
Positional Normalization (Supplementary Material)

Boyi Li1,2∗, Felix Wu1∗, Kilian Q. Weinberger1, Serge Belongie1,2
1Cornell University 2Cornell Tech

{bl728, fw245, kilian, sjb344}@cornell.edu

Appendices
A Algorithm of PONO-MS

The implementation of PONO-MS in TensorFlow [1] an PyTorch[7] are shown in Listing 1 and 2
respectively.

x is the features of shape [B, H, W, C]

In the Encoder
def PONO(x, epsilon=1e-5):

mean, var = tf.nn.moments(x, [3], keep_dims=True)
std = tf.sqrt(var + epsilon)
output = (x - mean) / std
return output, mean, std

In the Decoder
one can call MS(x, mean, std)
with the mean and std are from a PONO in the encoder
def MS(x, beta, gamma):

return x * gamma + beta

Listing 1: PONO and MS in TensorFlow

x is the features of shape [B, C, H, W]

In the Encoder
def PONO(x, epsilon=1e-5):

mean = x.mean(dim=1, keepdim=True)
std = x.var(dim=1, keepdim=True).add(epsilon).sqrt()
output = (x - mean) / std
return output, mean, std

In the Decoder
one can call MS(x, mean, std)
with the mean and std are from a PONO in the encoder
def MS(x, beta, gamma):

return x * gamma + beta

Listing 2: PONO and MS in PyTorch

∗: Equal contribution.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

B Equations of Existing Normalization

Batch Normalization (BN) computes the mean and std across B, H, and H dimensions, i.e.

µc = Eb,h,w[Xb,c,h,w], σc =
√
Eb,h,w[X2

b,c,h,w − µc] + ε,

where ε is a small constant applied to handle numerical issues.

Synchronized Batch Normalization views features of mini-batches across multiple GPUs as a single
mini-batch.

Instance Normalization (IN) treats each instance in a mini-batch independently and computes the
statistics across only spatial dimensions, i.e.

µb,c = Eh,w[Xb,c,h,w], σb,c =
√
Eh,w[X2

b,c,h,w − µb,c] + ε.

Layer Normalization (LN) normalizes all features of an instance within a layer jointly, i.e.

µb = Ec,h,w[Xb,c,h,w], σb =
√
Ec,h,w[X2

b,c,h,w − µb] + ε.

Finally, Group Normalization (GN) lies between IN and LN, it devides the channels into G groups
and apply layer normalization within a group. When G = 1, GN becomes LN. Conversely, when the
G = C, it is identical to IN. To define it formally, it computes

µb,g = Ec∈Sg,h,w[Xb,c,h,w], σb,g =
√
Ec∈Sg,h,w[X

2
b,c,h,w − µb,g] + ε,

where Sg = {d (g−1)CG + 1e, . . . , d gCG e}.

C PONO Statistics of Models Pretrained on ImageNet

Figure 1 shows the means and the standard deviations extracted by PONO based on the features
generated by VGG-19 [8], ResNet-152 [3], and DenseNet-161 [4] pretrained on ImageNet [2].

D Implementation details

We add PONO to the encoder right after a convolution operation and before other normalization or
nonlinear activation function. Figure 2 shows the model architecture of CycleGAN [9] with Positional
Normalization. Pix2pix [5] uses the same architecture.

E Qualitative Results Based on CycleGAN and Pix2pix

We show some outputs of CycleGAN in Figure 3. The Pix2pix outputs are shown in Figure 4.

F Qualitative Results Based on DRIT and MUNIT.

We randomly sample 10 cat and dog image pairs and show the outputs of DRIT, DRIT + PONO-MS,
MUNIT, and MUNIT’ PONO-MS in Figure 5.

G PONO in Image Classification

To evaluate PONO on image classification task, we add PONO to the begining of each ResBlock
of ResNet-18 [3] (also affects the shortcut). We followed the common training procedure base on
Wei Yang’s open sourced code 2 on ImageNet [6]. Figure 6 shows that with PONO, the training loss
and error are reduced significantly and the validation error also drops slightly from 30.09 to 30.01.
Admittedly, this is not a significant improvement. We believe that this result may inspire some future
architecture design.

2https://github.com/bearpaw/pytorch-classification

2

https://github.com/bearpaw/pytorch-classification

µ

σ

µ

σ

µ

σ

µ

σ

µ

σ

µ

σ

µ

σ

µ

Input VGG-19 ResNet-152 DenseNet-161
Conv1_2 Conv2_2 Conv3_4 Conv4_4 Dense-

Block 1
Dense-
Block 2

Dense-
Block 3

Res-
Block3

Res-
Block11

Res-
Block 47Conv1 Conv1

Figure 1: We extract the PONO statistics from VGG-19, ResNet-152, and Dense-161 at layers right
before downsampling (max-pooling or strided convolution).

3

Conv7x7, BN, ReLU

Conv3x3 stride=2, PONO, BN, ReLU

Conv3x3 stride=2, PONO, BN, ReLU

ResBlock x 9

ConvTrans3x3 stride=2, BN, ReLU

ConvTrans3x3 stride=2, BN, ReLU

Conv7x7, Tanh

MS

MS

Input

Output

Figure 2: The generator of CycleGAN + PONO-MS. Pix2pix uses the same architecture. The
operations in a block is applied from left to right sequentially. The blue lines show how the first two
moments are passed. ConvTrans stands for transposed convolution. Each ResBlock has Conv3x3,
BN, ReLU, Conv3x3, and BN.

Real A AtoB AtoB with
PONO-MS Real B BtoA BtoA with

PONO-MS

Figure 3: Qualitative results of CycleGAN (with/without PONO-MS) with randomly sampled inputs.

4

Real A AtoB AtoB with
PONO-MS Real B AtoB AtoB with

PONO-MS Real BReal A

Figure 4: Qualitative results of Pix2pix (with/without PONO-MS) with randomly sampled inputs.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, and et al.

M. Isard. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4700–4708, 2017.

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1125–1134, 2017.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. Proc. of ICLR, 2015.

5

Cat Dog

cat2dog (cat’s content + dog’s attributes) dog2cat: (dog’s content + cat’s attributes) Inputs

DRIT DRIT
+ PONO-MS MUNIT MUNIT’

+ PONO-MS DRIT DRIT
+ PONO-MS MUNIT MUNIT’

+ PONO-MS

Figure 5: Qualitative results of DRIT and MUNIT (with/without PONO-MS) with randomly sampled
inputs.

[9] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pages 2223–2232, 2017.

6

0 20 40 60 80
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

Loss
ResNet-18 Train
ResNet-18 Val
ResNet-18 + PONO Train
ResNet-18 + PONO Val

0 20 40 60 80
Epoch

30

40

50

60

70

80

90

To
p-

1
Er

ro
r (

%
)

Error
ResNet-18 Train
ResNet-18 Val
ResNet-18 + PONO Train
ResNet-18 + PONO Val

Figure 6: Training and validation curves of ResNet-18 and ResNet-18 + PONO on ImageNet.

7

	Algorithm of PONO-MS
	Equations of Existing Normalization
	PONO Statistics of Models Pretrained on ImageNet
	Implementation details
	Qualitative Results Based on CycleGAN and Pix2pix
	Qualitative Results Based on DRIT and MUNIT.
	PONO in Image Classification

