
References

[1] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth

annual ACM symposium on Theory of Computing, pages 684–697. ACM, 2016.

[2] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant neural
networks. arXiv preprint arXiv:1901.06082, 2019.

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, July 2017.

[4] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[5] Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph
neural networks. Internation Conference on Learning Representations, 2019.

[6] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314, 1989.

[7] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages 2224–
2232, 2015.

[8] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[10] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017.

[11] Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, and Amir Globerson. Mapping
images to scene graphs with permutation-invariant structured prediction. In Advances in Neural

Information Processing Systems, pages 7211–7221, 2018.

[12] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4:251–257, 1991.

[13] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
arXiv preprint arXiv:1905.04943, 2019.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[16] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. In International Conference on Learning Representations, 2019.

[17] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Lipman Yaron. Provably powerful
graph networks. arXiv preprint arXiv:1905.11136, 2019.

[18] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. 2018.

[19] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. arXiv preprint arXiv:1901.09342, 2019.

[20] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. Association for the Advancement of Artificial Intelligence, 2019.

10

[21] Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. arXiv preprint arXiv:1903.02541, 2019.

[22] Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms
for quadratic assignment with graph neural networks. arXiv preprint arXiv:1706.07450, 2017.

[23] Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of robust graph
isomorphism, lasserre gaps, and asymmetry of random graphs. In Proceedings of the twenty-fifth

annual ACM-SIAM symposium on Discrete algorithms, pages 1659–1677. Society for Industrial
and Applied Mathematics, 2014.

[24] Motakuri V Ramana, Edward R Scheinerman, and Daniel Ullman. Fractional isomorphism of
graphs. Discrete Mathematics, 132(1-3):247–265, 1994.

[25] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. Proceedings of the 34th International Conference on Machine Learning, 2017.

[26] Horace Pan Shubhendu Trivedi Brandon Anderson Risi Kondor, Hy Truong Son. Covariant
compositional networks for learning graphs, 2018.

[27] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[29] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

[30] B Weisfeiler and A Leman. The reduction of a graph to canonical form and the algebra which
appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12-16, 1968.

[31] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[32] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[33] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv

preprint arXiv:1806.03536, 2018.

[34] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1365–1374. ACM, 2015.

[35] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. arXiv

preprint arXiv:1804.10306, 2018.

[36] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning, pages 7134–7143, 2019.

[37] Qing Zhao, Stefan E Karisch, Franz Rendl, and Henry Wolkowicz. Semidefinite programming
relaxations for the quadratic assignment problem. Journal of Combinatorial Optimization,
2(1):71–109, 1998.

11

A Proofs on universal approximation and graph isomorphism

Lemma 1. If C is GIso-discriminating, then for all G 2 Xn⇥n, there exists a function ˜hG 2 C+1

such that for all G0, ˜hG(G
0
) = 0 if and only if G ' G0.

Proof of Lemma 1. Given G,G0 2 Xn⇥n with G 6' G0, let hG,G0 2 C be the function that distin-
guishes this pair, i.e. hG,G0

(G) 6= hG,G0
(G0

). Then define a function hG,G0 by

hG,G0
(G⇤

) = |hG,G0
(G⇤

)� hG,G0
(G)|

= max(hG,G0
(G⇤

)� hG,G0
(G), 0) + max(hG,G0

(G)� hG,G0
(G⇤

), 0)
(1)

Note that if G⇤ ' G, then hG,G0
(G⇤

) = hG,G0
(G), and so hG,G0

(G⇤
) = 0. If G⇤ ' G0, then

hG,G0
(G⇤

) > 0. Otherwise, hG,G0
(G⇤

) � 0.

Next, define a function ˜hG by ˜hG(G
⇤
) =

P
G02Xn⇥n,G0 6'G hG,G0

(G⇤
). If G⇤ ' G, we have

˜hG(G
⇤
) = 0, whereas if G⇤ 6' G then ˜hG(G

⇤
) > 0.

Thus, it suffices to show that ˜hG 2 C+1. We take the finite subcollection of functions,
{hG,G0}G02Xn⇥n,G 6'G0 , and feed the input graph G0 to each of them to obtain a vector of out-
puts. By equation 1, hG,G0

(G⇤
) can be obtained from hG,G0

(G⇤
) by passing through one ReLU layer.

Finally, a finite summation across G0 6' G yields ˜hG(G
⇤
). Therefore, ˜hG 2 C+1, 8G 2 Xn⇥n.

Lemma 2 Let C be a class of permutation-invariant functions from Xn⇥n to R so that for all
G 2 Xn⇥n, there exists ˜hG 2 C satisfying ˜hG(G

0
) = 0 if and only if G ' G0. Then C+1 is

universally approximating.

Proof of Lemma 2. In fact, in the finite feature setting we can obtain a stronger result: for all f that
is permutation-invariant, f 2 C+1, and so no approximation is needed.

We first use the ˜hG’s to construct all the indicator functions 1G'G⇤ as functions of G⇤ on Xn⇥n. To
achieve this, because Xn⇥n is finite, 8G, we let �G =

1
2 minG02Xn⇥n,G0 6'G |˜hG(G

0
)| > 0. We then

introduce a “bump” function from R to R with parameters a and b, a,b(x) = ((x� b)/a), where
 (x) = max(x� 1, 0) +max(x+ 1, 0)� 2max(x, 0). Then a,b(b) = 0, and supp(a,b) = (b�
a, b+ a). Now, we define a function 'G from X = {1, ...,M} to R by 'G(G

⇤
) = �G,0(

˜hG(G
⇤
)).

Note that 'G(G
⇤
) = 1G'G⇤ as a function of G⇤ on Xn⇥n.

Given f , thanks to the finiteness of the input space Xn⇥n, we decompose it as f(G⇤
) =

(

1
|Sn|

P
G2Xn⇥n 1G'G⇤

)f(G⇤
) =

1
|Sn|

P
G2Xn⇥n f(G)1G'G⇤

=

1
|Sn|

P
G2Xn⇥n f(G)'G(G

⇤
).

The right hand side can be realized in C+1, since we can first take the finite collection of functions
{˜hG}G2Xn⇥n and obtain {˜hG(G

⇤
)}G2Xn⇥n . Then, with an MLP with one hidden layer, we can

obtain {'G(G
⇤
)}G2Xn⇥n , a linear combination of which gives the right hand side, since each “f(G)”

within the summation is a constant.

Theorem 3. If C is universally approximating, then it is also GIso-discriminating

Proof of Theorem 3. 8G1, G2 2 K, if G1 6' G2, define f1(G) = min⇡2Sn d(G1,⇡
|G⇡). It is a

continuous and permutation-invariant function on K, and therefore can be approximated by a function
h 2 C to within ✏ = 1

2f1(G2) > 0 accuracy. Then h is a function that can discriminate between G1

and G2.

Lemma 3. If C, a collection of continuous permutation-invariant functions from K to R, is pairwise
distinguishing, then C+1 is able to locate every isomorphism class.

Proof of Lemma 3. Fix any G 2 K. 8G0 6' G 2 K, 9hG,G0 2 C such that hG,G0
(G) 6=

hG,G0
(G0

). For each G0, define a set AG0 as h�1
G,G0((hG,G0

(G0
)� |hG,G0 (G0)�hG,G0 (G)|

2 , hG,G0
(G0

)+

12

dd

ee

Figure 3: Illustrating the definition of GIso-discriminating. G,G0 and G00 are mutually non-
isomorphic, and each of the big circles with dashed boundary represents an equivalence class
under graph isomorphism. hG,G0 is a permutation-invariant function that obtains different values on
equivalence class of G and on that of G0, and similar hG,G00 . If the graph space has only these three
equivalence classes of graphs, then C = {hG,G0 , hG,G00} is GIso-discriminating.

|hG,G0 (G0)�hG,G0 (G)|
2)) ✓ K. Obviously G0 2 AG0 and G does not. Since hG,G0 is assumed continu-

ous, A0
G is an open set for each G0 6' G. If G0 ' G, define AG0

= B(G0, ✏), the open ✏-ball in K
under the Euclidean distance.

Thus, {AG0}G02K is an open cover of K. Since K is compact, 9 a finite subset K0 of K such that
{AG0}G02K0 also covers K.

Hence, 8G⇤ 2 K, 9G0 2 K0 such that G⇤ 2 AG0 . Moreover, 8G⇤ 2 K \ (

S
G02E(G) AG0

) =

K \ (
S

⇡2Sn
B(⇡|G⇡, ✏)), where E(G) represents the equivalence class of graphs in K consisting

of graphs isomorphic to G, 9G0 2 K0 \ E(G) such that G⇤ 2 AG0 .

Now define a function ˜hG on K by ˜hG(G
⇤
) =

P
G02K0\E(G) hG,G0

(G⇤
), where hG,G0

(G⇤
) =

max(

2
3 |hG,G0

(G) � hG,G0
(G0

)| � |hG,G0
(G⇤

) � hG,G0
(G0

)|, 0). Since each hG,G0 in continuous,
˜hG is also continuous. Thus, we can show that ˜hG is the desired function in Definition 4:

• hG,G0 is nonnegative 8G,G0, and hence ˜hG is nonnegative on K

• If G⇤ ' G, then as each hG,G0 is permutation invariant, there is hG,G0
(G⇤

) = hG,G0
(G),

and hence hG,G0
(G⇤

) = 0. Thus, ˜hG(G
⇤
) = 0.

• If 8⇡ 2 Sn, d(⇡
|G⇤⇡, G) � ✏, then G⇤ 2 K \

S
G02E(G) AG0 . Therefore, 9G0 2

K \ E(G) such that G⇤ 2 AG0 , which implies that |hG,G0
(G⇤

) � hG,G0
(G0

)| <
1
2 |hG,G0

(G) � hG,G0
(G0

)| < 2
3 |hG,G0

(G) � hG,G0
(G0

)|. Therefore, 2
3 |hG,G0

(G) �
hG,G0

(G0
)|�|hG,G0

(G⇤
)�hG,G0

(G0
)| > 1

6 |hG,G0
(G)�hG,G0

(G0
)| > 0, and so ˜hG(G

⇤
) �

hG,G0
(G⇤

) > 1
6 |hG,G0

(G) � hG,G0
(G0

)|. Define �G =

1
6 minG02K0\E(G) |hG,G0

(G) �
hG,G0

(G0
)| > 0. Then if ˜hG(G

⇤
) < �G, it has to be the case that G⇤ 2

S
G02E(G) AG0

=S
⇡2Sn

B(⇡|G⇡, ✏), implying that 9⇡ 2 Sn such that d(G⇤,⇡|G⇡) < ✏.

Finally, it is clear that ˜hG can be realized in C+1.

13

Lemma 4. Let C be a class of permutation-invariant functions K ! R. If C is able to locate every
isomorphism class, then C+2 is universally approximating.

Proof of Lemma 4. Consider any f that is continuous and permutation-invariant. Since K is compact,
f is uniformly continuous on K. Therefore, 8✏ > 0, 9r > 0 such that 8G1, G2 2 K, if d(G1, G2) <
r, then |f(G1)� f(G2)| < ✏.

Given 8G 2 K, choose the function hG in definition 2. Use h�1
G (a) to denote h�1

G ([0, a)). Then
9�G such that h�1

G (�G) ✓ B(G, r), where B(G, r) is the ball in K centered at G with radius r (in
Euclidean distance). Since hG is continuous, h�1

G (�G) is open. Therefore, {h�1
G (�G)}G2K is an

open cover of K. Because K is compact, 9 a finite subset K0 ✓ K such that {h�1
G (�G)}G2K0 also

covers K.

8G0 2 K0, define another function 'G0(G
0
) = �G0 � hG0(G

0
) if hG0(G

0
) < �G0 and 0 oth-

erwise. Therefore, supp('G0) = h�1
G0

(�G0). Let '(G0
) =

P
G⇤2K0

'G⇤
(G0

), and then define

 G0(G
0
) =

'G0 (G
0)

'(G0) . Note that 8G0 2 K, since {h�1
G (�G)}G2K0 covers K, 9G⇤ 2 K0 such

that G0 2 h�1
G⇤(�G⇤

) = supp('G⇤
), and so the denominator > 0. Therefore, G0 is well defined

on K, and supp(G0) = supp('G0) = h�1
G0

(�G0). Moreover, 8G0 2 K,
P

G02K0
 G0(G

0
) = 1.

Therefore, the set of functions { G0}G02K0 is a “partition of unity”, with respect to the open cover
{h�1

G (�G)}G2K0 .

Back to the function f that we want to approximate. We want to express it in away that resembles
what a neural network can do. With the set of functions { G0}G02K0 , we have

f(G0
) =

X

G02K0

f(G0
) G0(G

0
) =

X

G02K0

G02h�1
G0

(�G0)

f(G0
) G0(G

0
)

If G0 2 h�1
G0

(�G0 , then d(G0, G0) > r, and therefore |f(G0
) � f(G0)| < ✏. Hence, we can use

¯h(G0
) =

P
G02K0

f(G0) G0(G
0
) to approximate f(G0

), because

|f(G0
)�

X

G02K0

f(G0) G0(G
0
)| =|f(G0

)�
X

G02K0

G02h�1
G0

(�G0)

f(G0) G0(G
0
)|

=

X

G02K0

G02h�1
G0

(�G0)

|f(G0
)� f(G0)| G0(G

0
)

<✏

(2)

Finally, we need to show how to approximate ¯h with functions from C augmented with a multi-layer
perceptron. We start with {hG0}G02K ✓ C, and apply them to the input graph G0. Then, for each of
hG0G

0
() apply an MLP with one hidden layer to obtain 'G0(G

0
), and use one node to store. their

sum, '(G0
). We then use an MLP with one hidden layer to approximate division, obtaining G0(G

0
).

Finally, ¯h(G0
) is approximated by a linear combination of { G0(G

0
)}G02K , since each f(G0) is a

constant.

B Proofs of Section 4.2

Theorem 5. If C is a class of permutation-invariant functions on Xn⇥n and C is GIso-discriminating,
then �(C) = �(QK)

Proof of Theorem 5. If C is GIso-discriminating, then given a G 2 Xn⇥n, 8G0 6' G, 9hG0 2 C and
bG0 2 R such that E(G) = \G0 6'Gh

�1
G0 ({b0G}), which is a finite intersection of sets in �(C). Hence,

E(G) 2 �(fG) ✓ �(C). Therefore, QK ✓ �(C), and hence �(QK) ✓ �(C). Moreover, since
�(g) ✓ �(QK) for all g 2 C, there is �(C) ✓ �(QK)

14

Theorem 6. Let be C a class of permutation-invariant functions on Xn⇥n with �(C) = �(QK). Then
C is GIso-discriminating.

Proof of Theorem 6. Suppose not. This implies that QK (�(C), and hence 9⌧ = E(G) 2 QK such
that ⌧ /2 �(C). Note that ⌧ is an equivalence class of graphs that are isomorphic to each other. Then
consider the smallest subset in �(C) that contains ⌧ , defined as S(⌧) =

\

T2�(C)
⌧✓T

T.

Since K is a finite space, �(C) is also finite, and hence this is a finite intersection. Since a sigma-
algebra is closed under finite intersection, there is S(⌧) 2 �(C). As ⌧ /2 �(C), we know that
⌧ (S(⌧). Then, 9G0 6' G such that G0 2 S(⌧). Then there does not exist any function h in C such
that h(G) 6= h(G0

), since otherwise the pre-image of some interval in R under h will intersect with
only E(G) but not E(G0

). Contradiction.

C Comparison of the expressive power of families of functions via the

sigma-algebra framework

Given two classes of functions C1, C2, such as two classes of GNNs, there are four possibilities
regarding their relative representation power, using the language of sigma-algebra developed in the
main text:

• �(C1) = �(C2)
• �(C1) (�(C2)
• �(C2) (�(C1)
• Not comparable / None of the above (i.e., �(C1) * �(C2) and �(C1) * �(C2))

In this section we summarize some results from the literature and show partial relationships between
different GNNs architectures in terms of their ability to distinguish non-isomorphic graphs (in the
context of the sigma-algebra framework introduced in Section 4). For simplicity, in this section we
assume that graphs are given by an adjacency matrix (no node or edge features are considered), and
the findings are illustrated in Figure 1.

• sGNN(M). We consider spectral GNNs as the ones used in [5] for community detection.
In this context we focus on the simplified version where the GNNs are defined as

v0 =1n

vt+1
=⇢

X

M2M
Mvt✓tM

!
where ✓tM 2 Rdt⇥dt+1 learnable parameters, vt 2 Rn⇥dt

output :
dLX

i=1

vLi .

Usually M is a set of operators related to the graph. In this context we consider M = {I, A}
and M(J) = {I,D,A,min{A2t , 1}, t = 2, . . .}. The operators min{A2t , 1} allow the
model to distinguish regular graphs that order 2 G-invariant networks cannot distinguish,
such as the Circular Skip Link graphs.

• Linear Programming (LP). This is not a GNN but the natural linear programming re-
laxation for graph isomorphism. Namely given a pair graphs with adjacency matrix
A,B 2 {0, 1}n⇥n

LP (A,B) = min kPA�BPk1 subject to P1n = 1n, P
|1n = 1n, P � 0.

The natural sigma algebra to consider here is �([A2Xn⇥n{LP (A, ·)}). Two graphs are
said to be fractionally isomorphic is LP (A,B) = 0 (i.e. the LP cannot distinguish them).
[24] showed that two graphs are fractionally isomorphic if and only if they cannot be
distinguished by 1-WL.

15

• Semidefinite Programming (SDP). The semidefinite programming relaxation of quadratic
assignment from [37] is based on the following observation: kPA�BPk2F = kPAk2F +

kBPk2F � 2 trace(PAP>B>
) and trace(vec(P) vec(P)

>A ⌦ B>
) where ⌦ is the Kro-

necker product operator and vec takes an n⇥ n matrix and flattens it into an n2 ⇥ 1 vector.
The resulting semidefinite relaxation considers the vector x>

:= [1, vec(P)

>
] and relaxes

the rank 1 matrix xx> into a positive semidefinite matrix. By including the constraints
corresponding to the LP in xx> one makes sure that solution of the SDP is always in the
feasible set of the LP, therefore the LP is less expressive than the SDP.

• Sum-of-Squares (SoS) hierarchy. One can consider the hierarchy of relaxations coming
from sum-of-squares (SoS). In the context of graph isomorphism, it is known that graph
isomorphism is a hard problem for this hierarchy [23]. In particular the Lasserre/SoS
hierarchy requires 2⌦(n) to solve graph isomorphism (in the same sense that o(n)-WL fails
to solve graph isomorphism [4]).

• Spectral methods. If we consider the function that takes a graph and outputs the set of
eigenvalues of its adjacency matrix, such function is permutation invariant. A priori one
may think that such function, being highly non-linear, is more expressive than any form
message passing GNN. In fact, regular graphs are not distinguished by 1-WL or order 2
G-invariant networks and may be distinguished by their eigenvalues (like the Circular Skip
Link graphs). However, 1-WL and this particular spectral method are not comparable (a
simple example is provided in Figure 2 of [24]).

D Relationship to Bloom-Reddy and Teh (2019) [2]

This work [2] provides a nice and general theoretical framework that establishes equivalence between
functional and probabilistic perspectives to symmetry via noise outsourcing in both general and
particular settings. Our framework belongs to the functional perspective to symmetry (in particular
Sn2 -invariance), and an extension to the probabilistic perspective with ideas from Bloom-Reddy and
Teh would be quite interesting. The concept of orbits also applies in our setting, and the concept of
maximal invariants is related to our definition of GIso-discriminating. However, a key distinction
is that being a maximal invariant is a property of functions, whereas we define GIso-discriminating
to be a property of classes of functions. Our definition is arguably more suitable for studying the
representation power of different GNN architectures, and moreover makes it possible to relate graph
isomorphism testing to function approximation. Furthermore, our theoretical framework described
in section 4 focuses on sigma-algebras generated by classes of GNN functions when they are not
necessarily GIso-discriminating, allowing us to compare their representation powers to each other,
which is another novel contribution.

E Graph G-invariant Networks with maximum tensor order 2

In this section we prove Theorem 7 that says that graph G-invariant Networks with tensor order 2
cannot distinguish between non-isomorphic regular graphs with the same degree.

E.1 Defining the order-2 graph G-invariant Networks

Here, we state our definition of order-2 Graph G-invariant networks based on the G-invariant networks
defined in [19].

Notation 1. Suppose A 2 Rnk⇥a
is a tensor containing graph data, where each entry is associated

with a k-tuple of nodes. Then 8⇡ 2 Sn, we use ⇡ ⇤A to denote the Rnk⇥a
tensor transformed from

A by applying the permutation ⇡ to the node set. For example, if A 2 Rn⇥n
is a matrix containing

edge features (a simple example being the adjacency matrix), then ⇡ ⇤A = ⇡|A⇡.

Definition 5. A function f : Rnk⇥a ! Rb
is graph-G-invariant if 8A 2 Rnk⇥a, 8⇡ 2 Sn, f(⇡ ⇤

A) = f(A). A function f 0
: Rnk⇥a ! Rnl⇥b

is graph-G-equivariant if 8A 2 Rnk⇥a, 8⇡ 2
Sn, f

0
(⇡ ⇤ A) = ⇡ ⇤ f(A). Thus graph-G-invariance is a special case of graph-G-equivariance

when l = 0.

16

Definition 6. A Graph G-invariant network is a function F : Rnk0⇥d0 ! R that can be decomposed

in the following way:

F = m � h � LT � � � · · · � � � L1,

where each Li is a linear graph-G-equivariant layer from Rnki�1⇥di�1
to Rnki⇥di

, � is a pointwise

activation function, h is a graph-G-invariant layer from RnkT ⇥dT
to R, and m is an MLP.

By restricting the tensor order to be 2 at each intermediate layer in the definition above, we arrive at
the following definition.

Definition 7. An order-2 Graph G-invariant network is a function F : Rn⇥n⇥d0 ! R that can be

decomposed in the following way:

F = m � h � LT � � � · · · � L1,

where each Li is a linear graph G-equivariant layer from Rn⇥n⇥di�1
to Rn⇥n⇥di

, � is a pointwise

activation function, h is a graph G-invariant layer from Rn⇥n⇥dT
to R, and m is an MLP.

We use A(t) to denote the output of the tth layer, for t 2 {1, ..., t}, i.e., they are defined recursively
by

A(t+1)
= �(L(t)

(A(t)
))

where A(0) 2 Rn⇥n⇥d0 is the input tensor.

E.2 Proof of Theorem 7

In the definition above, dt is the feature dimension in layer t, interpreted as the dimension of the
hidden state attached to each pair of nodes. For simplicity of notations, in the following proof we
assume that dt = 1, 8t = 0, 1, ..., L, and thus each A(t) is essentially a matrix. The following results
can be extended to the cases where dt > 1, by adding more subscripts in the proof.

To prove Theorem 7, we show that if we use the adjacency matrices of two non-isomorphic regular
graphs with the same degree as inputs to any order-2 graph G-invariant network, the network will
return the same output. Notation-wise, given an unweighted graph G, let E ✓ [n]2 be the edge
set of G, i.e., (u, v) 2 E if u 6= v and Guv = 1; set S ✓ [n]2 to be {(u, u)}u2[n]2 ; and let
N = [n]2 \ (E [S). Thus, E [N [S = [n]2.

Lemma 5. Let G,G0
be the adjacency matrices of two unweighted regular graphs with the same

degree d, and let A(t), E,N, S and A0(t), E0, N 0, S0
be defined as above for G and G0

, respectively.

Then 8n  L, 9⇠(t)1 , ⇠
(t)
2 , ⇠

(t)
3 2 R such that A

(t)
uv = ⇠

(t)
1 1(u,v)2E + ⇠

(t)
2 1(u,v)2N + ⇠

(t)
3 1(u,v)2S , and

A
0(t)
uv = ⇠

(t)
1 1(u,v)2E0

+ ⇠
(t)
2 1(u,v)2N 0

+ ⇠
(t)
3 1(u,v)2S0

Proof. We prove this lemma by induction. For t = 0, A(0)
= G and A0(0)

= G0. Since the graph is
unweighted, Guv = 1 if u 6= v and (u, v) 2 E, and 0 otherwise. Similar is true for G0. Therefore,
we can set ⇠(0)1 = 1 and ⇠(0)2 = ⇠

(0)
3 = 0.

Next, we consider the inductive steps. Assume that the conditions in the lemma are satisfied for
layer t� 1. To simplify the notation, we use A,A0 to stand for A(t�1), A0(t�1), and we assume to
satisfy the inductive hypothesis with ⇠1, ⇠2 and ⇠3. We thus want to show that if L is any equivariant
linear, then �(L(A)),�(L(A0

)) also satisfies the inductive hypothesis. Also, in the following, we use
p1, p2, q1, q2 to refer to nodes, a, b to refer to pairs of nodes, � to refer to any equivalence class of
2-tuples (i.e. pairs) of nodes, and µ to refer to any equivalence class of 4-tuples of nodes.

8a = (p1, p2), b = (q1, q2) 2 [n]2, let E(a, b) denote the equivalence class of 4-tuples containing
(p1, p2, q1, q2), and let E(b) represent the equivalence class of 2-tuples containing (q1, q2). Two 4-
tuples (u, v, w, x), (u0, v0, w0, x0

) are considered equivalent if 9⇡ 2 Sn such that ⇡(u) = u0,⇡(v) =
v0,⇡(w) = w0,⇡(x) = x0. Similarly is equivalence between 2-tuples defined. By equation 9(b) in
[18], using the notations of T,B,C,w,� defined there, L is described by, given A as an input as b as

17

qq11

qq22

qq11

qq22

Figure 4: mE(E, E(1, 2, 3, 4)), mE(E, E(1, 2, 3, 2)), mE(E, E(1, 2, 3, 1)), mE(E, E(1, 2, 2, 3))
and mE(E, E(1, 2, 1, 3)) of G8,2 and G8,3. In either graph, twice the total number of black edges
equal mE(E, E(1, 2, 3, 4)) = 18 (it is twice because each undirected edge corrspond to two pairs
(p1, p2) and (p2, p1), which combined with (q1, q2) both belongs to E(1, 2, 3, 4)); the total number
of of red edges, 3, equals both mE(E, E(1, 2, 2, 3)) and mE(E, E(1, 2, 1, 3)); the total number of
green edges, also 3, equals both mE(E, E(1, 2, 3, 2)), mE(E, E(1, 2, 3, 1)).

the subscript index on the output,

L(A)b =

(n,n)X

a=(p1,p2)=(1,1)

Ta,bAa + Yb

=

X

a,µ

wµB
µ
a,bAa +

X

�

��C
�
b

=

X

µ

(

X

a2[n]2

(a,b)2µ

Aa)wµ + �E(b)

(3)

First, let
Sb
µ =

X

a2[n]2

(a,b)2µ

Aa

By the inductive hypothesis,

Sb
µ =

X

a2[n]2

(a,b)2µ
a2E

Aa +

X

a2[n]2

(a,b)2µ
a2N

Aa +

X

a2[n]2

(a,b)2µ
a2S

Aa

=

X

a2[n]2

(a,b)2µ
a2E

⇠1 +
X

a2[n]2

(a,b)2µ
a2N

⇠2 +
X

a2[n]2

(a,b)2µ
a2S

⇠3

= mE(b, µ)⇠1 +mN (b, µ)⇠2 +mS(b, µ)⇠3

(4)

where mE(b, µ) is defined as the total number of distinct a 2 [n]2 that satisfies (a, b) 2 µ and a 2 E,
and similarly for mN (b, µ) and mS(b, µ). Formally, for example, mE(b, µ) = card{a 2 [n]2 :

(a, b) 2 µ, a 2 E}.

Since E [N [S = [n]2, b belongs to one of E,N and S. Thus, let ⌧(b) = E if b 2 E, ⌧(b) = N
if b 2 N and ⌧(b) = S if b 2 S. It turns out that if A is the adjacency matrix of a undirected
regular graph with degree d, then mE(b, µ),mN (b, µ),mS(b, µ) can be instead written (with an
abuse of notation) as mE(⌧(b), µ),mN (⌧(b), µ),mS(⌧(b), µ), meaning that for a fixed µ, the values
of mE ,mN and mS only depend on which of the three sets (E,N or S) b is in, and changing b to a
different member in the set ⌧(b) won’t change the three numbers. In fact, for each ⌧(b) and µ, the
three numbers can be computed as functions of n and d using simple combinatorics, and their values
are seen in the three tables 3, 4 and 5. An illustration of these numbers is given in Figure E.2.

Therefore, we have L(A)b =
P

µ wµ(mE(⌧(b), µ)+mN (⌧(b), µ)+mS(⌧(b), µ))+�E(b). Moreover,
notice that ⌧(b) determines E(b): if ⌧(b) = E or N , then E(b) = E(1, 2); if ⌧(b) = S, then

18

µ mE(E, µ) mE(N,µ) mE(S, µ)
(1, 2, 3, 4) (n� 4)d+ 2 (n� 4)d 0
(1, 1, 2, 3) 0 0 0
(1, 2, 2, 3) d� 1 d 0
(1, 2, 1, 3) d� 1 d 0
(1, 2, 3, 2) d� 1 d 0
(1, 2, 3, 1) d� 1 d 0
(1, 1, 1, 2) 0 0 0
(1, 1, 2, 1) 0 0 0
(1, 2, 1, 2) 1 0 0
(1, 2, 2, 1) 1 0 0
(1, 2, 3, 3) 0 0 (n� 2)d
(1, 1, 2, 2) 0 0 0
(1, 2, 2, 2) 0 0 d
(1, 2, 1, 1) 0 0 d
(1, 1, 1, 1) 0 0 0
Total nd nd nd

Table 3: mE

µ mN (E, µ) mN (N,µ) mN (S, µ)
(1, 2, 3, 4) (n� 4)(n� d� 1) (n� 4)(n� d� 1) + 2 0
(1, 1, 2, 3) 0 0 0
(1, 2, 2, 3) n� d� 1 n� d� 2 0
(1, 2, 1, 3) n� d� 1 n� d� 2 0
(1, 2, 3, 2) n� d� 1 n� d� 2 0
(1, 2, 3, 1) n� d� 1 n� d� 2 0
(1, 1, 1, 2) 0 0 0
(1, 1, 2, 1) 0 0 0
(1, 2, 1, 2) 0 1 0
(1, 2, 2, 1) 0 1 0
(1, 2, 3, 3) 0 0 (n� 2)(n� d� 1)

(1, 1, 2, 2) 0 0 0
(1, 2, 2, 2) 0 0 n� d� 1

(1, 2, 1, 1) 0 0 n� d� 1

(1, 1, 1, 1) 0 0 0
Total n(n� d� 1) n(n� d� 1) n(n� d� 1)

Table 4: mN

E(b) = E(1, 1). Hence, we can write �⌧(b) instead of �E(b) without loss of generality. Then in
particular, this means that L(A)b = L(A)b0 if ⌧(b) = ⌧(b0). Therefore, L(A)b = ⇠11b2E+⇠21b2N+

⇠31b2S , where ⇠1 =

P
µ wµ(mE(E, µ)+mN (E, µ)+mS(E, µ))+�E , ⇠2 =

P
µ wµ(mE(N,µ)+

mN (N,µ) +mS(N,µ)) + �N , and ⇠3 =

P
µ wµ(mE(S, µ) +mN (S, µ) +mS(S, µ)) + �S .

Similarly, L(A0
)b = ⇠011b2E0

+ ⇠021b2N 0
+ ⇠031b2S0 . But importantly, 8 equivalence class of

4-tuples, µ, and 8�1,�2 2 {E,N, S},m�1(�2, µ) = m0
�1
(�2, µ), as both of them can be obtained

from the same entry of the same table. Therefore, ⇠1 = ⇠01, ⇠2 = ⇠02, ⇠3 = ⇠03.

Finally, let ⇠⇤1 = �(⇠1), ⇠
⇤
2 = �(⇠2), and ⇠⇤3 = �(⇠3). Then, there is �(L(A))b = ⇠⇤11b2E +

⇠⇤21b2N + ⇠⇤31b2S , and �(L(A0
))b = ⇠⇤11b2E0

+ ⇠⇤21b2N 0
+ ⇠⇤31b2S0 , as desired.

Since h is an invariant function, h acting on A(L) essentially computes the sum of all the diagonal
terms (i.e., for b 2 S) and the sum of all the off-diagonal terms (i.e., for b 2 E[N) of A(L) separately
and then adds the two sums with two weights. If G,G0 are regular graphs with the same degree, then
|E| = |E0|, |S| = |S0| and |N | = |N 0|. Therefore, by the lemma, there is h(A(L)

) = h(A0(L)
), and

as a consequence m(h(A(L)
)) = m(h(A0(L)

)).

19

µ mS(E, µ) mS(N,µ) mS(S, µ)
(1, 2, 3, 4) 0 0 0
(1, 1, 2, 3) n� 2 n� 2 0
(1, 2, 2, 3) 0 0 0
(1, 2, 1, 3) 0 0 0
(1, 2, 3, 2) 0 0 0
(1, 2, 3, 1) 0 0 0
(1, 1, 1, 2) 1 1 0
(1, 1, 2, 1) 1 1 0
(1, 2, 1, 2) 0 0 0
(1, 2, 2, 1) 0 0 0
(1, 2, 3, 3) 0 0 0
(1, 1, 2, 2) 0 0 n� 1

(1, 2, 2, 2) 0 0 0
(1, 2, 1, 1) 0 0 0
(1, 1, 1, 1) 0 0 1
Total n n n

Table 5: mS

F Specific GNN Architectures

In section 6, we show experiments on synthetic and real datasets with several related architectures.
Here are some explanations for them.

• sGNN-i: sGNNs with operators from family {I,D,min(A20 , 1), . . . ,min(A2i�1

, 1)}, i 2
{1, 2, 5}. In our experiments, the sGNN models have 5 layers and hidden layer dimension
(i.e. dk) 64. They are trained using the Adam [14] optimizer with learning rate 0.01.

• LGNN: Line Graph Neural Networks proposed by [5]. In our experiments, the LGNN
models have 5 layers and hidden layer dimension (i.e. dk) 64. They are trained using the
Adam [14] optimizer with learning rate 0.01.

• GIN: Graph Isomorphism Network by [32]. We took their performance results on the IMDB
datasets reported in [32], and their performance results on the Circular Skip Link graphs
experiments reported in [21] .

• RP-GIN: Graph Isomorphism Network combined with Relational Pooling by [21]. We took
the results reported in [21] for the Circular Skip Link graphs experiment.

• Order-2 Graph G-invariant Networks: G-invariant networks based on [18] and [19], as
implemented in https://github.com/Haggaim/InvariantGraphNetworks.

• Ring-GNN: The definition is given in the main text. For experiments on IMDB datasets, the
“Ring-GNN” model has the same depth and widths of hidden layers as the order-2 Graph
G-invariant Networks reported in [18]. The “Ring-GNN w/ degree” model has 2 Ring-GNN
layers with 64 hidden units in each, followed by a jump knowledge network [33], which
is then followed by a fully-connected layer with 32 hidden units. Each k

(t)
1 is initialized

independently under N (0, 1), and each k
(t)
2 is initialized independently under N (0, 0.01).

They are trained using the Adam [14] optimizer with learning rate 0.00001 for 350 epochs.
The initialization of k(t)2 and the learning rate were manually tuned, following the heuristic
that Ring-GNN reduces to order-2 Graph G-invariant Networks when k

(t)
2 = 0, and that

since Ring-GNN added more operators, a smaller learning rate is likely more appropriate.
For the other real-world datasets, models are trained via Adam [14], with learning rate of
0.001 for 350 epochs. The model has 1 Ring-GNN layer for MUTAG, 2 Ring-GNN layers
for PROTEINS and PTC, and 3 Ring-GNN layers for COLLAB. Each of these layers has
64 hidden units. The Ring-GNN layer(s) is followed by a jump knowledge network [33],
which is then followed by a fully-connected layer with 32 hidden units. k(t)1 is initialized as
1, while k

(t)
2 is initialized with {0.5/n, 1.0/n} where n is the average number of nodes per

graph in each dataset.

20

https://github.com/Haggaim/InvariantGraphNetworks

For the experiments with Circular Skip Links graphs, each model is trained and evaluated using
5-fold cross-validation. For Ring-GNN, in particular, we performed training + cross-validation 20
times with different random seeds.

21

	Introduction
	Related work
	Graph isomorphism testing and universal approximation
	Finite feature space
	Extension to the case of continuous (Euclidean) feature space

	A framework of representation power based on sigma-algebra
	Introducing sigma-algebra to this context
	Reformulating graph isomorphism testing and universal approximation with sigma-algebra

	Ring-GNN: a GNN defined on the ring of equivariant functions
	The limitation of order-2 Graph G-invariant Networks
	Ring-GNN as an extension of order-2 Graph G-invariant Networks

	Experiments
	Classifying Circular Skip Links (CSL) graphs
	IMDB datasets
	Other real-world datasets

	Conclusions
	Proofs on universal approximation and graph isomorphism
	Proofs of Section 4.2
	Comparison of the expressive power of families of functions via the sigma-algebra framework
	Relationship to Bloom-Reddy and Teh (2019) bloemreddy2019probabilistic
	Graph G-invariant Networks with maximum tensor order 2
	Defining the order-2 graph G-invariant Networks
	Proof of Theorem 7

	Specific GNN Architectures

