
A Proof Sketch of Theorem 4.1

To bound the regret of our policy, we note that untruthful bidding has two undesirable effects for
the firm. First of all, both overbidding and shading increase the estimation errors of the preference
vectors and this, consequently, introduce errors in the reserve prices set by the firm. Second of all,
bidding untruthfully can lower the second highest submitted bid as well as the reserve price of the
winner, and this reduces the firm’s revenue. By this observation, we divide the policy’s regret into
two parts, where each part captures the negative consequences of one of the aforementioned effects.

To bound the regret associated with the first effect, in Proposition C.1, we determine to which extent
buyers’ “lies" impact the estimation errors of the preference vectors and the reserve prices. We say a
buyer lies when his untruthful bid changes the outcome of the auction, qit, for this buyer relative to
the truthful bidding; see Equation (17) for a formal definition. We note that by changing the outcome
of the auction in a period t ∈ Ek, the buyer can game the firm’s learning policy and hence can
decrease his reserve prices in episode k + 1. Having established the impact of lies, we then show that
the number of times that a buyer “lies" in each episode is logarithmic in the length of the episode; see
Proposition C.2.

This bound is derived using the fact that buyers are utility-maximizer and discount the future. To get
this bound, we compare the long-term excess utility obtained from a lie with the instant utility loss
that it causes. In particular, we derive a lower bound on the utility loss of the buyers in episode k by
focusing on the random exploration periods. Note that buyers are not aware whether a period is an
exploration period. Thus, with a positive probability, any untruthful bid leads to a utility loss. We
further derive an upper bound on the (future) utility gain of the untruthful bidding in episode k. Our
upper bound is the total discounted utility that any buyer can hope to achieve in the next episodes.
Thus, the bound includes potential future utility gains that a buyer can enjoy by manipulating other
buyers’ strategy and their reserve prices. Then, by arguing that for any utility-maximizer buyer, the
upper bound on the utility gain should be greater than or equal to the lower bound on the utility loss,
we bound the number of lies of the buyer. By characterizing the impact of lies in Proposition C.1 and
bounding the number of lies in Proposition C.2, we are able to bound the regret associated with the
first effect, namely the gap between the posted reserves and the optimal ones.

To bound the regret associated with the second effect, we quantify the impact of bidding untruthfully
on the second highest bids and reserve of the winner; see Lemma C.5. When buyers bid untruthfully,
the second highest bid may decrease. Further, the winner of the auction can change and this, in
turn, can lower the reserve price of the winner. Any of these events will hurt the firm’s revenue. To
quantify this impact, we upper bound the amount of underbidding and overbidding from each buyer
using the fact that the buyer is utility-maximizer; see Proposition C.2. To do so, we employ a similar
argument that we used to bound the number of lies.

After characterizing the regret due to both effects, we bound the total regret during each episode, and
show that the total regret is logarithmic in the length of the episode. The proof is completed by noting
that there are O(log T ) episodes up to time T , as the length of episodes doubles each time.

B SCORP: Stable CORP Policy

As discussed in the paper, the Stable Contextual Robust Pricing (SCORP) is a variant of the CORP
policy designed for the setting where the market noise distribution is unknown to the seller. Specifi-
cally, we consider an ambiguity set F of possible probability distributions for the market noise and
propose a policy that works well for every probability distribution in the ambiguity set.

We make the following assumption on the ambiguity set F . This assumption is analogous to
Assumption 3.1.

Assumption B.1 (Log-concavity of the Ambiguity Set F). All functions F ∈ F are log-concave.

To be fair, in this case, we compare the regret of our policy against a benchmark policy, called stable,
that knows the true preference vectors βi and the ambiguity set F that includes F , but is oblivious to
distribution F itself. The stable benchmark is defined as follows:
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Figure 2: Schematic representation of the SCORP policy.

Definition B.2 (Stable Benchmark). In the stable benchmark, the reserve price of buyer i ∈ [N ] for
a feature vector x ∈ X is given by

r?i (x) = arg max
y

min
F∈F

{y (1− F (y − 〈x, βi〉))} , i ∈ [N ], x ∈ X , (12)

and thus r?it = r?i (xt) in this case.

The stable benchmark is motivated by our previous benchmark presented in Proposition 3.2. In our
previous benchmark, we show that given a distribution F and context x, the revenue-maximizing re-
serve price for buyer i solves r?i (x) = arg maxy {y (1− F (y − 〈x, βi〉))}. In the stable benchmark,
the posted reserve prices have a similar form. However, the reserve prices are chosen in a robust way
so that the benchmark performs well despite the uncertainty in the market noise distribution.

We note that the stable benchmark as well as our learning policy that we will present shortly do not
aim at learning the distribution of market noise, as this distribution can vary across periods. For
instance, in online advertising, the distribution of the noise can depend on many different factors
including the time of the day and demographic information of the Internet users. Thus, instead of
trying to learn the market noise distribution, we would like to use reserve prices that are robust to the
uncertainty in the noise distribution.

We are now ready to present our SCORP policy. This policy is a modified version of the CORP policy.
For reader’s convenience, we also provide a schematic representation of SCORP in Figure 2. Similar
to the COPR policy, SCORP has an episodic theme, with the length of episodes growing exponentially.
As before, we denote the set of periods in episode k by Ek, i.e., Ek = {`k, . . . , `k+1 − 1}, with
`k = 2k−1. However, instead of having randomized exploration, each episode k starts with a pure
exploration phase of length d`2/3k e. Throughout, we use notation Ik to refer to periods in the pure
exploration phase of episode k, i.e., Ik ≡ {`k, . . . , `k+d`2/3k e}. During each period in Ik, we choose
one of the N buyers uniformly at random and offer him the item at price of r ∼ uniform(0, B). For
other buyers, we set their reserve prices to∞. In the remaining periods of the episode (i.e., Ek\Ik),
we offer the reserve prices based on the current estimates of the preference vectors which are obtained
by applying the least-square estimator to the outcomes of auctions in the pure exploration phase,
Ik; see Equations (13) and (15). This is the exploitation phase as we set reserves based on our best
guess of the preference vectors. Note that the least-square estimator, similar to the CORP policy,
SCORP uses the outcome of the auctions, not the submitted bids, which makes SCORP robust to the
strategic buyers. In addition, the choice of reserve prices in the exploitation phase of SCORP makes
this policy robust against the uncertainty in the noise distribution. Thus, SCORP is indeed doubly
robust. The formal description of SCORP is given in Table 2.

Before we move to a formal description of SCORP, let us pause to build some insight into the
design of SCORP. One of the challenges that SCORP is facing is the uncertainty in the market noise
distribution. The market noise, on one hand, makes the estimation of preference vectors hard but on
the other hand, the randomness in noise provides us with some extent of exploration. When the noise
distribution F is known, our CORP policy harnessed this exploration by forming a log-likelihood
estimator, and because of that CORP policy assigns fewer periods to pure exploration.

However, as stated earlier, this picture changes when F is unknown as we cannot effectively leverage
the exploration provided by noise. Therefore, we adopt a different approach wherein at the beginning
of each episode, we do pure exploration by using random prices. The length of pure exploration
phases is designed in a way to ensure that we have enough number of samples to update the estimate
of the preference vectors at a proper rate.
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SCORP: Stable Contextual Robust Pricing Policy

Initialization: For any k ∈ Z+, let `k = 2k−1, Ek = {`k, . . . , `k+1 − 1}, and Ik = {`k, . . . , `k + d`2/3k e}.
Moreover, we let ri1 = 0 and β̂i1 = 0 for any i ∈ [N ].
For k = 1, 2, . . . , do the following steps:
Pure Exploration Phase: For t ∈ Ik, choose one of the N buyers uniformly at random and offer him the item
at price of r ∼ uniform(0, B). For other buyers, set their reserve prices to∞.
Updating Estimates: At the end of the exploration phase, update the estimate of the preference vectors by
applying the least-square estimator to the previous pure exploration phase:

β̂ik = arg min
‖β‖≤Bp

L̃ik(β), i ∈ [N ] , (13)

where L̃ik(β) is given by

L̃ik(β) =
1

|Ik|
∑
t∈Ik

(BNqit − 〈xt, β〉)2 . (14)

Exploitation Phase: For t ∈ Ek\Ik, observe the feature vector xt and set the reserve of each buyer i ∈ [N ] to

rit = arg max
y

min
F∈F

{
y
(
1− F (y − 〈xt, β̂ik〉)

)}
. (15)

Table 2: SCORP Policy

Having presented our policy, we now highlight few important remarks about the estimation process
of the policy. (i) Since the noise distribution is unknown, SCORP employs the least-square estimator
rather than the maximum likelihood method, used in CORP; see Equation (14). To apply the least-
square estimator, similar to the CORP policy, SCORP uses the outcome of the auctions, not the
submitted bids.6 This makes SCORP robust to the strategic behavior of the buyers. (ii) Due to
uncertainty in the noise distribution, for estimation, SCORP only utilizes the auction outcomes in the
exploration phase where it does price experimentation. This is in contrast to CORP policy where all
the auction outcomes in the previous episode are used to estimate the preference vectors. It is worth
noting that in our analysis of the regret, we give up on the revenue collected during pure exploration
phases and only use the outcomes of auctions in these phases to bound the estimation error of the
preference vectors.

So far, we argued SCORP is designed in a way to ensure robustness against strategic buyers. Impor-
tantly, we also note that the choice of reserve prices in the exploitation phase of SCORP makes this
policy robust against the uncertainty in the noise distribution. Thus, SCORP is indeed doubly robust.

Our next result upper bounds the regret of the SCORP policy.
Theorem B.3 (Regret Bound: Unknown Market Noise Distribution). Suppose Assumption B.1 holds,
and that the market noise distribution is unknown and belongs to uncertainty set F . Then, the
T-period worst-case regret of the SCORP policy is at most O(

√
d log(Td) T 2/3), where the regret is

computed against the stable benchmark.

Observe that while the regret of the CORP policy is in the order of O(d log(Td) log(T )), the regret
of SCORP is O(

√
d log(Td)T 2/3). The higher regret of SCORP is mostly due to the uncertainty in

the noise distribution. Because of this uncertainty, as stated earlier, SCORP cannot make use of the
exploratory effect of the noise. Instead, the SCORP policy dedicates d`2/3k e number of periods in
each episode k to pure exploration. This implies that the SCORP policy learns preference vectors at
a slower rate than the CORP policy. The slower learning rate is the main reason behind the higher
regret of SCORP.

The proof of Theorem B.3 is provided in Appendix D.

6The term BN in L̃ik(β) is a normalization factor and is due to the fact that in the exploration phase,
one of the N buyers are chosen uniformly at random and the chosen buyer is offered the item at price of
r ∼ uniform(0, B).
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Remark B.4. SCORP policy provides a very general machinery to design low-regret doubly robust
learning policies, against different benchmarks.7 To make it clear, assume that firm uses a benchmark
that posts reserve price of r∗i (x) = ρ(〈x, βi〉,F) for buyer i, under context vector x ∈ X . Here,
ρ(〈x, βi〉,F) = arg maxy minF∈F G(y, 〈x, βi〉, F ), where G : R× R×F → R. Then, as long as
ρ(〈x, βi〉,F) is Lipschitz in its first argument, we can design a low-regret doubly robust learning
policies against this benchmark by only changing the exploitation phase of the SCORP policy.
Particularly, in a period t in the exploitation phase of episode k, we set rit = ρ(〈x, β̂ik〉,F); see
Equation (15) for comparison.

C Proof of Theorem 4.1

The regret of the CORP policy is the sum of its regret across all episodes. Thus, in the following, we
compute the regret incurred during an episode k > 1. (The regret of episode 1 that has a length of 1
is a constant.)

We start with a definition. Let

lF = inf
|x|≤Bn

{
min

{
− log′′ F (x),− log′′(1− F (x))

}}
, (16)

where log′′ F (x) = d2

dx2 (log(F (x))) and log′′(1− F (x)) = d2

dx2 (log(1− F (x))). Note that lF is a
measure of “flatness" of function logF . Because of log-concavity ofF and 1−F (cf. Assumption 3.1),
we have lF > 0.

Recall that in the CORP policy, at the beginning of each episode k > 1, the preference vectors βi
are estimated via optimizing the log-likelihood function corresponding to the outcomes of auctions
in the previous episode; see Equation (8). Now, consider buyer i that bids untruthfully in period
t ∈ Ek−1. Assume for the moment that bids of other buyers in this period is fixed. Then, the
untruthful bid of buyer i in period t ∈ Ek−1 may influence the estimation of his preference vector
in episode k only when his untruthful bid changes the allocation of the item in this period, i.e.,
I(vit > max{b+−it, rit}) 6= I(bit > max{b+−it, rit}). This is the case because the preference
vectors are estimated using the outcome of the auctions and not the submitted bids. When I(vit >
max{b+−it, rit}) 6= I(bit > max{b+−it, rit}) holds, we say buyer i “lies" in period t. For each buyer
i ∈ [N ], we further define the set of “lies" in episode k − 1, indicated by Lik, as follows:

Lik =
{
t : t ∈ Ek−1, I(vit > max{b+−it, rit}) 6= I(bit > max{b+−it, rit})

}
. (17)

In other words, Lik consists of all the periods in episode k − 1 in which buyer i lies. We note that the
set of lies in episode k− 1, Lik, depends on the reserve prices rit, t ∈ Ek−1, where the reserve prices
are (mostly) set using the outcome of the auctions in episode k − 2. Because of this dependency,
Lik may also depend on all the submitted bids in episodes 1, 2, . . . , k − 1. However, we will show
that regardless of the values of rit’s, the size of Lik is logarithmic in the length of episode k − 1; see
Proposition C.2.

Next, we quantify the adverse effect of lies on the firm’s estimates of the preference vectors. In
particular, the next proposition provides an upper bound on the estimation error of β̂ik in terms of the
number of samples used in the log-likelihood function (`k−1), the dimension of the feature vector
(d), and the number of lies (|Lik|). Proof of Proposition C.1 is deferred to Section F.

Proposition C.1 (Impact of Lies on Estimated Preference Vectors). Let β̂ik be the solution of the
optimization problem (8). Then, under Assumption 3.1, there exist constants c0, c1, and c2 such that
for `k−1 ≥ c0d, with probability at least 1− d−0.5`−1.5k−1 − 2e−c2`k−1 , we have

‖β̂ik − βi‖2 ≤
c1d

2

lF
2

((
|Lik|
`k−1

)2

+
log(`k−1d)

`k−1

)
i ∈ [N ] , (18)

where lF is defined in Equation (16).

7The firm may care about other objectives apart from her revenue. For instance, the firm might be interested
in maximizing a convex combination of the welfare and revenue, or due to contracts and deals, she might be
willing to prioritize some of the buyers by offering them lower reserve prices.
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We note that the estimation error of β̂ik’s affects the firm’s regret, as reserve prices are set based on
these estimates. By Proposition C.1, to keep our estimation errors small, the buyers should not have
the incentive to lie in too many periods. In the next proposition, we show that for each episode k, the
number of lies from a buyer is at most logarithmic in the length of the episode.

There is another way that bidding untruthfully can impact the firm’s regret. Recall that in each period
t, the firm collects the revenue of max{b−t , r+t } if the highest buyer clears his reserve. Then, by
bidding untruthfully, the second highest bid b−t may go down. Further, the winner can change, and
this, in turn, can lower reserve price of the winner, r+t . To bound this impact of untruthful bidding,
in the following proposition we bound the amount of underbidding from buyers who do not win an
auction and the amount of overbidding from buyers who win an auction. Precisely, we show that
the total amount of underbidding from each buyer i, in all periods t ∈ Ek that he does not win the
auction, is at most logarithmic in the length of that episode. We further show that the total amount of
overbidding from each buyer i, in all periods t ∈ Ek that he wins the auction, is at most logarithmic
in the length of that episode.

Proposition C.2 (Bounding the Number of Lies). Denote by sit and oit the amount of shading and
overbidding from buyer i ∈ [N ] in period t, i.e., sit = (vit − bit)+, and oit = (bit − vit)+, where
(y)+ is y when y ≥ 0 and zero otherwise. Then, there exist constants c3, c4, and c58, such that for
any fixed 0 ≤ δ ≤ 1, with probability at least 1− δ/`k−1, the following holds:

|Lik| ≤ c3 log(`k−1/δ) i ∈ [N ] . (19)

Further, we have ∑
t∈Ek−1

sit(1− qit) ≤ c4 log(`k−1) i ∈ [N ] , (20)

∑
t∈Ek−1

oitqit ≤ c5 log(`k−1) i ∈ [N ] . (21)

Proof of Proposition C.2 is given in Section G. The main idea of the proof is to compute the excess
utility that a strategic buyer can earn in the next episodes by bidding untruthfully in the current
episode, and compare it with the utility loss that he suffers in the current episode because of his
strategic behavior. The result then follows by using the fact that for a utility-maximizing buyer, the
net excess utility should be nonnegative.

Up to here, we have established the impact of lies on our estimation, bounded the number of lies and
the amount of underbidding from buyers. Next, using these results, we present a lower bound on the
expected revenue of our policy in any period t ∈ Ek. We drop the superscript π in our notation as it
is clear from the context.

For each period t, we define a random variable ξt that takes values in {0, 1}, with ξt = 1 if the firm
is in the exploitation phase and ξt = 0 otherwise. From the description of our policy, for any period t
in episode k, (t ∈ Ek), we have P(ξt = 0) = 1/`k. We first lower bound the firm’s expected revenue
in an exploitation period t ∈ Ek. Recall that in an exploitation period, the firm runs a second-price
auction with reserve. Thus, we have

revt ≥ P(ξt = 1)E[max{b−t , r+t }I(b+t ≥ r+t )] , (22)

where the expectation is w.r.t. the randomness in the submitted bids. Since in each period t, at most
one of the buyers gets the item, we can rewrite (22) as follows:

revt ≥ P(ξt = 1)

N∑
i=1

E
[
max{b−t , rit}I(bit > max{b−t , rit})

]
=
(
1− 1

`k

) N∑
i=1

E
[
max{b−t , rit}I(bit > max{b−t , rit})

]
.

8The constants c3 and c4 depend on γ, B, and N . Constant c5 depends on γ, M , and N . (Recall that M is
the bound on submitted bids)
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Next, we compare revt with the expected revenue of the benchmark in period t, rev?t . Recalling (5),
we have

rev?t =

N∑
i=1

E
[
max{v−t , r?it}I(vit > max{v−t , r?it})

]
. (23)

Therefore, the regret of the policy in period t can be upper bounded as

rev?t − revt ≤
( 1

`k

)
rev?t

+
(
1− 1

`k

) N∑
i=1

E
[

max{v−t , r?it}I(vit > max{v−t , r?it})−max{b−t , rit}I(bit > max{b−t , rit})
]

≤
(B
`k

)
+
(
1− 1

`k

) N∑
i=1

E
[

max{v−t , r?it}I(vit > max{v−t , r?it})−max{b−t , rit}I(bit > max{b−t , rit})
]
,

(24)

where in the last equation, we used the fact that rev?t ≤ B. We break down the second expression in
(24) into two terms:

∆1,t =

N∑
i=1

[
max{v−t , r?it}I(vit > max{v−t , r?it})−max{v−t , rit}I(vit > max{v−t , rit})

]
,(25)

∆2,t =

N∑
i=1

[
max{v−t , rit}I(vit > max{v−t , rit})−max{b−t , rit}I(bit > max{b−t , rit})

]
.(26)

Using our notation, Equation (24) can be rewritten as:

rev?t − revt ≤
B

`k
+
(
1− 1

`k

)
E[∆1,t + ∆2,t] . (27)

In the sequel, we will bound each term ∆1,t and ∆2,t separately. But before proceeding, let us pause
to explain these terms and the intuition behind their definition. The regret of the firm’s policy is due
to two factors:

1. Mismatch between βi and β̂ik: The mismatch between the true preference vectors βi and the
estimation β̂ik leads to a difference between the benchmark reserves (r?it) and the posted reserves
by the firm (rit). The term ∆1,t captures this factor and its effect on the regret. We will use
Proposition C.1 along with our first result in Proposition C.2 to bound ∆1,t.

2. Mismatch between v−t and b−t and change of the winner: Note that the benchmark revenue
rev?t is measured against truthful buyers, while the firm’s revenue under our policy is measured
against strategic buyers. The strategic behavior of buyers not only affects the quality of estimates
β̂ik (and therefore the reserves rit) but it may also affect the firm’s revenue via another quite subtle
factor. Indeed, due to the strategic behavior of buyers, the second highest bid might go down or
the winner of the auction might change from the case of truthful buyers and this may decrease the
reserve of the winner. The decrease in the second highest bid or the reserve price of the winner
can hurt the firm’s revenue. The term ∆2,t captures these effects. We will use our second result in
Proposition C.2 to bound ∆2,t.

Bounding ∆1,t: We now move to bounding ∆1,t. Recall that

E[∆1,t] =

N∑
i=1

E
[

max{v−t , r?it}I(vit > max{v−t , r?it})−max{v−t , rit}I(vit > max{v−t , rit})
]
.

Here, the expectation is w.r.t. the randomness in the buyers’ valuations. Note that the first expression
inside the summation denotes the firm’s revenue when buyer i wins the auction with reserve r?it, while
the second expression is the analogous term when the buyer i’s reserve is rit. Further, conditional on
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the feature vector xt, reserves r?it and rit are independent of v−t , and the right-hand side of the last
equation can be written in terms of function Wit(r), defined below:

Wit(r) ≡ E
[

max{v−t , r}I(vit ≥ max{v−t , r})
∣∣∣xt] , (28)

where the expectation is with respect to valuation noises, conditional on xt. By the law of iterated
expectation, we can write E[∆1,t] in terms of Wit(r). More specifically, we first take the expectation
conditional on xt and then take the expectation w.r.t. xt.

Hence,

E[∆1,t] = E[E[∆1,t|xt]]

=

N∑
i=1

E[Wit(r
?
it)−Wit(rit)]

=

N∑
i=1

E
[
W ′it(r

?
it)(r

?
it − rit)−

1

2
W ′′it(r)(r

?
it − rit)2

]
, (29)

for some r between rit and r?it.
9 We will make use of the following two lemmas to bound the above

equation. The proof of all technical lemmas in this section are deferred to Section J.
Lemma C.3 (Property of Function Wit). For the benchmark reserve r?it, given by (4), and function
Wit(r), given by (28), we have W ′it(r

?
it) = 0. Further, for any r between rit and r?it, we have

|W ′′it(r)| ≤ c, for a constant c > 0.
Lemma C.4 (Errors in Reserve Prices). Let t ∈ Ek with ξt = 1. Then, conditioned on the feature
vector xt and β̂ik, the following holds:

|r?it − rit| ≤ |〈xt, βi − β̂ik〉| , (30)

where r?it and rit are defined in (4) and (11), respectively.

Applying Lemma C.3 in Equation (29), we get

E[∆1,t] ≤
c

2

N∑
i=1

E[(r?it − rit)2]

≤ c

2

N∑
i=1

E
[
E
[
(r?it − rit)2

∣∣∣xt, β̂ik]]
≤ c

2

N∑
i=1

E[〈xt, βi − β̂ik〉2] , (31)

where in the last step, we employed Lemma C.4. We next further simplify the r.h.s. of the last
equation. By using the fact that our estimate β̂ik is constructed using samples from the previous
episode and consequently is independent from the current feature xt, we get

E[〈xt, βi − β̂ik〉2] = E[〈βi − β̂ik,Σ(βi − β̂ik)〉] ≤ cmax

d
E[‖βi − β̂ik‖2] , (32)

where Σ = E[xtx
T
t ] is the second-moment matrix of features xt, and cmax/d is the bound on the

maximum eigenvalue of covariance Σ. 10 Here, the first inequality follows from taking the expectation
w.r.t. xt and using the fact that xt and β̂ik are independent; the second inequality follows from the
definition of the maximum eigenvalue.

Putting Equations (31) and (32) together, we get

E[∆1,t] ≤
c′

d

N∑
i=1

E[‖βi − β̂ik‖2] . (33)

9This follows from the Remainder theorem for Taylor’s expansion.
10Note that by our normalization, the sum of eigenvalues of Σ would be trace(Σ) = E[‖xt‖2] ≤ 1, and that

is why the eigenvalues are scaled by 1/d.
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Here, c′ = 1
2ccmax.

Bounding ∆2,t: We next proceed with bounding ∆2,t. To do so, we use the following preliminary
lemma.
Lemma C.5. Let v−t and b−t , respectively, denote the second highest valuation and the second
highest bid submitted by the buyers in the CORP policy. Denote by sit and oit the amount of shading
and overbidding from buyer i ∈ [N ] in period t, i.e., sit = (vit − bit)+, and oit = (bit − vit)+.
Then,

(v−t − b−t )+ ≤ max
{
sit(1− qit) : i ∈ [N ]

}
. (34)

Further, for any buyer i with qit = 0, the following holds:

(b+−it − v
+
−it)+ ≤ max

{
ojtqjt : j ∈ [N ], j 6= i

}
. (35)

Proof of Lemma C.5 is given in Section J.3.

Note that ∆2,t, given by (26), can be written as

∆2,t =

N∑
i=1

[
max{v−t , rit}I(vit > max{v+−it, rit})−max{b−t , rit}I(bit > max{b+−it, rit})

]
.

(36)

Define Lk+1 = ∪Ni=1Li(k+1), where Li(k+1), given by (17), denotes the set of periods in episode k
that buyer i lies. For t ∈ Lk+1, we avail the trivial bound

∆2,t ≤ B , (37)

which is true because the revenue of the benchmark in any period t is at most v+t ≤ B. For t /∈ Lk+1,
we have I(bit > max{b+−it, rit}) = I(vit > max{b+−it, rit}), for all i ∈ [N ]. Therefore, we can
write
E[∆2,t I(t /∈ Lk+1)] =

N∑
i=1

E
[

max{v−t , rit}I(vit > max{v+−it, rit})−max{b−t , rit}I(vit > max{b+−it, rit})
]
.

(38)
To bound the r.h.s of (38), we use the fact that for any two indicators χ1, χ2 and any a, b ≥ 0, we

have aχ1 − bχ2 ≤ (a− b)χ2 + aχ1(1− χ2) . Applying this inequality to (38) with χ1 = I(vit >
max{v+−it, rit}), χ2 = I(vit > max{b+−it, rit}), a = max{v−t , rit}, and b = max{b−t , rit}, we get

E[∆2,t I(t /∈ Lk+1)]

≤
N∑
i=1

E
[
(max{v−t , rit} −max{b−t , rit})I(vit > max{b+−it, rit})

]
+

N∑
i=1

E
[
max{v−t , rit}I

(
max{v+−it, rit} < vit < max{b+−it, rit}

)]
.

Then, by using the fact that max{a, c} −max{b, c} ≤ (a− b)+, we get
E[∆2,t I(t /∈ Lk+1)]

≤
N∑
i=1

E
[
(v−t − b−t )+I(vit > max{b+−it, rit})

]
+

N∑
i=1

E
[
max{v−t , rit}I

(
max{v+−it, rit} < vit < max{b+−it, rit}

)]
≤ E

[
(v−t − b−t )+

N∑
i=1

I(vit > max{b+−it, rit})
]

+B

N∑
i=1

P
(

max{v+−it, rit} < vit < max{b+−it, rit}
)

= E
[
(v−t − b−t )+

N∑
i=1

qit

]
+B

N∑
i=1

P
(

max{v+−it, rit} < vit < max{b+−it, rit}
)

≤ E[(v−t − b−t )+] +B

N∑
i=1

P
(

max{v+−it, rit} < vit < max{b+−it, rit}
)
.

19



Here, in the second inequality we used max{v−t , rit} ≤ B. In the equality thereafter, we used the
fact that t /∈ Lk+1 and hence I(vit > max{b+−it, rit}) = I(bit > max{b+−it, rit}) ≡ qit. The last
inequality holds since the item can be allocated to at most one buyer and hence

∑N
i=1 qit ≤ 1. We

next bound the first term by virtue of Lemma C.5 (Equation (34)). Specifically,

(v−t − b−t )+ ≤ max{sit(1− qit) : i ∈ [N ]} ≤
N∑
i=1

sit(1− qit) . (39)

To bound the second term, we again use inequality that max{a, c} −max{b, c} ≤ (a− b)+ with
a = b+−it, b = v+−it, and c = rit:

P
(

max{v+−it, rit} < vit < max{b+−it, rit}
∣∣b+−it, v+−it)

≤ P
(

max{b+−it, rit} − (-
¯
v+−it)+ < vit < max{b+−it, rit}

∣∣b+−it, v+−it)
= P

(
max{b+−it, rit} − (-

¯
v+−it)+ − 〈xt, βi〉 < zit < max{b+−it, rit} − 〈xt, βi〉

∣∣b+−it, v+−it)
=

∫ max{b+−it,rit}−〈xt,βi〉

max{b+−it,rit}−(-¯
v+−it)+−〈xt,βi〉

f(z)dz < ĉ(-
¯
v+−it)+ . (40)

The first equality follows readily by substituting for vit = 〈xt, βi〉 + zit. In addition, in the last
equality, ĉ ≡ maxv∈[−Bn,Bn] f(v) is the bound on the noise density,11 and this equality holds
because zit is independent of v+−it, b

+
−it, reserve rit, and the feature vector xt. We point out that

when I(max{v+−it, rit} < vit < max{b+−it, rit}) = 1, buyer i does not win the item. To see
this, recall that we compute the probability of I(max{v+−it, rit} < vit < max{b+−it, rit}) when
t /∈ Lk+1. This implies that I(bit > max{b+−it, rit}) = I(vit > max{b+−it, rit}) and as a result when
I(max{v+−it, rit} < vit < max{b+−it, rit}) = 1, buyer i does not win, i.e., qit = 0. The fact qit = 0
enables us to use Lemma C.5 (Equation (35)) along with Equation (40) to get

P
(

max{v+−it, rit} < vit < max{b+−it, rit}
∣∣b+−it, v+−it)

≤ ĉmax{ojtqjt : j ∈ [N ], j 6= i} ≤ ĉ
N∑
j=1

ojtqjt . (41)

Putting bounds in Equations (37), (39), (41) together, we have

E[∆2,t] = E[∆2,tI(t ∈ Lk+1)] + E[∆2,tI(t /∈ Lk+1)]

≤ BP(t ∈ Lk+1) + E
[ N∑
i=1

sit(1− qit) + ĉB

N∑
j=1

ojtqjt

]
. (42)

Combining bounds on ∆1,t and ∆2,t: To summarize, using bounds (33) and (42) in Equation (27),
for all t ∈ Ek, we have

rev?t − revt ≤
B

`k
+
(
1− 1

`k

)
E[∆1,t + ∆2,t]

≤ B

`k
+
c′

d

N∑
i=1

E[‖βi − β̂ik‖2] +BP(t ∈ Lk+1) + E
[ N∑
i=1

sit(1− qit) + ĉB

N∑
i=1

oitqit

]
.

(43)

We are now ready to bound the total regret of our policy. Since the length of episodes doubles each
time, the number of episodes up to time t would be at most K = blog T c+ 1. We then have

Reg(T ) ≤
K∑
k=1

Regk , (44)

where Regk is the regret of our policy in episode k ∈ [K]. We bound the total regret over each
episode by considering the following two cases: `k−1 ≤ c0d and `k−1 > c0d. Here, c0 is the constant
in the statement of Proposition C.1.

11Note that the density f is continuous and hence attains its maximum over compact sets.
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• Case 1: `k−1 ≤ c0d: In this case, we use the trivial bound rev?t − revt ≤ rev?t ≤ v+t ≤ B. Given
that the length of episode k is `k ≤ 2c0d, the total lengths of all such episodes is at most 4c0d and
therefore, the total regret over such episodes is at most 4c0Bd.

• Case 2: `k−1 > c0d: In that case, we use bound (43) on the regret in each period of episode k:

Regk =
∑
t∈Ek

(rev?t − revt)

≤ B

`k
`k +

c′

d
`k

N∑
i=1

E[‖βi − β̂ik‖2] +BE[|Lk+1|] +

N∑
i=1

E
[ ∑
t∈Ek

sit(1− qit) + ĉB
∑
t∈Ek

oitqit

]
.

(45)

We treat each term on the right-hand side of (45) separately.

We first bound the second term, i.e., c′`k
∑N
i=1 E[‖βi−β̂ik‖2]. Define the probability event G, such

that event G happens when Equations (18) and (19) hold; that is, the number of lies satisfies (19)
and the estimation errors satisfies (18). By Proposition C.1 and C.2, the probability of complement
of event G, denoted by Gc, is given by

P(Gc) ≤ δ

`k−1
+ d−0.5`−1.5k−1 + 2e−c2`k−1 .

Using these propositions again, we get

E[‖βi − β̂ik‖2] = E[‖βi − β̂ik‖2 I(G)] + E[‖βi − β̂ik‖2 I(Gc)]

≤ c1d
2

lF
2

((
c3 log(`k−1/δ)

`k−1

)2

+
log(`k−1d)

`k−1

)
+ 4B2P(Gc)

≤ c6

((
d log(T/δ)

`k−1

)2

+
d2 log(Td)

`k−1
+

δ

`k−1
+ d−0.5`−1.5k−1 + e−c2`k−1

)
,

(46)

where we absorb various constants into constant c6 and used `k−1 ≤ T .
Regarding the third term, i.e., BE[|Lk+1|], by Proposition C.2 we have

E[|Lk+1|] ≤
N∑
i=1

E[|Li,k+1|] ≤ Nc3 log(`k/δ)

(
1− δ

`k

)
+N`k

δ

`k
≤ Nc3 log(`k/δ) +Nδ ,

(47)

where δ and c3 are defined in Proposition C.2.
Finally, we bound the last term of Equation (45). Invoking Equations (20) and (21), we have

N∑
i=1

E
[ ∑
t∈Ek

sit(1− qit) + ĉB
∑
t∈Ek

oitqit

]
≤ (c4 + ĉc5B)N log(`k) . (48)

We employ bounds (47), (46) and (48) in bound (45) and keep only the dominant terms, from which
we get

Regk ≤ c7d
(

log2(T )
1

`k
+ log(Td)

)
, (49)

for a constant c7 that depends on N, B, M, δ, and γ.

As the final step, we combine our regent bounds for the two cases to find the total regret of our policy.
Let K1 = blog(c0d)c+ 3 be an upper bound on the number of episodes that fall into Case 1. Also,
recall that K = blog T c + 1 is the upper bound on the number of episodes up to time t. Then, by
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Equation (49), we obtain

Reg(T ) ≤ 4c0Bd+ c7d

(
log2(T )

K∑
k=K1

1

`k
+K log(Td)

)

≤ 4c0Bd+ c7d

(
log2(T )

K∑
k=K1

1

2k−1
+K log(Td)

)
≤ 4c0Bd+ c7d

(
log2(T ) + log(T ) log(Td)

)
,

which completes the proof.

D Proof of Theorem B.3

The proof, in sprit, is similar to that of Theorem 4.1. We first state an upper bound on the estimation
error of the preference vectors βi. This proposition is analogous to Proposition C.1, where instead of
log-likelihood estimator, we use the least square estimator.

Proposition D.1 (Impact of Lies on Estimated Preference Vectors in SCORP). Suppose that Assump-
tion B.1 holds and let β̂ik be the solution of optimization (13). Then, there exist constants c0, c1, and
c2 such that for `k−1 ≥ c0d, with probability at least 1− d−0.5`−1.5k−1 − 2e−c2|Ik|, we have

‖β̂ik − βi‖2 ≤ c1d2
((
|Lik|
|Ik|

)2

+
log(`k−1d)

|Ik|

)
i ∈ [N ] , (50)

where Lik is the set of lies associated to buyer i in episode k, given by (17), and Ik is the set of pure
exploration periods in episode k.

Proof of Proposition D.1 is given in Section H. We next proceed to bound the number of lies |Lik|.
We argue that the same bound given in Proposition C.2 still holds for SCORP.

Proposition D.2 (Bounding the Number of Lies in SCORP). Denote by sit and oit the amount of
shading and overbidding from buyer i ∈ [N ] in period t, i.e., sit = (vit−bit)+, and oit = (bit−vit)+.
Then, there exists a constant c3 such that for any fixed 0 ≤ δ ≤ 1, with probability at least 1−δ/`k−1,
the following holds:

|Lik| ≤ c3 log(`k−1/δ) i ∈ [N ] . (51)

Similar to Proposition C.2, we prove Proposition D.2 by balancing the utility loss of an untruthful
buyer with his future utility gain. The proof is presented in Section I.

Our next lemma relates the difference between the reserves rit, set by SCORP policy, and benchmark
reserves r?it, to the estimation error of preference vectors. This lemma is analogous to Lemma C.4.

Lemma D.3 (Errors in Reserve Prices). For r?it and rit given by (12) and (15), respectively, condi-
tioned on the feature vector xt and β̂ik, the following holds

|r?it − rit| ≤ |〈xt, βi − β̂ik〉| . (52)

We refer to Section J for the proof of Lemma D.3.

Having established the preliminary results, we proceed to bound the regret of SCORP. The proof goes
along the same lines of the proof of Theorem 4.1. We fix k ≥ 1 and focus on the total regret during
episode k. For the pure exploration phase, i.e., t ∈ Ik, we use the trivial bound rev?t − revt ≤ B,
which holds since rev?t ≤ v+t ≤ B.

To bound the regret in periods of the exploitation phase (t ∈ Ek\Ik), we note that SCORP does not
use any of the submitted bids during the exploitation phases to estimate the preference vectors, and
buyers are cognizant of this point as the seller’s learning policy is fully known to them. In addition,
since the second-price auctions are strategy-proof, this means that in the exploitation phase, there is
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no incentive for buyers to be untruthful. 12. Hence, for t ∈ Ek\Ik, we have

revt =

N∑
i=1

E
[
max{v−t , rit}I(vit > max{v−t , rit})

]
. (53)

This leads to

rev?t − revt = E

(
N∑
i=1

[
max{v−t , r?it}I(vit > max{v−t , r?it})−max{v−t , rit}I(vit > max{v−t , rit})

])
,

where the expectation is with respect to the true underlying noise distribution, which can vary over
time and is of course, unknown to the firm and the benchmark policy. To bound (rev?t − revt), we first
write it in terms of function Wit(r), defined by (28). By virtue of the mean-value theorem, we have

rev?t − revt =

N∑
i=1

E[Wit(r
?
it)−Wit(rit)] =

N∑
i=1

E[W ′it(r)(r
?
it − rit)] , (54)

for some r between rit and r?it. It is worth noting that, in contrast to Equation (29), here we do not go
with Taylor’s expansion of order two. The reason is that hereW ′it(r

?
it) 6= 0, becauseWit(r) is defined

based on the true unknown noise distribution, while r?it is the optimal reserve for the worst-case
distribution in ambiguity set F . Similar to Lemma C.3, it is straightforward to see that |W ′it(r)| ≤ c̃
for some constant c̃ > 0. Therefore, continuing from Equation (54), we have

rev?t − revt ≤ c̃

N∑
i=1

E[|r?it − rit|] = c̃

N∑
i=1

E
[
E
[
|r?it − rit|

∣∣∣xt, β̂ik]]
≤ c̃

N∑
i=1

E[|〈xt, βi − β̂ik〉|] ≤ c̃

N∑
i=1

E[〈xt, βi − β̂ik〉2]1/2

≤ c′√
d

N∑
i=1

E[‖βi − β̂ik‖2]1/2 , (55)

with c′ = c̃
√
cmax. Here, the second inequality holds due to Lemma D.3; the third inequality follows

from Cauchy-Schwartz inequality, and the last step is derived as in Equation (32).

We are now ready to bound the total regret up to time T . Given that the length of episodes double each
time, letting K = blog T c+ 1, we have Reg(T ) ≤

∑K
k=1 Regk. Similar to the proof of Theorem 4.1,

we bound the total regret over each episode by considering two cases:

• Case 1: `k−1 ≤ c0d: Here, c0 is the constant in the statement of Proposition D.1. In this case, as
we argued in the proof of Theorem 4.1, the total regret over such episodes is at most 4c0Bd.
• Case 2: `k−1 > c0d: Define event G such that event G happens when equations (50) and (19) hold.

By Proposition D.1 and D.2, we have

P(Gc) ≤ δ

`k−1
+ d−0.5`−1.5k−1 + 2e−c2|Ik| .

Therefore,

E[‖βi − β̂ik‖2] = E[‖βi − β̂ik‖2 I(G)] + E[‖βi − β̂ik‖2 I(Gc)]

≤ c1d2
(

log(`k−1d)

|Ik|
+

(
c3 log(`k−1/δ)

|Ik|

)2
)

+ 4B2P(Gc)

≤ c6

(
d2 log(Td)

|Ik|
+

(
d log(T/δ)

|Ik|

)2

+
δ

`k−1
+ d−0.5`−1.5k−1 + e−c2|Ik|

)
, (56)

12Indeed, we can make truthfulness the unique best response strategy in the exploitation phase by tweaking
the mechanism such that with a fixed small probability in each round, all the reserve prices are set to zero,
independently.
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where we absorb various constants into c6 and used `k−1 ≤ T .

We next employ bound (56) in Equation (55). By keeping the dominant terms and following the same
argument of Equation (49), we get∑

t∈Ek\Ik

(rev?t − revt) ≤ ĉ6
√
d

(√
log(Td)

|Ik|
`k +

log(T )

|Ik|
`k

)
, (57)

for a constant ĉ6 that depends on N , B, δ, and γ.

Adding the total regret during the pure exploration phase, we obtain

Regk =
∑
t∈Ik

(rev?t − revt) +
∑

t∈Ek\Ik

(rev?t − revt)

≤ B|Ik|+ ĉ6

(√
log(Td)

|Ik|
`k +

log(T )

|Ik|
`k

)
. (58)

Finally, we are ready to bound the cumulative regret up to time T . Let K1 = blog(c0d)c + 3.
Reconciling the above two cases into Equation (58), and substituting for |Ik| = d`2/3k e, we obtain

Reg(T ) ≤ 4c0Bd+

K∑
k=K1

B|Ik|+ ĉ6
√
d

(√
log(Td)

K∑
k=K1

`k√
|Ik|

+ log(T )

K∑
k=K1

`k
|Ik|

)

≤ 4c0Bd+B

K∑
k=K1

2
2(k−1)

3 + ĉ6
√
d

(√
log(Td)

K∑
k=K1

2
2(k−1)

3 + log(T )

K∑
k=K1

2
k−1
3

)
≤ 4c0Bd+BT 2/3 + ĉ6

√
d
(√

log(Td)T 2/3 + log(T ) T 1/3
)
,

which completes the proof.

E Proof of Proposition 3.2

We restate the definition of function Wit(r), given by Equation (28):

Wit(r) ≡ E
[

max{v−t , r}I(vit ≥ max{v−t , r})
∣∣∣xt]

= E
[

max{v+−it, r}I(vit ≥ max{v+−it, r})
∣∣∣xt] ,

where the expectation is with respect to valuation noises, conditional on xt, and the equality holds
because v−t = v+−it when I(vit ≥ max{v+−it, r}) = 1. Note that Wit(r) is the firm’s revenue in
period t, when buyer i wins the auction with reserve price r.

Let Hit be the distribution of v+−it for fixed xt and denote by hit its density. The specific form of Hit

does not matter for the sake of our proof. We have

Wit(r) = E
[
I(vit > v+−it > r)v+−it + rI(vit > r > v+−it)

∣∣∣xt]
= E

[
I(〈xt, βi〉+ zit > v+−it > r)v+−it + rI(〈xt, βi〉+ zit > r > v+−it)

∣∣∣xt]
=

∫ ∞
r

vhit(v)(1− F (v − 〈xt, βi〉)dv + rHit(r)(1− F (r − 〈xt, βi〉)) . (59)

By definition, the optimal reserve price of buyer i, denoted by r?it, is the maximizer of Wit(r). By
setting the derivative with respect to r equal to zero, we get

W ′it(r) = Hit(r)
(

(1− F (r − 〈xt, βi〉))− rf(r − 〈xt, βi〉)
)

= 0 , (60)

which implies that the optimal price r?it should satisfy

1− F (r − 〈xt, βi〉) = rf(r − 〈xt, βi〉) . (61)
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Now it is easy to see that Equation (61) is also the stationary condition for the function y(1 −
F (y − 〈xt, βi〉)). Since 1−F is log-concave by Assumption 3.1, function y 7→ y

(
1−F (y−〈xt, βi〉)

is also strictly log-concave for y > 0.13 Therefore, the stationary condition for y
(
1−F (y− 〈xt, βi〉)

gives its unique global maximum and the proof is complete.14

F Proof of Proposition C.1

Recall that β̂ik ∈ Rd is the solution to the optimization problem (10). By the second-order Taylor’s
theorem, expanding around βi, we have

Lik(βi)− Lik(β̂ik) = −〈∇Lik(βi), β̂ik − βi〉 −
1

2
〈β̂ik − βi,∇2Lik(β̃)(β̂ik − βik)〉 , (62)

for some β̃ on the segment connecting βi and β̂ik. Throughout,∇Lik and∇2Lik respectively denote
the gradient and the Hessian of Lik. In the following, we bound ‖β̂ik−βi‖2 by bounding the gradient
and the Hessian of Lik.

We start with computing the gradient and the Hessian of the loss function Lik(β):

∇Lik(β) =
1

`k−1

∑
t∈Ek−1

µit(β)xt , ∇2Lik(β) =
1

`k−1

∑
t∈Ek−1

ηit(β)xtx
T
t . (63)

Here, letting wit(β) = max{b+−it, rit} − 〈xt, β〉, the term µit(β) is given by

µit(β) = qit
f(wit(β))

1− F (wit(β))
− (1− qit)

f(wit(β))

F (wit(β))
(64)

= − qit log′ (1− F (wit(β)))− (1− qit) log′ (F (wit(β))) , (65)

where log′ F (y) is the derivative of logF (y) with respect to y.15 Further, the term ηit(β) is given by

ηit(β) = −qit log′′ (1− F (wit(β)))− (1− qit) log′′ (F (wit(β))) . (66)

We are now ready to provide an upper bound and a lower bound on the gradient and Hessian of the
loss function. These bounds will be used in bounding the estimation error of preference vectors,
which is the main goal of this proposition.
Lemma F.1. Define the probability event

E ≡
{
‖∇Lik(βi)‖ ≤ λ0

}
, with λ0 ≡ 2uF

√
log(`k−1d)

`k−1
+ 2uF

|Lik|
`k−1

, (67)

where constant uF is given by

uF ≡ sup
|x|≤Bn

{
max

{
log′ F (x),− log′(1− F (x))

}}
. (68)

Then, we have P(E) ≥ 1− d−0.5`−1.5k−1 . Moreover, we have the following lower bound on the Hessian:

∇2Lik(β) � lF

 1

`k−1

∑
t∈Ek−1

xtx
T
t

 , for all ‖β‖ ≤ B , (69)

where lF ≥ 0 is given by (16). Here, A � B means A−B is a positive semidefinite matrix.
13Note that at a negative value of y, function y 7→ y

(
1 − F (y − 〈xt, βi〉) is also negative and hence this

function cannot take its maximum at a negative y.
14If h(y) is strictly log-concave function, then at a stationary point y0 that h′(y0) = 0, we have log′(h(y0)) =

h′(y0)/h(y0) = 0. Given that log(h(y)) is strictly concave, this means that y0 is the unique global maximizer
of log(h(y)) and by strict monotonicity of the logarithm function, this implies that y0 is also the unique global
maximizer of h(y).

15Since the density f is zero outside the interval [−Bn, Bn], we have F (z) = 0 for z < −Bn, and F (z = 1)
for z > Bn. In Equation (64), if wit(β) is outside the interval [−Bn, Bn], we use the convention of 0

0
= 0.
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Lemma F.1 is proved in Appendix F.1.

By optimality of β̂ik, we have L(β̂ik) ≤ L(βi) and therefore by (62), we have

1

2
〈β̂ik − βi,∇2Lik(β̃)(β̂ik − βi)〉 ≤ −〈∇Lik(βi), β̂ik − βi〉 , (70)

where the l.h.s. can be bounded as follows

1

2
〈β̂ik − βi,∇2Lik(β̃)(β̂ik − βi)〉 =

1

2
(β̂ik − βi)T∇2Lik(β̃)(β̂ik − βi)

≥ 1

2
(β̂ik − βi)TlF

( 1

`k−1

∑
t∈Ek−1

xtx
T
t

)
(β̂ik − βi)

=
lF

2`k−1
(β̂ik − βi)T

(
XT
kXk

)
(β̂ik − βi)

=
lF

2`k−1
‖Xk(β̂ik − βi)‖2 .

Here, Xk is the matrix of size `k−1 by d whose rows are the feature vectors xt arriving in episode
k− 1. Moreover, the inequality follows from Lemma F.1. Applying the above bound in Equation (70)
and considering the fact that the l.h.s. of this equation is less than or equal to ‖∇Lik(βi)‖ ‖β̂ik−βi‖,
we get

1

2`k−1
lF ‖Xk(β̂ik − βi)‖2 ≤ ‖∇Lik(βi)‖ ‖β̂ik − βi‖ .

This implies that on event E , defined in (67), the following holds:

1

2`k−1
lF ‖Xk(β̂ik − βi)‖2 ≤ λ0‖β̂ik − βi‖ . (71)

To present a lower bound on the l.h.s. of the above equation, we next lower bound the minimum
eigenvalue of Σ̂k ≡ (XT

kXk)/`k−1. Since rows of Xk are bounded (recall that ‖xt‖ ≤ 1 by our
normalization), they are subgaussian. Using [33, Remark 5.40], there exist universal constants c and
C such that for every m ≥ 0, the following holds with probability at least 1− 2e−cm

2

:

∥∥∥Σ̂k − Σ
∥∥∥
op
≤ max(δ, δ2) where δ = C

√
d

`k−1
+

m√
`k−1

, (72)

where Σ = E[xtx
T
t ] ∈ Rd×d is the covariance of the feature vectors. Further, ‖A‖op represents the

operator norm of a matrix A and is given by ‖A‖op = inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖, for any vector v}.
By our assumption that Σ is positive definite16, we can choose constant 0 < cmin < 1 such
that λmin(Σ) > cmin/d, with λmin(A) denoting the minimum eigenvalue of a matrix A. 17 Set
m = cmin

√
`k−1/(4d), c0 = (4Cd/cmin)2 and c2 = cc2min/16d2. Then, for `k−1 > c0d with

probability at least 1− 2e−c2`k−1 , the following is true :∥∥∥Σ̂k − Σ
∥∥∥
op
≤ 1

2d
cmin . (73)

Denote by G the probability event that (73) holds. Then, on event G ∩ E , we have

1

4d
cminlF ‖β̂ik − βi‖2 ≤

1

2`k−1
lF ‖Xk(β̂ik − βi)‖2 ≤ λ0‖β̂ik − βi‖ , (74)

16A symmetric matrix is said to be positive definite if all of its eigenvalues are strictly positive. In general, if
the distribution of features D, is bounded below from zero on an open set around the origin, then its second-
moment matrix is positive definite. This assumption holds for many common distributions such as normal and
uniform distributions.

17Note that by our normalization, the sum of eigenvalues of Σ would be trace(Σ) = E[‖xt‖2] ≤ 1, and that
is why the eigenvalues are scaled by 1/d.
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where the first inequality holds because of Equation (73) and the definition of the operator norm. This
results in

‖β̂ik − βi‖2 ≤
16d2

c2minlF
2λ

2
0 =

( 8duF
cminlF

)2(√ log(`k−1d)

`k−1
+
|Lik|
`k−1

)2

≤ 2
( 8duF
cminlF

)2( log(`k−1d)

`k−1
+

(
|Lik|
`k−1

)2)
, (75)

where in the last line, we used inequality (a+ b)2 ≤ 2a2 + 2b2.

Note that
P((E ∩ G)c) ≤ P(Ec) + P(Gc) ≤ d−0.5`−1.5k−1 + 2e−c2`k−1 ,

and hence the result follows readily from (75), by defining c1 ≡ 128(uF /cmin)2.

F.1 Proof of Lemma F.1

We first show the first result in the lemma. We start with few definitions. Let q̃it = I(vit >
max{b+−it, rit}) be the allocation variable as if buyer i was truthful and the highest competing bid
was b+−it. Then, by definition of set of lies Lik, as per (17), for t /∈ Lik, we have qit = q̃it. Let

µ̃it(β) = −q̃it log′(1− F (wit(β)))− (1− q̃it) log′(F (wit(β))

be the corresponding quantity to µit(β), where we replace qit by q̃it. Note that wit(β) =
max{b+−it, rit} − 〈xt, β〉 and µit(β) is defined in (65). By definition, µit(β) = µ̃it(β) for t /∈ Lik,
and so we can write

∇Lik(β) = − 1

`k−1

∑
t∈Ek

(
µ̃it(β)xt − µit(β)xt

)
+

1

`k−1

∑
t∈Ek−1

µ̃it(β)xt

= − 1

`k−1

∑
t∈Lik

(
µ̃it(β)xt − µit(β)xt

)
+

1

`k−1

∑
t∈Ek−1

µ̃it(β)xt .

To bound the first term on the right hand side of the last equation, we note that

|µit(βi)| ≤ sup
|y|≤Bn

{
max

{
log′ F (y),− log′(1− F (y))

}}
= uF , (76)

with uF given by (68). Here, the first inequality follows from definition of µit(βi) as per (65) and
using the fact that functions f and F are zero outside the interval [−Bn, Bn]. Similarly, we have
|µ̃it(βi)| ≤ uF . Then, considering the fact that ‖xt‖ ≤ 1, we get∥∥∥∇Lik(βi)

∥∥∥ ≤ 2uF
`k−1

|Lik|+
1

`k−1

∥∥∥∥ ∑
t∈Ek−1

µ̃it(βi)xt

∥∥∥∥ . (77)

We next bound the second term on the right hand side of (77). Define Sj =
∑j−1+`k−1

t=`k−1
µ̃it(βi)xt,

j = 1, 2, . . . , `k − 1, and set S0 = 0. Note that the second term in (77) is equal to S`k−1. We upper
bound 1

`k−1

∥∥∥S`k−1∥∥∥ by showing Sj is a vector martingale with bounded differences.

Observe that ‖Sj−Sj−1‖ ≤ uF ‖xt‖ ≤ uF . Further, Sj−Sj−1 = µ̃it(βi)xt with t = `k−1+j−1,
and

E[µ̃it(βi)|wit(βi)] = P(q̃it = 1)
f(wit(βi))

1− F (wit(βi))
− P(q̃it = 0)

f(wit(βi))

F (wit(βi))

= (1− F (wit(βi))
f(wit(βi))

1− F (wit(βi))
− F (wit(βi))

f(wit(βi))

F (wit(βi))
= 0 ,

where the equation holds because zit is independent of wit(βi). Then, considering the fact that zit is
independent from the history set (2), we also have

E[Sj − Sj−1|S1, . . . , Sj−1] = E[µ̃it(βi)|S1, . . . , Sj−1] = 0 .

27



So far, we have established that Sj is a matrix martingale with bounded differences. Then, by Matrix
Freedman inequality (See Appendix K),

P
(
‖S`k−1

‖ ≥ 2uF
√

log(`k−1d)`k−1

)
≤ (d+ 1) exp−(12/8) log(`k−1d) =

1

d0.5`1.5k−1
. (78)

Then, by Equation (77) and definition of S`k−1
and event E , given in (67), we have P(E) ≥ 1 −

d−0.5`−1.5k−1 . This completes the proof of the first part of the lemma.

We next prove claim (69) on the Hessian∇2L(β). By characterization (63), it suffices to show that
ηit(β) ≥ lF . To see this,

ηit(β) = − qit log′′ (1− F (wit(β)))− (1− qit) log′′ (F (wit(β)))

≥ inf
|y|≤Bn

{
min

{
− log′′ F (y),− log′′(1− F (y))

}}
≡ lF ,

where we used the fact that function F is zero outside the interval [−Bn, Bn]. This completes the
proof of the lemma.

G Proof of Proposition C.2

Here, we need to show claims (19), (20), and (21). Let oit = (bit − vit)+ and sit = (vit − bit)+
be the amount of overbidding and shading (underbidding) of buyer i in period t, respectively. As
a common step to show these claims, we upper bound the size of sets Sik ≡ {t : t ∈ Ek−1, qit =
0, sit ≥ 1/`k−1} and Oik ≡ {t : t ∈ Ek−1, qit = 1, oit ≥ 1/`k−1}. In words, a period t belongs
to Sik, if buyer i has shaded his bid significantly in this period, i.e., sit ≥ 1/`k−1, and he does not get
the item in this period. Similarly, a period t belongs toOik, if in this period, buyer i has over-bided by
at least 1/`k−1 amount, and he gets the item in this period. We next use the bounds that we establish
on |Sik| and |Oik| to prove the three aforementioned claims.

To bound the size of sets Sik and Oik, we use the fact that buyers are utility-maximizer and as a
result, they aim for balancing the utility loss due to bidding untruthfully with its potential gain. We
define u−it as the utility that buyer i loses in period t ∈ Ek−1 due to bidding untruthfully, relative
to the truthful bidding. Precisely, given reserve price rit and the highest competing bid b+−it, u

−
it is

defined as follows:

u−it = (vit −max{b+−it, rit}) I(vit > max{b+−it, rit}) I(bit < max{b+−it, rit})
− (vit −max{b+−it, rit}) I(vit < max{b+−it, rit}) I(bit > max{b+−it, rit}) .

Note that the first and second terms are the loss due to underbidding and overbidding, respectively.
Our lemma below provides a lower bound on the expected value of u−it .
Lemma G.1. For each buyer i ∈ [N ] and t ∈ [`k−1, `k − 1], we have

E[u−it |sit, oit, qit] ≥
1

2BN`k−1
γts2it(1− qit) +

1

2BN`k−1
γto2itqit , (79)

where the expectation is taken w.r.t. to the randomness in reserve prices.

Proof. Proof of Lemma G.1. Note that in each period, buyers may suffer a utility loss due to bidding
untruthfully. We start with characterizing the impact of underbidding. We then focus on overbidding.

Underbidding: After observing the outcome of auction t, if buyer i receives the item, then underbid-
ding has no effect on the buyer’s instant utility. But if the buyer does not receive the item, then there
is a chance that is due to the underbidding. To lower bound u−it , note that in each period t ∈ Ek−1,
with probability 1/`k−1, the firm does not run a second-price auction. Instead, she picks one of the
buyers equally likely and for a reserve price, chosen uniformly at random from [0, B], allocates the
item to that buyer if his bid exceeds the corresponding reserve price. Therefore, if a buyer i shades
his bid by sit, i.e., sit = (vit − bit)+, then the utility loss incurred relative to being truthful can be
lower bounded as follows:

E[u−it |sit, qit, vit] ≥
γt(1− qit)
BN`k−1

∫ vit

vit−sit
(vit − r)dr =

1

2BN`k−1
γts2it(1− qit) . (80)
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Overbidding: After observing the outcome of auction t, if buyer i does not get the item, then
overbidding has no effect on the buyer’s instant utility. But if the buyer receives the item, then there
is a chance that is due to the overbidding. Then, one can follow a similar argument that we used for
underbidding to show that

E[u−it |oit, qit, vit] ≥
γt(qit)

BN`k−1

∫ vit+oit

vit

(−vit + r)dr =
1

2BN`k−1
γto2itqit . (81)

Then, the result follows from Equations (80) and (81), and by taking expectation w.r.t vit, from both
sides of these equations, conditioning on qit, sit, and oit.

� �

With a slight abuse of notation, let U−i(k−1) be the utility loss of buyer i in episode k − 1 due to
untruthful bidding. That is, U−i(k−1) =

∑
t∈Ek−1

u−it . In contrast to the utility loss U−i(k−1), we
define U+

ik as the total utility gain that buyer i can achieve by being untruthful in episode k− 1. More
precisely, we fix all other buyer’s bidding strategy and consider a reference strategy for buyer i. The
reference strategy is the same as buyer i’s strategy up to episode k − 1, and in episode k − 1, the
reference policy is just the truthful bidding strategy. We define U+

ik as the total excess utility that
buyer i can earn, over the reference strategy. Considering the fact that the bidding strategy of buyer i
in episode k − 1 can only benefit him in the next episodes k, k + 1, . . . , we have

U+
ik ≤

∞∑
t=`k

γtvit ≤ B

∞∑
t=`k

γt = B
γ`k

1− γ
, (82)

where the second inequality holds because vit ≤ B. Indeed, upper bound (82) applies to the total
utility any buyer can hope to collect over periods t ≥ `k.

Now, since we are assuming that the strategic buyers are maximizing their cumulative utility, it must
be the case that

E
[
U+
ik − U

−
i(k−1)

∣∣∣∣{(qit, sit, oit) : t ∈ Ek−1
}]
≥ 0 .

Using Lemma G.1 along with upper bound (82), we obtain
`k−1∑
t=`k−1

1

2BN`k−1
γto2itqit +

1

2BN`k−1

`k−1∑
t=`k−1

γts2it(1− qit) ≤ B
γ`k

1− γ
. (83)

Next, we lower bound the l.h.s. of the last equation as a function of |Sik|. By definition of Sik, we
have

1

2BN`k−1

`k−1∑
t=`k−1

γts2it(1− qit) ≥
1

2BN`3k−1

`k−1∑
t=`k−|Sik|

γt =
γ`k

2BN`3k−1
· γ
−|Sik| − 1

1− γ
.

Then, using the last equation along with (83), we get

1

`3k−1
· γ
−|Sik| − 1

1− γ
≤ 2B2N

1

1− γ
,

from which we get

|Sik| ≤
log
(
2B2N`3k−1 + 1

)
log(1/γ)

≤ C log(`k−1) , (84)

for a constant C = C(γ,B,N). Similarly, one can show that

|Oik| ≤
log(2B2N`3k−1+1)

log(1/γ) ≤ C ′ log(`k−1) , where C ′ = C ′(γ,B,N) is a constant.

So far, we have established an upper bound on |Sik| and |Oik|. We next bound |Lik|. With this aim,
we partition the set of lies Lik into two subsets Lsik and Loik, defined below.

Lsik =
{
t : t ∈ Ek−1, I(vit > max{b+−it, rit}) = 1, I(bit > max{b+−it, rit}) = 0

}
, (85)

Loik =
{
t : t ∈ Ek−1, I(vit > max{b+−it, rit}) = 0, I(bit > max{b+−it, rit}) = 1

}
. (86)
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In the following, we bound |Lsik| and |Loik| in order to provide an upper bound on |Lik|.
We start with bounding |Lsik|. Define Scik ≡ {t : t ∈ Ek−1, qit = 1 or sit < 1/`k−1}. Then,
|Lsik| ≤ |Sik|+ |Scik ∩ Lsik|. We have already bounded |Sik|. In the following, we bound |Scik ∩ Lsik|.
By definition (85), we first note that for t ∈ Lsik, qit = 0. Therefore, for t ∈ Scik ∩ Lsik, we have
sit < 1/`k−1. Let Ft ≡ {(xτ , b+−iτ , riτ ) : 1 ≤ τ ≤ t}. Then, by substituting for bit = vit − sit18

and vit = 〈xt, βi〉+ zit, we have

P(t ∈ Scik ∩ Lsik|Ft)

= P
(
zit ∈ [max{b+−it, rit} − 〈xt, βi〉,max{b+−it, rit} − 〈xt, βi〉+ sit] and sit ≤

1

`k−1

∣∣∣Ft)
≤ P

(
zit ∈

[
max{b+−it, rit} − 〈xt, βi〉,max{b+−it, rit} − 〈xt, βi〉+

1

`k−1

]∣∣∣Ft)
=

∫ max{b+−it,rit}−〈xt,βi〉+1/`k−1

max{b+−it,rit}−〈xt,βi〉
f(z)dz ≤ c

`k−1
, (87)

where the equality holds because zit is independent of Ft. In addition, in the last step, c ≡
maxv∈[−Bn,Bn] f(v) is the bound on the noise density.19

Define ζt ≡ I(t ∈ Scik ∩ Lik) and ωt ≡ P(t ∈ Scik ∩ Lik|Ft). Then, |Scik ∩ Lik| =
∑`k−1
t=`k−1

ζt and
E(ζt − ωt|Ft) = 0. Therefore, by using a multiplicative Azuma inequality (see e.g. [23, Lemma
10]), for any ε ∈ (0, 1) and any η > 0 we have

P
(
|Scik ∩ Lsik| ≥

1 + η

1− ε

`k−1∑
t=`k−1

ωt

)
≤ exp

(
− εη

`k−1∑
t=`k−1

ωt

)
. (88)

We use the shorthand A ≡
∑`k−1
t=`k−1

ωt. By setting ε = 1/2, η = (2/A) log(`k−1/δ), the r.h.s of
Equation (88) becomes δ/`k−1. Further, recalling Equation (87), we have A ≤ `k−1(c/`k−1) = c.
Hence, rewriting bound (88), we get that with probability at least 1− δ/`k−1,

|Scik ∩ Lsik| =

`k−1∑
t=`k−1

ζt ≤ 2(1 + η)A ≤ 2c+ 4 log(`k−1/δ) .

Combining the above inequality with bound (84), we get

|Lsik| ≤ |Scik ∩ Lsik|+ |Sik| ≤ 2c+ 4 log(`k−1/δ) + C log(`k−1) .

One can establish a similar bound for |Loik|. Then, claim (19) follows by using the bounds on |Lsik|
and |Loik|.
To prove claim (20), we write∑

t∈Ek−1

sit(1− qit) =
∑

t∈Ek−1

sit(1− qit)I(t ∈ Sik) +
∑

t∈Ek−1

sit(1− qit)I(t ∈ Scik)

≤ B|Sik|+
∑

t∈Ek−1

1

`k−1

≤ CB log(`k−1) + 1 ,

where we used the fact that (i) sit ≤ vit ≤ B, and (ii) for any t ∈ Scik, either qit = 1 or sit < 1/`k−1.
This complete the proof of claim (20).

18Note that here sit > 0 as t ∈ Lsik and consequently bit < vit.
19Note that the density f is continuous and hence attains its maximum over compact sets.
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Finally, we show claim (21). Let Ocik ≡ {t : t ∈ Ek−1, qit = 0 or oit < 1/`k−1}. Then, we write∑
t∈Ek−1

oitqit =
∑

t∈Ek−1

oitqitI(t ∈ Oik) +
∑

t∈Ek−1

oitqitI(t ∈ Ocik)

≤ M |Oik|+
∑

t∈Ek−1

1

`k−1

≤ CM log(`k−1) + 1 .

Here, we used the fact that (i) oit ≤ M , and (ii) for any t ∈ Ocik, either qit = 0 or oit < 1/`k−1.
This completes the proof of claim (21).

H Proof of Proposition D.1

The proposition can be proved by following similar steps used in the proof of Proposition C.1. For
the quadratic loss function

L̃ik(β) =
1

|Ik|
∑
t∈Ik

(BNqit − 〈xt, β〉)2 ,

the gradient and Hessian are given by

∇L̃ik(β) =
1

|Ik|
∑
t∈Ik

µit(β)xt , ∇2L̃ik(β) =
1

|Ik|
∑
t∈Ik

2xtx
T
t , (89)

where with a slight abuse of notation, µit(β) = 2(〈xt, β〉 −BNqit).

By the second-order Taylor’s theorem, expanding around βi, we have

L̃ik(βi)− L̃ik(β̂ik) = −〈∇L̃ik(βi), β̂ik − βi〉 −
1

2
〈β̂ik − βi,∇2L̃ik(β̃)(β̂ik − βik)〉 , (90)

for some β̃ on the segment connecting βi and β̂ik.

By optimality of β̂ik, we have L̃(β̂ik) ≤ L̃(βi) and therefore by (90), we have

1

2
〈β̂ik − βi,∇2L̃ik(β̃)(β̂ik − βi)〉 ≤ −〈∇L̃ik(βi), β̂ik − βi〉 . (91)

Using Equation (89), the r.h.s in the above equation can be written as

1

2
〈β̂ik − βi,∇2L̃ik(β̃)(β̂ik − βi)〉 = (β̂ik − βi)T

( 1

|Ik|
∑

t∈Ek−1

xtx
T
t

)
(β̂ik − βi)

=
1

|Ik|
(β̂ik − βi)T

(
XT
kXk

)
(β̂ik − βi)

=
1

|Ik|
‖Xk(β̂ik − βi)‖2 .

Here, Xk is the matrix of size |Ik| by d, whose rows are the feature vectors xt, with t ∈ Ik (the
exploration phase of episode k). Therefore,

1

|Ik|
‖Xk(β̂ik − βi)‖2 ≤ −〈∇L̃ik(βi), β̂ik − βi〉 ≤ ‖∇L̃ik(βi)‖ ‖β̂ik − βi‖ . (92)

In the next lemma, we bound the gradient of the quadratic loss function. This Lemma is analogous to
Lemma F.1.
Lemma H.1. Consider the quadratic loss (14) and define the probability event

E ≡
{
‖∇L̃ik(βi)‖ ≤ λ0

}
, with λ0 ≡ 4B(N + 1)

√
log(`k−1d)

|Ik|
+ 4B(N + 1)

|Lik|
|Ik|

. (93)

Then, we have P(E) ≥ 1− d−0.5`−1.5k−1 .
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Proof of Lemma H.1 is given in Section H.1. Using Lemma H.1 in bound (92), we get

1

|Ik|
‖Xk(β̂ik − βi)‖2 ≤ λ0 ‖β̂ik − βi‖ . (94)

The proof of Proposition D.1 then follows exactly along the lines after Equation (71) in the proof of
its counterpart, Proposition C.1.

H.1 Proof of Lemma H.1

Let q̃it = I(vit > max{b−t , rit}) be the allocation variables as if buyer i was truthful. Then by
definition of set of lies Lik, as per (17), for t /∈ Lik, we have qit = q̃it. We define µ̃it(β) as the
counterpart of µit(β), where we replace qit by q̃it, i.e.,

µ̃it(β) = 2(〈xt, β〉 −BNq̃it) .

Recall that µit(β) = 2(〈xt, β〉 −BNqit). Since µit(β) = µ̃it(β) for t /∈ Lik, we can write

∇L̃ik(β) =
1

|Ik|
∑
t∈Ik

µ̃it(β)xt −
1

|Ik|
∑
t∈Ik

{µ̃it(β)xt − µit(β)xt}

=
1

|Ik|
∑
t∈Ik

µ̃it(β)xt −
1

|Ik|
∑

t∈Lik∩Ik

{µ̃it(β)xt − µit(β)xt} . (95)

To bound∇L̃ik(βi), we start with bounding |µit(βi)| and |µ̃it(βi)|. By our normalization ‖xt‖ ≤ 1.
Further, since ‖βi‖ ≤ Bp < B, we obtain |〈xt, βi〉| ≤ B. This implies that |µit(βi)| = 2|〈xt, βi〉 −
BNqit| ≤ 2B(N + 1). Similarly, we have |µ̃it(βi)| ≤ 2B(N + 1). Therefore, by Equation (95), we
have ∥∥∥∇L̃ik(βi)

∥∥∥ ≤ 1

|Ik|

∥∥∥∥∑
t∈Ik

µ̃it(βi)xt

∥∥∥∥+
4B(N + 1)

|Ik|
|Lik| , (96)

where we used that ‖xt‖ ≤ 1. To complete the proof of the first part of the lemma, we bound the first
term on the right hand side of (96) using the Matrix Freedman inequality for bounded martingale
matrices (see Appendix K). Similar to the proof of Lemma F.1, define Sj =

∑j−1+`k
t=`k

µ̃it(βi)xt and
S0 = 0. In order to show that Sj is a vector martingale with bounded differences, we need to show
that E[µ̃it(βi)xt] = 0 and bound ‖µ̃it(βi)xt‖.
Recall that in the pure exploration phase, for a buyer chosen uniformly at random, we set the reserve
r ∼ uniform(0,B), and for other buyers we set their reserves to∞. Therefore, for any period t in the
pure exploration phase of episode k, i.e., for any t ∈ Ik, we have

P(q̃it = 1|vit, xt) =
vit
BN

.

As a result, E[q̃it|vit, xt] = vit/(BN), where the expectation is taken w.r.t. to the randomness in
reserve prices. Thus,

E[µ̃it(βi)|xt] = 2E[(BNE[q̃it|vit, xt]− 〈xt, βi〉) | xt] = 2E[vit − 〈xt, βi〉|xt] = 2E[zit|xt] = 0 .
(97)

This also implies that E[µ̃it(βi)xt] = 0. Further, ‖µ̃it(βi)xt‖ ≤ 2B(N + 1)‖xt‖ ≤ 2B(N + 1).
Thus, by virtue of Matrix Freedman inequality, we have

P
(

1

|Ik|

∥∥∥∥∑
t∈Ik

µ̃it(βi)xt

∥∥∥ ≥ 4B(N + 1)

√
log(`k−1d)

|Ik|

)
≤ (d+ 1) exp−(12/8) log(`k−1d) =

1

d0.5`1.5k−1
.

(98)

Combining Equations (96) and (98) shows that P(E) ≥ 1− d−0.5`−1.5k−1 , where the probability event
E is defined in (93).
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I Proof of Proposition D.2

The proof is based on comparing the utility loss of an untruthful buyer with his future utility gain
and using the fact that buyers are utility-maximizing. Note that in SCORP, any utility loss due to
untruthful bidding can only happen in the exploration phase of the episodes, as the submitted bids in
the exploitation phase of the episodes are not used in estimating the preference vectors. Therefore,
during the exploitation phase, there is no incentive for buyers to deviate from being truthful. Hence,
to bound the utility loss of a buyer due to untruthful bidding, we only need to focus on the pure
exploration phase.

By focusing on the exploration phase, it is easy to verify that by following similar steps as in the
proof of Lemma G.1, we have

E[u−it |sit, oit, qit] ≥
1

2BN
γts2it(1− qit) +

1

2BN
γto2itqit , (99)

where the expectation is taken w.r.t. to the randomness in reserve prices.

Observe that this bound is stronger than Lemma G.1 in that the factor 1/(2BN`k−1) is replaced by
1/2BN . The reason is that in each period of pure exploration phase, for a randomly chosen buyer
we set his reserve r ∼ uniform(0, B) and we set other buyer’s reserves to∞. This is in contrast to
the CORP policy (under known distribution F ) that we do such exploration only with probability
1/`k−1 in each period of episode k. We remove the proof of Equation (99), as it is very similar to the
proof of Lemma G.1.

By having Equation (99) in place, the rest of the proof is exactly the same as the proof of Proposi-
tion C.2.

J Proof of Technical Lemmas

J.1 Proof of Lemma C.3

Note that in a second-price auction with truthful buyers, Wit(r) indicates the revenue that firm
earns when buyer i wins the auction and has been posted reserve price r. Therefore by definition of
optimality r?it = arg maxrWit(r). (In Proposition 3.2, it is shown that r?it is the optimal solution of
optimization problem (4).) Therefore, W ′it(r

?
it) = 0.

Also, by Equation (60), we have

W ′it(r) = Hit(r)
(

(1− F (r − 〈xt, βi〉))− rf(r − 〈xt, βi〉)
)
. (100)

Hence,

W ′′it(r) = hit(r)
(

(1− F (r − 〈xt, βi〉))− rf(r − 〈xt, βi〉)
)

− 2Hit(r)f(r − 〈xt, βi〉)−Hit(r)rf
′(r − 〈xt, βi〉) . (101)

Since valuations and bids are bounded by constant B, clearly 0 ≤ r?it, rit ≤ B and given that r is
between them, we also have 0 ≤ r ≤ B. In addition, considering the fact that the market noise
is bounded in [−Bn, Bn] and f and f ′ are continuous, both f and f ′ attain their maximum over
the compact interval [−Bn, Bn]. Let c1 = maxy∈[−Bn,Bn] f(y) and c2 = maxy∈[−Bn,Bn] f

′(y).
Further, since 0 ≤ v−t ≤ B, its density hit is supported in [−B,B] and due to continuity, it attains
its maximum over this interval. Let c3 = maxy∈[−B,B] h(y). Therefore,

|W ′′it(r)| ≤ c3 + 2c1 +Bc2 .

The result follows by setting c ≡ c3 + 2c1 +Bc2.

J.2 Proof of Lemma C.4

We define function g : R 7→ R as follows:

g(θ) = arg max
y
{y(1− F (y − θ))} . (102)
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By this definition, for any t ∈ Ek, we have r?it = g(〈xt, βi〉) and rit = g(〈xt, β̂ik〉). Then, by
showing g(·) is 1-Lipschitz function, claim (52) follows. To see this note that

|r?it − rit| = |g(〈xt, βi〉)− g(〈xt, β̂ik〉)| ≤ |〈xt, βi − β̂ik〉| , (103)

where the inequality holds because of 1-Lipschitz property of function g.

By definition (102), g(θ) should satisfy the following stationary condition:

1− F (g(θ)− θ) = g(θ)f(g(θ)− θ) .

Define ϕ(y) ≡ y − 1−F (y)
f(y) as the virtual valuation function. Then, we can write g(θ) in terms of

virtual valuation function: ϕ(g(θ)− θ) = −θ . Since ϕ is injective, by applying ϕ−1 to both sides,
we can write g(θ) explicitly in terms of virtual valuation function:

g(θ) = θ + ϕ−1(−θ) . (104)

Using characterization (104), we show that g is 1-Lipschitz. To do so, we verify g′(θ) = 1 −
1/ϕ′(ϕ−1(−θ)) is less than one. In particular, g′(θ) ≤ 1 because ϕ′(y) ≥ 1. To see why this holds
note that ϕ(y) can be written as ϕ(y) = y + 1

log′(1−F (y)) . Then, by Assumption 3.1, 1 − F is
log-concave. This implies that log′(1− F (y)) is decreasing, and consequently ϕ(y) is increasing.
Indeed, this implies that ϕ′(y) ≥ 1.

J.3 Proof of Lemma C.5

We first prove Claim (34). Observe that when v−t − b−t < 0, Claim (34) holds, as sit ≥ 0 for any
i ∈ [N ]. Thus, it suffices to show that (v−t − b−t ) ≤ max

{
sit(1 − qit) : i ∈ [N ]

}
. Without loss

of generality, assume v1t > v2t > . . . > vNt. Then, v−t = v2t. If b−t ≥ b2t, then buyer 2 will not
receive the item, i.e., q2t = 0 and we have

v−t − b−t = v2t − b−t ≤ v2t − b2t = (v2t − b2t)(1− q2t) = s2t(1− q2t) ,

proving the claim in this case. The other case is when b−t < b2t and hence b2t is the highest bid. This
implies that b1t ≤ b−t and we have the following chain of inequalities:

v−t − b−t = v2t − b−t ≤ v2t − b1t < v1t − b1t . (105)

Further, since buyer 2 has the highest bid, q2t = 1 and qit = 0 for all i 6= 2. In particular, q1t = 0.
Combining this with (105), we get

v−t − b−t < (v1t − b1t)(1− q1t) ,
which proves the claim in this case as well.

We next prove Claim (35). Suppose qit = 0 and let buyer j be the winner (qjt = 1 and j 6= i). Then,
by definition b+−it = bjt and

b+−it − v
+
−it = bjt − v+−it ≤ bjt − vjt = ojtqjt .

Here, we use that vjt ≤ v+−it because j 6= i.

J.4 Proof of Lemma D.3

Recall that r?it and rit are given by the following equations:

r?it = arg max
r

min
F∈F

r(1− F (r − 〈xt, βi〉)) ,

rit = arg max
r

min
F∈F

r(1− F (r − 〈xt, β̂ik〉)) .

Let r̃?it = r?it − 〈xt, βi〉 and r̃it = rit − 〈xt, β̂ik〉. By a change of variable, it is easy to see that r̃?it
and r̃it are the solutions to the following optimization problems:

r̃?it = arg max
r

min
F∈F

{
(r + 〈xt, βi〉)(1− F (r))

}
,

r̃it = arg max
r

min
F∈F

{
(r + 〈xt, β̂ik〉)(1− F (r))

}
.
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Define function H : R→ R as H(r) ≡ maxF∈F F (r). Observe that r̃?it + 〈xt, βi〉 = r?it > 0 and
hence,

r̃?it = arg max
r

min
F∈F

(r + 〈xt, βi〉)(1− F (r))

= arg max
r

(r + 〈xt, βi〉) min
F∈F

(1− F (r))

= arg max
r

(r + 〈xt, βi〉)(1−H(r)) . (106)

Using the change of variable r ← r + 〈xt, βi〉, we obtain

r?it = arg max
r

r(1−H(r − 〈xt, βi〉)) . (107)

Likewise,

rit = arg max
r

r(1−H(r − 〈xt, β̂ik〉)) . (108)

Now, note that by definition of function H , we have log(1 − H(r)) = minF∈F log(1 − F (r)).
Further, F is log-concave for all F ∈ F , as per Assumption B.1. Moreover, using the fact that the
(pointwise) minimum of concave functions is also concave, we have that 1−H is log-concave. By
virtue of characterizations (107) and (108), and log-concavity of 1−H , the claim follows from the
same proof of Lemma C.4 and hence is omitted. The only subtle point is that function H , although
continuous, may not be differential at some points. Therefore, in using the argument of Lemma C.4,
derivative should be replaced by subgradient.

K Matrix Freedman Inequality

For readers’ convenience, here we state the Matrix Freedman inequality for martingales.
Theorem K.1 (Rectangular Matrix Freedman). Consider a matrix martingale {Yk : k = 0, 1, 2, . . . }
whose values are matrices with dimension d1 × d2 and let {Xk : k = 1, 2, . . . } be the difference
sequence. Assume that the difference sequence is uniformly bounded:

‖Xk‖op ≤ R almost surely for k ≥ 1 , (109)

where ‖ · ‖op denotes the operator norm20, and R is a constant. Define two predictable quadratic
variation processes for this martingale

W1,k ≡
k∑
j=1

E[XjX
T
j |Y1, . . . , Yj−1] ,

W2,k ≡
k∑
j=1

E[XT
j Xj |Y1, . . . , Yj−1] ,

for k ≥ 1. Further, for given σ2 > 0 and t ≥ 0, let event A ≡
{
∃k ≥ 0 : ‖Yk‖op ≥

t, max(‖W1,k‖op, ‖W2,k‖op) ≤ σ2
}

. Then,

P(A) ≤ (d1 + d2) exp

(
− t2/2

σ2 +RT/3

)
=

{
(d1 + d2) exp(−3t2/8σ2) t ≤ σ2/R ,

(d1 + d2) exp(−3t/8R) t ≥ σ2/R .

We refer to [32] for the proof of Theorem K.1. We next state the result of Matrix Freedman theorem
specialized to the vector case. This corollary is used in the proof of Propositions F.1 and H.1.
Corollary K.2. Consider a vector martingale {uk : k = 0, 1, 2, . . . } whose values are vector with
dimension d and let {vk : k = 1, 2, . . . } be the difference sequence. Assume that the difference
sequence is uniformly bounded:

‖vk‖ ≤ R almost surely for k ≥ 1 , (110)

20For a matrix A, its operator norm is defined as ‖A‖op = inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖, for any vector v}.
Equivalently, the operator norm is the largest singular value of a matrix.
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Define a predictable quadratic variation processes for this martingale:

wk ≡
k∑
j=1

E
[
‖vj‖2

∣∣∣u1, . . . , uj−1] , for k ≥ 1 .

Then, for all t ≥ 0 and σ2 > 0, we have

P
{
∃k ≥ 0 : ‖uk‖ ≥ t and ‖wk‖ ≤ σ2

}
≤ (d+ 1) exp

(
− t2/2

σ2 +Rt/3

)
(111)

=

{
(d+ 1) exp(−3t2/8σ2) for t ≤ σ2/R ,

(d+ 1) exp(−3t/8R) for t ≥ σ2/R .

We used Corollary K.2 in the proof of Lemma F.1 to bound the norm of martingale Sj (see below
Equation (77)). Specifically, we used the corollary with uj = Sj , vj = µ̃it(βi)xt (with t = `k−1+j−
1), R = uF , and σ2 = u2F `k−1. Then, using bound (111) for S`k−1

with t = 2uF
√

log(`k−1d)`k−1,
we obtain bound (78).

Likewise, we used Corollary K.2 in the proof of Lemma H.1 to bound the norm of martingale Sj (see
below Equation (96)). Here, again we set uj = Sj , vj = µ̃it(βi)xt with t = `k−1+j−1 (note that in
this case µ̃it(βi) = 2(〈xt, βi〉 −BNq̃it).) We then have R = 2B(N + 1) and σ2 = 4B2(N + 1)2j.
We then use bound (111) for S`k−1

with t = 4B(N + 1)
√

log(`k−1d)|Ik| to obtain (98).
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