
Adversarial Training for Free!

Anonymous Author(s)
Affiliation
Address
email

A Complete ImageNet results1

Here we provide the results used for generating the ImageNet figures in tables 1 ~5.

Table 1: Val. accuracy and robustness of Resnet-50 models trained with ε = 3.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.078% 0.024% 0.014%
Free m = 2 69.634% 29.652% 28.094% 27.952%
Free m = 4 61.968% 37.332% 37.108% 37.096%
Free m = 6 58.096% 35.388% 35.172% 35.202%
Free m = 8 55.938% 33.150% 32.922% 32.906%

Table 2: Validation accuracy and robustness of Resnet-50 models trained with ε = 4.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.072% 0.014% 0.010%
Free m = 2 68.126% 23.902% 21.224% 20.978%
Free m = 4 60.206% 32.768% 31.878% 31.816%
Free m = 6 55.988% 30.804% 30.282% 30.250%
Free m = 8 52.190% 29.004% 28.624% 28.608%

Table 3: Validation accuracy and robustness of Resnet-50 models trained with ε = 5.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.058% 0.012% 0.006%
Free m = 2 67.536% 20.810% 16.652% 16.240%
Free m = 4 59.052% 28.000% 26.342% 26.262%
Free m = 6 53.326% 26.746% 25.670% 25.670%
Free m = 8 50.570% 25.854% 25.086% 25.080%

2

B The effect of batch-size3

Our free training algorithm produces state-of-the-art results on CIFAR-10 and CIFAR-100 and results4

in robust models on ImageNet. We see that the ImageNet results are more sensitive to the replay5

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Table 4: Validation accuracy and robustness of Resnet-50 models trained with ε = 6.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.052% 0.010% 0.008%
Free m = 2 63.628% 14.216% 9.038% 8.612%
Free m = 4 56.808% 24.912% 21.728% 21.506%
Free m = 6 49.972% 23.874% 21.872% 21.828%
Free m = 8 47.882% 23.122% 21.266% 21.228%

Table 5: Validation accuracy and robustness of Resnet-50 models trained with ε = 7.

Training Evaluated Against
Natural Images PGD-10 PGD-50 PGD-100

Natural 76.038% 0.046% 0.012% 0.006%
Free m = 2 64.256% 0.084% 0.028% 0.018%
Free m = 4 53.824% 22.168% 16.654% 16.297%
Free m = 6 47.388% 13.232% 7.508% 6.576%
Free m = 8 44.314% 13.954% 9.390% 8.828%

parameter m. While, our best results for CIFARs were with m = 8, our best ImageNet result is with6

m = 4. We believe that can be due to the ratio of number of classes (Nc) over batch-size (b). Our7

batch-size in the CIFAR experiments was 128. Since, we ran our ImageNet experiments on a single8

node with four GPUs, we were only able to use a batch-size of 256. If Nc/b is large and m is large,9

the probability that we do not see an example for some random class for more than m iterations10

becomes large. This can result in catastrophically forgetting that class. To see the effect of batch-size11

in practice, we experimented with changing b for CIFAR-100 and m = 8. In these experiments,12

we adjusted the learning-rate when we changed the batch-size. We used the linear learning-rate13

adjustment rule. The results which are consistent with our guess are summarized in fig. 1.14

Figure 1: If the number of classes (Nc) is large, having a larger batch-size (b) can result in better
robustness and generalization specially for larger values of m. In this experiment, we use m = 8
which yields the best result for CIFAR-100 (Nc = 100), and vary b ∈ 16, 32, 64, 128.

C Conventional K-PGD adversarial training15

For completeness, we summarize the K-PGD `∞ algorithm in alg. 1.16

2



Algorithm 1 Standard Adversarial Training (K-PGD)

Require: Training samples X , perturbation bound ε, step size εs, maximization iterations per
minimization step K, and minimization learning rate τ

1: Initialize θ
2: for epoch = 1 . . . Nep do
3: for minibatch B ⊂ X do
4: Build xadv for x ∈ B with PGD:
5: Assign a random perturbation
6: r ← U(−ε, ε)
7: xadv ← x+ r
8: for k = 1 . . .K do
9: gadv ← ∇xl(xadv, y, θ)

10: xadv ← xadv + εs · sign(gadv)
11: xadv ← clip(xadv, x− ε, x+ ε)
12: end for
13: Update θ with stochastic gradient descent:
14: gθ ← E(x,y)∈B [∇θ l(xadv, y, θ)]
15: θ ← θ − τgθ
16: end for
17: end for

3


