
Supplement to

Selecting the independent coordinates of manifolds with large aspect ratios

A Notational table

Table S1: Notational table
Matrix operation

M Matrix
mi Vector represents the i-th row of M
m

T

:,j Vector represents the j-th column of M
mij Scalar represents ij-th element of M
[M]ij Scalar, alternative notation for mij

M[↵,�] Submatrix of M of index sets ↵,�
v Column vector
vi Scalar represents i-th element of vector v
[v]i Scalar, alternative notation for vi

Scalars

n Number of samples
D Ambient dimension
m Dimension of diffusion embedding
s (Minimum) embedding dimension
d Intrinsic dimension

Vectors & Matrices

X Data matrix
xi Point i in ambient space
Y Diffusion coordinates
yi Point i in diffusion coordinates
�i The i-th diffusion coordinate of all points
K Kernel (similarity) matrix
L Graph Laplacian

H(i) Dual metric at point i
Ik Identity matrix in k dimension space
1n All one vector 2 Rn

1S [1S ]i = 1 if i 2 S 0 otherwise

Miscellaneous

G(V,E) Graph with vertex set V and edge set E
M Data manifold
�(·) Embedding mapping

L(S; ⇣) Utilities
R Unpenalized utilities
[s] Set {1, · · · , s}

D(·k·) KL divergence
D Jacobian

D(S, i) Leave-one-out regret of point i

B Pseudocodes

Algorithm S1: DIFFMAP

Input : Data matrix X 2 Rn⇥D, bandwidth ",
embedding dimension m

1 Compute similarity matrix K with

Kij =

(
exp

h
�

||xi�xj ||2
"2

i
if kx� yk  3"

0 otherwise
2 L LAPLACIAN(K) 2 Rn⇥n (Algorithm S2)
3 Compute eigenvectors of L for smallest m+ 1

eigenvalues [�0 �1 . . .�m] 2 Rn⇥(m+1)

Return: � = [�1 . . .�m] 2 Rn⇥m The
embedding coordinates of xi are
(�i1, . . . ,�im) 2 Rm

Algorithm S2: LAPLACIAN

Input : Symmetric similarity matrix K

1 Calculate the degree of node i,
[w]i =

P
n

j=1 Kij . Set W = diag(w)

2 L̃ = W
�1

KW
�1

3 [w̃]i  
P

n

j=1 L̃ij . Set W̃ = diag(w̃)

4 L = In � W̃
�1

L̃

Return: Renormalized graph Laplacian L

Algorithm S3: LLRCOORDSEARCH

Input : Embedding
Y = [�1, · · · ,�m] 2 Rn⇥m

1 Set the leave-one-out validation error
r = [1, · · · , 1] 2 Rm

2 for s = 2! m do

3 Bandwidth of LLR:
h 1

3 ·MEDIAN(PAIRWISEDIST(�[s�1]))

4 �̂s  

LOCALLINEARREGRESSION(�s,�[s�1], h)

5 rs =
q

k�̂s��sk2

k�sk2

6 end

7 S⇤  ARGSORT(r)
. Sort in descending order.
Return: Sorted independent coordinates S⇤
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C Proofs and extra theorems

C.1 Proof of Lemma 2

Proof. Let µ⇤
�S(M) denote the Riemannian measure induced by g⇤�S . Since (M, g) and

(�S(M), g⇤�S ) are isometric by definition,
R
M f(x)dµM(x) =

R
�S(M)f(�

�1
S

(y))dµ⇤
�S(M)(y) =R

�S(M)f(�
�1
S

(y))
p

det g⇤�S (y)dµ�S(M)(y) follows from the change of variable formula. It re-
mains to find the expression of jS(y) =

p
det g⇤�S (y). The matrix US(y) (note that US(y) is not

orthogonal) can be written as
US(y) = VQS(y) (S1)

where V 2 Rs⇥d is an orthogonal matrix and QS(y) 2 Rd⇥d is upper triangular. Then,

HS(y) = US(y)⌃(y)US(y)
> = VS(y) (QS(y)⌃(y)QS(y)

>)| {z }
H̃S(y)

VS(y)
>. (S2)

In the above H̃S(y) is the co-metric expressed in the new coordinate system induced by VS(y).
Hence, in the same basis, g⇤�S is expressed by

G̃S(y) = H̃S(y)
�1 = (QS(y)⌃(y)QS(y)

>)�1. (S3)

The volume element, which is invariant to the chosen coordinate system, is

det
�
QS(y)⌃(y)QS(y)

>��1/2
=

dY

k=1

�k(y)
�1/2qS,kk(y)

�1. (S4)

From (S1), it follows also that

det
�
QS(y)⌃(y)QS(y)

>��1/2
= 1/Vol

⇣
US(y)⌃(y)

1/2
⌘

(S5)

⌅

C.2 Proof of Theorem 3

Proof. Because �S is a smooth embedding, jS(y) > 0 on �S(M), and because M is compact,
min�S(M) jS(y) > 0. Similarly, noting that |̃S(y) �

Q
d

k=1 �
�1/2
k

(y), we conclude that |̃S(y) is
also bounded away from 0 on M. Therefore ln jS(y) and ln |̃S(y) are bounded, and the integral in
the r.h.s. of (8) exists and has a finite value. Now,

1

n

X

i

lnR(S,xi) !

Z

M
lnR(S,x)p(x)dµM(x) = R(S,M). (S6)

Z

M
lnR(S,x)p(x)dµM(x) (S7)

=

Z

�S(M)
lnR(��1

S
(y))p(��1

S
(y))jS(y)dµ�S(M)(y)

=

Z

�S(M)

"
1

2
ln

Vol
�
U

>
S
(y)US(y)

�

|̃S(y)
�

p(��1
S

(y)
Q

d

k=1 �
1/2
k

(y)

p(��1
S

(y)
Q

d

k=1 �
1/2
k

(y)

#
p(��1

S
(y))jS(y)dµ�S(M)(y)

=

Z

�S(M)
ln

jS(y)p(�
�1
S

(y)

|̃S(y)p(�
�1
S

(y)
p(��1

S
(y))jS(y)dµ�S(M)(y) = �D(pjSkp|̃S) (S8)

⌅
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C.3 Submodularity of the utility functions

Theorem S1. For a rank d tangent space matrix U 2 Rm⇥d, if any submatrix US , with index set
S ✓ [m] and |S| = s � d, is rank d, we have R1 be a submodular set function.

Proof. W.L.O.G, set n = 1, with slightly abuse of notation, let U = UT[{i} 2 R(|T |+1)⇥d. The
matrix can be written in the following form

U =


T

a

�
=

"
S

V

a

#
2 R(|T |+1)⇥d

With US = S, UT = T and U{i} = a for set S ✓ T ✓ [m] and i 2 [m]\T . Here a 2 R1⇥d. By
the definition of R1 in (2), one has (ignoring the constants)

R1(S) = log det(S>
S)

R1(T ) = log det
�
T

>
T
�

R1(S \ {i}) = log det

 
S

a

�> 
S

a

�!

R1(T \ {i}) = log det(U>
U)

Denote @if(S) = f(S [ {i})� f(S) for some function f , we have

@iR1(S) = log det(S>
S+ a

>
a)� log det(S>

S)

@iR1(T ) = log det(T>
T+ a

>
a)� log det(T>

T)

The full rank of any submatrices guarantees the positive definiteness of S>
S,T>

T, by matrix de-
terminant lemma [Har98], we have

det(S>
S+ a

>
a) = det(S>

S)
�
1 + a(S>

S)�1
a
>�

Therefore
@iR1(S) = 1 + a(S>

S)�1
a
>

Similar equation holds for set T . Therefore,

@iR1(S)� @iR1(T ) = log
1 + a(S>

S)�1
a
>

1 + a(T>T)�1a>

Because T
>
T ⌫ S

>
S, we have (S>

S)�1
⌫ (T>

T)�1 [HHJ90], which implies @iR1(S) �
@iR1(T ) � 0 for all S ✓ T ✓ [m] and i 2 [m]\T . This completes the proof. ⌅
Theorem S2. R2 is a submodular set function.

Proof. W.L.O.G, set n, d = 1. With slightly abuse of notation, let u u1(i) and uS  u
S

1 (i). For
any set S ✓ T ✓ [m] and i 2 [m]\T , we have

@iR2(S) = R2 (S \ {i})�R2(S) = log

P
k2S

u2
k
+ u2

iP
k2S

u2
k

= log
⌃S + u2

i

⌃S

@iR2(T ) = R2 (T \ {i})�R2(T ) = log

P
k2T

u2
k
+ u2

iP
k2T

u2
k

= log
⌃S + ⌃T\S + u2

i

⌃S + ⌃T\S

Where ⌃S =
P

k2S
u2
k
. By definition, we have ⌃S ,⌃T\S , u

2
i
� 0. Therefore,

@iR2(S)� @iR2(T ) = log

�
⌃S + u2

i

�
·
�
⌃S + ⌃T\S

�

⌃S ·
�
⌃S + ⌃T\S + u2

i

�

= log

"
⌃2

S
+ ⌃S

�
⌃T\S + u2

i

�
+ u2

i
⌃T\S

⌃2
S
+ ⌃S

�
⌃T\S + u2

i

�
#

| {z }
�1

� 0

Which completes the proof. ⌅
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D Greedy search

Algorithm S4: GREEDYINDEIGENSEARCH

Input : Orthogonal basis {U(i)}n
i=1, eigenvalues �, intrinsic dimension d, regularization

parameter ⇣
1 Solve S⇤  argmax

S✓[m];|S|=d;12S
L(S; ⇣).

2 for s = d+ 1! m do

3 k⇤ = argmax
k2[m]\S⇤ L(S⇤ [ {k}; ⇣)

4 S⇤  S⇤ [ {k⇤} . Record order
5 end

Return: Independent coordinates S⇤

Inspired by the greedy version of submodular maximization [NWF78], a greedy heuristic has been
proposed, as in Algorithm S4. The algorithm starts from an observation that the optimal value of
the S0 = argmax

S;d|S|<s
L(S; ⇣) will often time be a subset of the optimal S⇤ of (3). Since the

appropriate cardinality of the set S is unknown, we can simply scan from |S| = d to m. The order
of the returned elements indicates the significance of the corresponding coordinate.

E Pseudocode for selection of regularization parameter ⇣

Algorithm S5: REGUPARAMSEARCH

Input : Threshold parameter ↵
1 for ⇣ = ⇣max ! 0 do

. ⇣max should be sufficiently large such that S⇤(⇣max) = [s]
2 S  S⇤(⇣); S⇤  NULL; ⇣ 00  NULL
3 for i 2 [n] do

4 D(S, i) R(Si

⇤; [n]\{i})�R(S; [n]\{i}) from equation (4)
5 end

6 if PERCENTILE({D(S, i)}n
i=1,↵)  0 and S⇤ = NULL then

7 Optimal set S⇤  S
8 ⇣ 0  ⇣ . First found a set that satisfies the criterion.
9 else if S⇤ 6= NULL and S⇤ = S⇤(⇣) then

10 ⇣ 00  ⇣ . Searching for ⇣ 00

11 else if S⇤ 6= NULL and ⇣ 00 6= NULL and S⇤ 6= S⇤(⇣) then

12 ⇣⇤  
1
2 (⇣

0 + ⇣ 00)
13 break . Leave the loop when found ⇣ 00 = min⇣�0 S⇤(⇣ 0) = S⇤(⇣)

14 else

15 continue

16 end

17 end

Return: Optimal set S⇤, optimal regularization parameter ⇣⇤

F Computational complexity analysis

F.1 The proposed algorithms

For computation complexity analysis, we assume the embedding has already been obtained. There-
fore, the computational complexity for building neighbor graph and solving the eigen-problem of
graph Laplacian can be omitted. This is also the case for LLRCOORDSEARCH.
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Co-metrics and orthogonal basis According to [PM13], time complexity for computing H(i) 2
Rm⇥m

8 i 2 [n] is O(nm2�), with � be the average degree of the neighbor graph G(V,E). In man-
ifold learning, the graph will be sparse therefore � ⌧ n. Time complexity for obtaining principal
space U(i) of point i via SVD will be O(m3). Total time complexity will be O(nm2� + nm3).

Exact search Evaluating the utility L for each point i takes O(sd2) in computing US(i)>US(i),
O(d3) in evaluating the determinant of a d ⇥ d matrix. Normalization (R2 term) takes O(ds).
Exhaustive search over all the subset with cardinality s takes O

��
m

s

��
. The total computational

complexity will therefore be O(nms(d3 + d2s) + nm2� + nm3) = O(nms+3 + nm2�).

Greedy algorithm First step of greedy algorithm includes solving argmax
S✓[m];|S|=d

L(S, d),
which takes O(nmdd3) = O(nmd+3). Starting from s = d + 1 ! m, each step includes ex-
haustively search over m� s candidates, with the time complexity of evaluating L be n(d3 + d2s).
Putting things together, one has the second part of the greedy algorithm be

mX

s=d

n(m� s)(d3 + d2s) = O(nm5) (S9)

The total computational complexity will therefore be O(n(md+3 +m5 +m2�)).

F.2 Time complexity of [DTCK18] & discussion

103 104 105

Sample size n

100

102

104
T

im
e

(s
)

Exact Greedy LLR

Figure S1: Runtimes of different IES algorithms
on two dimensional long strip. Purple, yellow
and red curves correspond to INDEIGENSEARCH,
GREEDYINDEIGENSEARCH and LLRCOORD-
SEARCH algorithm, respectively.

The Algorithm LLRCOORDSEARCH is sum-
marized in Algorithm S3. For search-
ing over fixed coordinate s, the algorithm
first build a kernel for local linear regres-
sion by constructing a neighbor graph, which
takes O(n log(n)s)4 using approximate nearest
neighbor search. The s dependency come from
the dimension of the feature. For each point i, a
ordinary least square (OLS) problem is solved,
which results in O(n2s2 + ns3) time complex-
ity. Searching from s = 2 ! m will make the
total time complexity be
mX

s=2

n2s2+ns3+ns log n = O(n2m3+nm4)

(S10)

For a sparse graph, the overheads of the IN-
DEIGENSEARCH and GREEDYINDEIGENSEARCH algorithms come from the enumeration of the
subset S. Because of the linear dependency on the sample size n, the algorithm is tractable for small
s and d. However, LLRCOORDSEARCH has a quadratic dependency on sample size n, which is
more computationally intensive for large sample size. For large s and d, one can use the techniques
in difference between submodular function optimization (e.g. [IB12]) as R1, R2 are both submod-
ular set function from Theorems S1 and S2. An empirical runtime plot for different algorithms can
be found in Figure S1. The runtime was evaluated on two dimensional long strip with s = d = 2
and was performed on a single desktop computer running Linux with 32GB RAM and a 8-Core
4.20GHz Intel® Core™ i7-7700K CPU.

G A heuristic to determine whether s is sufficiently large

To determine whether the given s is large enough, we proposed a heuristic by checking the histogram
of the point-wise unpenalized utility exp (R(S, d)) (R = R1 � R2). The value is essentially the
normalized projected volume of each point i and is bounded between 0 and 1. Ideally, a perfect
choice of cardinality |S| will results in a concentration of mass in larger utility region. The heuristic

4This is a simplified lower bound, see [DS13] for details.
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Figure S2: (a) Original data of D4, swiss roll with hole dataset. Embeddings with coordinate subset
to be (b) S = {1, 8}, (c) S = {1, 10}, (f) S = {1, 8, 10} and (g) S = {1, 11} on D4. (e) Histogram
of point-wise normalized projected volume on D4 for top two ranking of subsets (purple and yellow)
and the union of two sets (red) obtain from INDEIGENSEARCH algorithm.

works as follow: first checks the histogram of unpenalized utility on the top few ranked subsets in
terms of L. If the spikes in the small utility regions are witnessed in the histogram, taking the union
of the subsets and inspecting the histogram of unpenalized utility on the combined set again. If the
spike in small utility region decreases, one can conclude that a larger cardinality size |S| is needed
for such manifold.

We illustrate the idea on swiss roll with hole dataset in Figure S2a. Figure S2b is the optimal subset
of coordinates S⇤ = {1, 8} selected by the proposed algorithm that best parameterize the underlying
manifold. Figure S2d suggested on should eliminate S0 = {1, 2} because D(S0, i) � 0 for all the
points. However, as shown in Figure S2b, though it has low frequency and having rank 2 for most of
the places, might not be better for data analysis for the very thin arms in left side of the embedding.
Figure S2e is the histograms of the point-wise unpenalized utility on different subsets. Purple and
yellow curve correspond to the histogram of top two ranked subsets S from INDEIGENSEARCH.
Both curves show a concentration of masses in small utility region. The histogram of point-wise
unpenalized utility on {1, 8, 10}, which is the union of the aforementioned two subsets, shows less
concentration in the small utility region and implies that |S| = 3 might be a better choice for data
analysis. Figure S2f shows the embedding with coordinate S = {1, 8, 10}. The resultant embedding
is still a two dimensional strip, with some twisting effects occurred in certain regions. The thin arc
in Figure S2b , turns out to be a collapsed two dimensional manifold via projection, as shown in the
upper right part of Figure S2f and left part of Figure S2c. Here we have to restate that the embedding
in Figure S2b, although is a degenerated embedding, is still the best set one can choose for s = 2
such that the embedding varies slowest and has rank 2. However, choosing s = 3 might be better
for data analysis.

H Additional experiments & details of the used datasets

In this paper, a total of 13 different synthetic manifolds are considered. Table S2 summarized the
synthetic manifolds constructed and its abbreviations (from D1 to D13). Embedding results for the
synthetic manifolds are in Figures S3, S4 and S5. The ranking of the first few candidate sets S from
INDEIGENSEARCH, GREEDYINDEIGENSEARCHand LLRCOORDSEARCH can be found in Table
S3. The table shows the optimal subsets return by three different algorithms are often time the same,
with exception for D7 high torus as discussed in Section 6.

16



Table S2: Abbreviations for different synthetic manifolds in this paper. The abbreviation with aster-
isk represents such dataset is discussed in main manuscript.

Manifold with s = d

D
⇤
1 Two dimensional strip (aspect ratio 2⇡)

D2 2D strip with cavity (aspect ratio 2⇡)
D3 Swiss roll
D4 Swiss roll with cavity
D5 Gaussian manifold
D6 Three dimensional cube

Manifold with s > d

D
⇤
7 High torus

D8 Wide torus
D9 z-asymmetrized high torus
D10 x-asymmetrized high torus
D11 z-asymmetrized wide torus
D12 x-asymmetrized wide torus
D

⇤
13 Three-torus

Table S3: Results returned from different algorithms on different synthetic datasets.
Exact search Greedy rank LLR rank

1 2 3 4 5

D1 [1, 7] [1, 8] [1, 9] [1, 10] [1, 12] [1, 7, 6, 4, 3, 2, 5] [1, 7, 14, 16, 11, 18, 6]
D2 [1, 4] [1, 8] [1, 9] [1, 10] [1, 12] [1, 4, 8, 6, 5, 3, 2] [1, 4, 8, 5, 17, 11, 14]
D3 [1, 9] [1, 10] [1, 11] [1, 13] [1, 18] [1, 9, 5, 2, 3, 4, 6] [1, 9, 19, 16, 12, 10, 4]
D4 [1, 8] [1, 10] [1, 11] [1, 14] [1, 15] [1, 8, 3, 2, 4, 10, 5] [1, 8, 11, 10, 19, 16, 4]
D5 [1, 6] [1, 8] [1, 10] [1, 11] [1, 13] [1, 6, 2, 8, 3, 10, 4] [1, 6, 19, 8, 18, 14, 12]
D6 [1, 2, 8] [1, 2, 11] [1, 4, 8] [1, 2, 17] [1, 2, 13] [1, 2, 8, 3, 4, 6, 5] [1, 2, 8, 10, 3, 13, 6]
D7 [1, 4, 5] [1, 4, 8] [1, 5, 7] [1, 7, 12] [1, 7, 8] [1, 5, 4, 3, 6, 2, 8] [1, 2, 5, 4, 15, 6, 10]
D8 [1, 2, 7] [1, 4, 7] [1, 3, 7] [1, 2, 9] [1, 5, 7] [1, 7, 2, 4, 3, 13, 5] [1, 2, 7, 13, 12, 15, 14]
D9 [1, 3, 4] [1, 3, 7] [1, 4, 6] [1, 3, 10] [1, 7, 9] [1, 3, 4, 2, 9, 7, 6] [1, 3, 4, 2, 19, 8, 7]
D10 [1, 2, 4] [1, 3, 4] [1, 4, 5] [1, 6, 9] [1, 6, 14] [1, 4, 2, 3, 5, 6, 8] [1, 4, 2, 3, 8, 5, 6]
D11 [1, 2, 5] [1, 4, 8] [1, 4, 5] [1, 8, 9] [1, 2, 8] [1, 5, 2, 4, 8, 3, 9] [1, 2, 5, 8, 10, 9, 11]
D12 [1, 2, 5] [1, 4, 5] [1, 2, 7] [1, 3, 5] [1, 2, 8] [1, 5, 2, 3, 4, 6, 8] [1, 5, 2, 6, 10, 9, 4]
D13 [1, 2, 5, 10] [1, 3, 5, 10] [1, 4, 5, 10] [1, 5, 6, 10] [1, 2, 8, 10] [1, 5, 10, 2, 4, 3, 6] [1, 2, 10, 5, 14, 15, 16]

H.1 Description of Chloromethane dataset

Before we started, we put a detail of the chloromethane dataset used in Section 6 in the main text. In
SN2 reaction molecular dynamics of chloromethane [FTP16] dataset, two chloride atoms substitute
with each other in different configurations/points xi as described in the following chemical equation
CH3Cl + Cl–

 �! CH3Cl + Cl– . The dataset exhibits some kind of clustering structure with a
sparse connection between two clusters which represents the time when the substitution happened.

H.2 Additional experiments on synthetic manifolds with s = d

Below summarized the details of generating the datasets.

1. D
⇤
1 : points from this dataset are sampled uniformly from xi ⇠ UNIF([�2, 2]⇥ [�4⇡, 4⇡]).

2. D2: points are first sampled uniformly from [�2, 2] ⇥ [�4⇡, 4⇡]. Points i are removed if
|Xi1| < 4⇡/3 and |Xi2| < 2/3.
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3. D3: first sampling points Xtrue = [x0,y0] uniformly from a two dimensional strip. The
data X can be obtained by the following non-linear transformation.

X =


x0 � cosx0

2
,y0,

x0 � sinx0

2

�
(S11)

With � denotes Hadamard (element-wise) product.
4. D4: sampling points Xtrue = [x0,y0] uniformly from 2D strip with cavity then applying

the transformation (S11) to get X.

5. D5: sampling points Xtrue uniformly from ellipse
n
(x, y) 2 R2 :

�
x

6

�2
+
�
y

2

�2
= 1
o

. The
data is obtained by

X = [Xtrue, z]

With zi = exp
⇣
�

⇣�
Xi1
3

�2
+X2

i2

⌘
/2
⌘

6. D6: points are sampled uniformly from [�1, 1]⇥ [�2, 2]⇥ [�4, 4].

The experimental results are in Figure S3 (D4 in Figure S2).

H.3 Additional experiments on synthetic manifolds with s > d

H.3.1 Tori and asymmetrized tori

A torus can be parametrized by
x = (a+ b cos↵) cos�

y = (a+ b cos↵) sin�

z = h sin(�)

(S12)

1. D
⇤
7 : sampling ↵,� uniformly from [0, 2⇡) and generating the torus with (a, b, h) =

(3, 2, 8) from (S12).
2. D8: generating the torus with (a, b, h) = (10, 2, 2).
3. D9: generating a high torus with (a, b, h) = (3, 2, 8) and applying the following transfor-

mation
z  (z �min(z))�/& (S13)

with (�, &) = (3, 1500)

4. D10: generating a high torus with (a, b, h) = (3, 2, 8) and applying the following transfor-
mation

x (x�min(x))/⌘ (S14)
with (, ⌘) = (2, 10)

5. D11: generating a wide torus with (a, b, h) = (10, 2, 2) and applying transformation (S13)
with (�, &) = (3, 50).

6. D12: generating a wide torus with (a, b, h) = (10, 2, 2) and applying transformation (S14)
with(, ⌘) = (3, 1000).

Figure S6: M2 and d̂ vs. ranking of D13

The experimental results are in Figure S4.

H.3.2 Three-torus

The parameterization of the three torus is
x1 = a1 sin↵1

x2 = (a2 + a1 cos↵1) sin↵2

x3 = (a3 + (a2 + a1 cos↵1) cos↵2) sin↵3

x4 = (a3 + (a2 + a1 cos↵1) cos↵2) cos↵3

(S15)

To generate D13, we sample ↵k uniformly from [0, 2⇡) for k 2 [3] and apply the transformation
(S15) with (a1, a2, a3) = (8, 2, 1). The sample size for this dataset is n = 50, 000. The experimental
result of three-torus can be found in Figure S5.
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Figure S3: Synthetic manifolds with minimum embedding dimension s equals intrinsic dimension
d. Rows from top to bottom represent two dimensional strip with cavity (aspect ratio W/H =
2⇡), swiss roll, gaussian manifold and three dimensional cube dataset, respectively. Columns from
left to right are the original data X, embedding �S⇤ with optimal coordinate sets S⇤ chosen by
INDEIGENSEARCH and the regularization path, respectively.

H.4 Verification of the chosen subsets on synthetic manifolds

Unlike 2D strip, the close form solution of the optimal set is oftentimes unknown in general. In
this section, we verify the correctness of the chosen subset by reporting the full procrustes distance
(disparity score) M2 [Dry16], which is defined to be the normalized sum of square of the point-wise
difference between the procrustes transformed ground truth data Xtrue 2 Rn⇥k and the test data
Xtest 2 Rn⇥k. Namely,

M2(Xtrue,Xtest) = min
�,�,�

kXtrue � �Xtest�� 1n�
>
k
2
F

s.t. � > 0,� 2 Rk,� 2 SO(k)
(S16)
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Here � is a scale parameter, � is the centering parameter and � is a k⇥k rotation matrix. We further
require kXtruekF = 1 so that the disparity score will be between 0 and 1. Intuitively, one can expect
the optimal choice of eigencoordinates S⇤ will yield a small disparity score M2(Xtrue,�S⇤), with
score increases as the coordinate set S contains duplicate parameterizations or �S contains knots,
crossings, etc. (e.g., Figure S8). Note that the score can only be calculated when the ground truth
data Xtrue is available. For dataset without obtainable ground truth, one cannot proposed to report
the disparity score of �S and the original data X as the proxy of Xtrue, for X might not be a affine
transformation of Xtrue, e.g., Swiss roll. Besides, small M2 given �S does not imply S is optimal,
which will be clear in the discussion of Figure S2g. Besides disparity scores, we will also report the
estimated dimension d̂. One can expect the estimated dimension for the optimal set dim(�S⇤) will
be close to the intrinsic dimension d, while the estimated dimension for sets containing duplicate
parameterizations will be smaller than the intrinsic dimension. One cannot propose to use it as a
criterion to choose the optimal set, for the suboptimal sets can also have estimated dimensions closed
to the intrinsic dimension, e.g., Figure 3g. Throughout the experiment, the dimension estimation
method by [LB05] is used for its ability to estimate dimension among all candidate subsets fairly
fast.

Figure S8: Embedding that has crossing.

Blue and red curves in Figure S7 and S6 show
the disparity scores and estimated dimensions
versus ranking of coordinate subsets for differ-
ent synthetic manifolds, respectively. As ex-
pected, we have an increasing in M2 and de-
creasing in d̂ with respect to ranking. We first
highlight that the set that produces the lowest
disparity score is not necessarily optimal, al-
though S⇤ does yield a small disparity. This can
be shown in the example of D4 swiss roll with
hole dataset. Figure S2g is the embedding �S3

of D4, with S3 is ranked third subset in terms of
L(S; ⇣), that minimizes the disparity score M2

in D4 as shown in Figure S7d. This is because
the embedding of the subset S3 = {1, 11} has larger area on the left, compared to Figure Figure
S2b. This balances out the high disparity caused by the flipped region between two knots in the em-
bedding �S3 when matched with Xtrue. Since all the ranked first subset has low disparity compared
to other subsets, we have higher confidence saying that the ranked 1st subset is indeed the optimal
choice for the synthetic manifolds.
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Figure S4: Synthetic manifolds with minimum embedding dimension s greater than intrinsic dimen-
sion d. Rows from top to bottom represent wide torus, z-asymmetrized high torus, x-asymmetrized
high torus, z-asymmetrized wide torus and x-asymmetrized wide torus, respectively. Columns from
left to right are the original data X, embedding �S⇤ with optimal coordinate sets S⇤ chosen by
INDEIGENSEARCH and the regularization path, respectively.
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(a)

(b)

Figure S5: Experiment on three-torus dataset. (a) Original data X of three torus. (b) Embedding
�S⇤ with optimal coordinate sets S⇤ chosen by INDEIGENSEARCH. Rows for both (a) and (b) from
top to bottom are embedding colored by the parameterization (↵1,↵2,↵3) in (S15), respectively.
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Figure S7: Verification of the correctness of the chosen sets in synthetic manifolds.

23


