) < h(fo,gn) + h(gn, k™)
< KL(follgn)"? + drv (gn, h*)'/?
= (3¢/8)Y/2 + (3¢/64)1/2 (by (D.4) and (D.1))
<2,
concluding the proof. O
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