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1 Marginal likelihood derivation

To extend to multivariate observations Y = {y(l), sy P )} where y(?) denotes the observations of
the dth variable (e.g., a feature dimension of EEG recording, a census tract’s crime occurrence), By
exploiting the conditional independence of Y, the marginal likelihood for the multivariate observations
is:
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2 Efficient inference

The posterior distribution of £(%) as
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3 Estimating the kernel parameters

To estimate the hyper-parameters of the kernels, we adopt the empirical Bayes approach for continuous
optimization methods. In particular, we maximize the marginal likelihood by marginalizing out the
latent function f. This moves us up one level of the Bayesian hierarchy, and reduces the chances
of overfitting, since the number of kernel parameters is fairly small in our setting. Z specifies the
covariance structure in terms of the combinations of x4 and . Both of the kernel functions are
parametrized by the hyperparameters {/,, O'g, a]%}. We thus illustrate our method on a more general

form of p(Y'|Z, 0?):

The exponential term of Eqn. (1) — %gT(% + Z%,Z")y measures how well the model fits the data,

the normalizing constant term log |27T% 2| — log 12754 % measures model complexity, and the
third one is just a constant. The tradeoff between the first two terms provides us a simpler model
fitting the data well. In 1d case of a SE kernel, as the length scale ¢ varies and hold 05 fixed. For short

length scales, the fit will be good, so —%QT(% +2Z%47 )7 will be small. However, the model
complexity will be high: K will be almost diagonal and most points will not be considered “near” any

others, so the log |27 Z}f)'g E | —log 27X, ] 2 will be large. For long length scales, the fit will be poor
Zylg

but the model complexity will be low: K will be almost all 1's, so log |27 = 2| — log |27r2y‘g\%
will be small.

To maximize the marginal likelihood, let the hyper-parameters be denoted by 6 = {l,, 07,07 }. By

defining K, = =42 4 75,77, we can show that
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This derivation needs the rules: %A(w)*l = —A(x)*l(a%A(a:))A(x)*l and %\A(mﬂ =

|A(x)\tr(A(x)’1a%A(x)). It takes O(N?3) time to compute K1, and then O(NN?) time per hyper-
parameter to compute the gradient. To meet the constraints on the hyper-parameters, such as 03 >0,

so we define § = log(az), and then use the chain rule. Given an expression for the log marginal
likelihood and its derivative, we can estimate the kernel parameters using any standard gradient-based
optimizer. However, since the objective is not convex, local minima can be a problem. Alternatively,
we can adopt Hamiltonian Monte Carlo method to sample the hyperparameters.

4 More experiment results
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(a) log marginal likelihood Vs. K

(b) observation PIB features

20 a0 0 a0 o0t

(c) prediction PIB features

Figure 1: (a) Log marginal likelihoods of the negative iEEG observations without SOZ events
with different K. (b) Spectral characteristics of a patient’s positive iEEG observation’s PIB features
with SOZ events (top) and negative iEEG observation’s PIB features without SOZ events (bottom).
(c) Spectral characteristics of our model’s predictions on the corresponding positive and negative
observations averaged over 4000-7000 random samples of 3 Gibbs sampling chains.
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Figure 2: (a) Crime occurrence rates of the 179 CTs in Washington D.C. in 2015-2019. (b) Posterior
means of the 179 CTs over time and the empirical mean (red).
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Figure 3: Monthly averaged crime rates maps of the ground truth (left) and the corresponding maps

of predictive posterior mean rates ¥y,
Gibbs sampling chains (right) in 2019.
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using the samples from 4000 to 7000 iterations of the 3
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