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A Complete ImageNet results1

Here we provide the results used for generating the ImageNet figures in tables 1 ~5.

Table 1: Val. accuracy and robustness of Resnet-50 models trained with ε = 3.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.078% 0.024% 0.014%
Free m = 2 69.634% 29.652% 28.094% 27.952%
Free m = 4 61.968% 37.332% 37.108% 37.096%
Free m = 6 58.096% 35.388% 35.172% 35.202%
Free m = 8 55.938% 33.150% 32.922% 32.906%

Table 2: Validation accuracy and robustness of Resnet-50 models trained with ε = 4.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.072% 0.014% 0.010%
Free m = 2 68.126% 23.902% 21.224% 20.978%
Free m = 4 60.206% 32.768% 31.878% 31.816%
Free m = 6 55.988% 30.804% 30.282% 30.250%
Free m = 8 52.190% 29.004% 28.624% 28.608%

Table 3: Validation accuracy and robustness of Resnet-50 models trained with ε = 5.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.058% 0.012% 0.006%
Free m = 2 67.536% 20.810% 16.652% 16.240%
Free m = 4 59.052% 28.000% 26.342% 26.262%
Free m = 6 53.326% 26.746% 25.670% 25.670%
Free m = 8 50.570% 25.854% 25.086% 25.080%
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B The effect of batch-size3

Our free training algorithm produces state-of-the-art results on CIFAR-10 and CIFAR-100 and results4

in robust models on ImageNet. We see that the ImageNet results are more sensitive to the replay5
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Table 4: Validation accuracy and robustness of Resnet-50 models trained with ε = 6.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.052% 0.010% 0.008%
Free m = 2 63.628% 14.216% 9.038% 8.612%
Free m = 4 56.808% 24.912% 21.728% 21.506%
Free m = 6 49.972% 23.874% 21.872% 21.828%
Free m = 8 47.882% 23.122% 21.266% 21.228%

Table 5: Validation accuracy and robustness of Resnet-50 models trained with ε = 7.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.046% 0.012% 0.006%
Free m = 2 64.256% 0.084% 0.028% 0.018%
Free m = 4 53.824% 22.168% 16.654% 16.297%
Free m = 6 47.388% 13.232% 7.508% 6.576%
Free m = 8 44.314% 13.954% 9.390% 8.828%

parameter m. While, our best results for CIFARs were with m = 8, our best ImageNet result is with6

m = 4. We believe that can be due to the ratio of number of classes (Nc) over batch-size (b). Our7

batch-size in the CIFAR experiments was 128. Since, we ran our ImageNet experiments on a single8

node with four GPUs, we were only able to use a batch-size of 256. If Nc/b is large and m is large,9

the probability that we do not see an example for some random class for more than m iterations10

becomes large. This can result in catastrophically forgetting that class. To see the effect of batch-size11

in practice, we experimented with changing b for CIFAR-100 and m = 8. In these experiments,12

we adjusted the learning-rate when we changed the batch-size. We used the linear learning-rate13

adjustment rule. The results which are consistent with our guess are summarized in fig. 1.14

Figure 1: If the number of classes (Nc) is large, having a larger batch-size (b) can result in better
robustness and generalization specially for larger values of m. In this experiment, we use m = 8
which yields the best result for CIFAR-100 (Nc = 100), and vary b ∈ 16, 32, 64, 128.

C Conventional K-PGD adversarial training15

For completeness, we summarize the K-PGD `∞ algorithm in alg. 1.16
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Algorithm 1 Standard Adversarial Training (K-PGD)

Require: Training samples X , perturbation bound ε, step size εs, maximization iterations per
minimization step K, and minimization learning rate τ

1: Initialize θ
2: for epoch = 1 . . . Nep do
3: for minibatch B ⊂ X do
4: Build xadv for x ∈ B with PGD:
5: Assign a random perturbation
6: r ← U(−ε, ε)
7: xadv ← x+ r
8: for k = 1 . . .K do
9: gadv ← ∇xl(xadv, y, θ)

10: xadv ← xadv + εs · sign(gadv)
11: xadv ← clip(xadv, x− ε, x+ ε)
12: end for
13: Update θ with stochastic gradient descent:
14: gθ ← E(x,y)∈B [∇θ l(xadv, y, θ)]
15: θ ← θ − τgθ
16: end for
17: end for
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