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Appendix:MACH

A Count-Min Sketch

Count-Min Sketch is a widely used approximate counting algorithm to identify the most frequent
elements in a huge stream that we do not want to store in memory. An example illustration of
Count-Min Sketch is given in figure 1.

Figure 1: Illustration of count-min sketch for a stream of letters ABCAACD. The hash codes for each
letter for 4 different hash functions is shown on the left and the accumulated counts for each of the
letter in the stream is shown on the right
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B Pseudocode

Algorithm 1 Train
1: Data: D = (X,Y ) =

(xi, yi)
N
i=1. xi ∈ Rd yi ∈

{1, 2, · · · , K}
2: Input: B,R
3: Output: R trained classifiers
4: initialize R 2-universal hash

functions h1, h2, ...hR
5: initialize result as an empty list

6: for i = 1 : R do
7: Yhi ← hi(Y )
8: Mi =

trainClassifier(X,Yhi)
9: Append Mi to result

10: end for
11: Return result

Algorithm 2 Predict
1: Data: D = (X,Y ) = (xi, yi)

N
i=1. xi ∈ Rd

yi ∈ {1, 2, · · · , K}
2: Input: M =M1,M2, ...,MR

3: Output: N predicted labels
4: load R 2-universal hash functions
h1, h2, ...hR used in training

5: initialize P as a an empty list
6: initialize G as a (|N | ∗K) matrix
7: for i = 1 : R do
8: Pi = getProbability(X,Mi)
9: Append Pi to P

10: end for
11: for j = 1 : K do
12: /* G[:, j] indicates the jth column in matrix

G */
13: G[:, j] = (

∑R
r=1 Pr[:, hr(j)])/R

14: end for
15: Return: argmax(G, axis=1)

C Theoretical Analysis

We begin with re-emphasizing that we do not make any assumption on the classes, and we do not
assume any dependencies between them. As noted before, we use R independent B-class classifiers
each. Classification algorithms such as logistic regression and deep networks models the probability
Pr(y = i|x) = pi. For example, the famous softmax or logistic modelling uses Pr(y = i|x) = eθi·x

Z ,
where Z is the partition function. With MACH, we use R 2-universal hash functions. For every hash
function j, we instead model Pr(y = b|x) = P j

b , where b ∈ [B]. Since b is a meta-class, we can
also write P j

b as

P j
b =

∑
i:hj(i)=b

pi; 1 =

K∑
i=1

pi =
∑
b∈[B]

P j
b ∀j (1)

With the above equation, given the R classifier models, an unbiased estimator of pi is:

Theorem 1:

E
[

B

B − 1

[
1

R

R∑
j=1

P j
hj(i)

(x)− 1

B

]]
= Pr

(
y = i

∣∣∣∣x) = pi

Proof : Since the hash function is universal, we can always write

P j
h(i) = pi +

∑
k 6=i

1h(k)=h(i)pk,

where 1h(k)=h(i) is an indicator random variable with expected value of 1
B . Thus E(P j

h(i)) =

pi +
1
B

∑
k 6=i pk = pi + (1 − pi)

1
B . This is because the expression

∑
k 6=i pk = 1 − pi as the

total probability sum up to one (assuming we are using logistic type classifiers). Simplifying,
we get pi = B

B−1 (E(P j
h(i)(x) −

1
B ). It is not difficult to see that this value is also equal to

E
[

B
B−1

[
1
R

∑R
j=1 P

j
hj(i)

(x) − 1
B

]]
using linearity of expectation and the fact that E(P j

h(i)) =

E(P k
h(i)) for any j 6= k.

Definition 1 Indistinguishable Class Pairs: Given any two classes c1 and c2 ∈ [K], they are
indistinguishable under MACH if they fall in the same meta-class for all the R hash functions, i.e.,
hj(c1) = hj(c2) for all j ∈ [R].
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Otherwise, there is at least one classifier which provides discriminating information between them.
Given that the only sources of randomness are the independent 2-universal hash functions, we can
have the following lemma:

Lemma 1 MACH with R independent B-class classifier models, any two original classes c1 and c2
∈ [K] will be indistinguishable with probability at most

Pr(classes i and j are indistinguishable) ≤
(

1

B

)R

(2)

There are total K(K−1)
2 ≤ K2 possible pairs, and therefore, the probability that there exist at least

one pair of classes, which is indistinguishable under MACH is given by the union bound as

Pr(∃ an indistinguishable pair) ≤ K2

(
1

B

)R

(3)

Thus, all we need is K2

(
1
B

)R

≤ δ to ensure that there is no indistinguishable pair with probability

≥ 1− δ. Overall, we get the following theorem:

Theorem 2: For any B, R =
2 log K√

δ

logB guarantees that all pairs of classes ci and cj are distinguishable
(not indistinguishable) from each other with probability greater than 1− δ.

Our memory cost is BRd to guarantee all pair distinguishably with probability 1 − δ, which is

equal to
2 log K√

δ

logB Bd. This holds for any constant value of B ≥ 2. Thus, we bring the dependency
on memory from O(Kd) to O(logKd) in general with approximations. Our inference cost is
2 log K√

δ

logB Bd+
2 log K√

δ

logB K which is O(K logK + d logK), which for high dimensional dataset can be
significantly smaller than Kd.

C.1 Subtlety of MACH

The measurements in Compressive Sensing are not a probability distribution but rather a few linear
combinations of original probabilities. Imagine a set of classes {cats, dogs, cars, trucks}. Suppose
we want to train a classifier that predicts a compressed distribution of classes like {0.6 ∗ cars+ 0.4 ∗
cats, 0.5 ∗ dogs+ 0.5 ∗ trucks}. There is no intuitive sense to these classes and we cannot train a
model using softmax-loss which has been proven to work the best for classification. We can only
attempt to train a regression model to minimize the norm(like L1-norm or L2-norm) between the
projections of true K-vector and the predicted K-vectors(like in the case of [12]). This severely
hampers the learnability of the model as classification is more structured than regression. On the
other hand, imagine two conglomerate or meta classes {[cars and trucks], [cats and dogs]}. It is
easier for a model to learn how to predict whether a data point belongs to ‘cars and trucks’ because
the probability assigned to this meta-class is the sum of original probabilities assigned to cars and
trucks. By virtue of being a union of classes, a softmax-loss function would work very well unlike
the case of Compressive Sensing.

This motivates us to look for counting based algorithms with frequencies of grouped classes. We
can pose our problem of computing a logK-vector that has information about all K probabilities
as the challenge of computing the histogram of K-classes as if they were appearing in a stream
where at each time, we pick a class i independently with probability pi. This is precisely the classic
Heavy-Hitters problem[? ].

If we assume that max pi ≥ 1
m , for sufficiently small m ≤ K, which should be true for any good

classifier. We want to identify argmax pi with
∑
pi = 1 and max pi ≥ 1

m

∑
pi by storing sub-linear

information.

Count-Min Sketch [8] is the most popular algorithm for solving this heavy hitters problem over
positive streams. Please refer to section 2 in main paper (and section A in appendix) for an explanation
of Count-Min Sketch. Our method of using R universal hashes with B range is precisely the
normalized count-min sketch measurements, which we know preserve sufficient information to
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identify heavy hitters (or sparsity) under good signal-to-noise ratio. Thus, if max pi (signal) is larger
than pj , j 6= i (noise), then we should be able to identify the heavy co-ordinates (sparsity structure)
in sparsity × logK measurements (or memory) [? ].

D Experiments

D.1 Datasets

Name Type #Train #Test #Classes #Features
ODP Text 1084404 493014 105033 422713
Fine-grained Imagenet Images 12777062 1419674 21841 6144
Wiki10-31K Text 14146 6616 30938 101938
Delicious-200K Text/Social Networks 196606 100095 205443 782585
Amazon-670K Recommendations 490449 153025 670091 135909
Amazon Search
Dataset Information Retrieval 70301491 20000 49462358 715000

Table 1: Statistics of all 6 datasets. First 2 are multiclass, next 3 are multilabel and the last is a real
Search Dataset

1) ODP: ODP is a multiclass dataset extracted from Open Directory Project, the largest, most
comprehensive human-edited directory of the Web. Each sample in the dataset is a document, and the
feature representation is bag-of-words. The class label is the category associated with the document.
The dataset is obtained from [7]. The input dimension d, number of classes K, training samples and
testing samples are 422713, 105033, 1084404 and 493014 respectively.

2) Fine-Grained ImageNet: ImageNet is a dataset consisting of features extracted from an interme-
diate layer of a convolutional neural network trained on the ILVSRC2012 challenge dataset. Please
see [7] for more details. The class label is the fine-grained object category present in the image.
The input dimension d, number of classes K, training samples and testing samples are 6144, 21841,
12777062 and 1419674 respectively.

3) Delicious-200K: Delicious-200K dataset is a sub-sampled dataset generated from a vast corpus of
almost 150 million bookmarks from Social Bookmarking Systems, del.icio.us. The corpus records all
the bookmarks along with a description, provided by users (default as the title of the website), an
extended description and tags they consider related.

4) Amazon-670K: Amazon-670K dataset is a product recommendation dataset with 670K labels.
Here, each input is a vector representation of a product, and the corresponding labels are other
products (among 670K choices) that a user might be interested in purchase. This is an anonymized
and aggregated behavior data from Amazon and poses a significant challenge owing to a large number
of classes.

D.2 Effect of Different Estimators

Dataset Unbiased Min Median
ODP 15.446 12.212 14.434
Imagenet 10.675 9.743 10.713

Table 2: Classification accuracy with three different estimators from sketches (see section D.2 for
details). The training configuration are given in Table 2 in main paper

Once we have identified that our algorithm is essentially count-min sketch in disguise, it naturally
opens up two other possible estimators, in addition to Equation ?? for pi. The popular min estimator,
which is used in traditional count-min estimator given by:

p̂i
min = min

j
P j
hj(i)

(x). (4)
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We can also use the median estimator used by count-median sketch [6] which is another popular
estimator from the data streams literature:

p̂i
med = median

j
P j
hj(i)

(x). (5)

The evaluation with these two estimators, the min and the median, is shown in table 2. We use the
same trained multiclass model from main paper and use three different estimators, the original mean
estimator in main paper along with Eqn.s 4 and 5 respectively, for estimating the probability. The
estimation is followed by argmax to infer the class label. It turns out that our unbiased estimator
shown in main paper performs overall the best. Median is slightly better on ImageNet data and poor
on ODP dataset. Min estimator leads to poor results on both of them.

D.3 Multilabel Classification

In this section, we show that MACH preserves the fundamental metrics precision@1,3,5 (denoted
hereafter by P@1, P@3 and P@5) on 3 extreme classification datasets available at XML Repository [?
]. We chose Wiki10-31K, Delicious-200K and Amazon-670K with 31K, 200K and 670K classes
respectively. This choice represents good variation in the number of classes as well as in the sparsity
of labels. This section is more of a sanity check that MACH is comparable to state-of-the-art
methodologies on public datasets, where memory is not critical.

The detailed comparison of P@k with state-of-the-art algorithms is given in the table 3. We notice
that MACH consistently outperforms tree-based methods like FastXML [19] and PfastreXML [13]
by noticeable margin. It mostly preserves the precision achieved by the best performing algorithms
like Parabel [18] and DisMEC [2] and even outperforms them on few occasions. For all the baselines,
we use the reported metrics (on XML Repository) on these datasets. We use the same train/test split
for MACH as other baseline algorithms.

We fixed R = 32 and experimented with a few limited configurations of B. The input dimension d
and classes K is given below the respective dataset name in table 3. The network architecture takes
the form d-500-500-B. B was varied among {1000, 2000} for Wiki10-31K, among 1000, 5000 for
Delicious-200K and among {5000, 10000} for Amazon-670K. The training and evaluation details
are as follows:

Wiki10-31K: The network architecture we used was 101938-500-500-B where B ∈ {1000, 2000}.
Here, 101938 is the input sparse feature dimension, and we have two hidden layers of 500 nodes
each. The reported result is for B = 2000. For B = 1000, there a marginal drop in precision (P@1
of 84.74% vs 85.44%) which is expected. We trained for a total of 60 epochs with each epoch taking
20.45 seconds. All 32 repetitions were trained in parallel. Hence, total training time is 1227s. The
evaluation time is 2.943 ms per test sample.

Delicious-200K: The network architecture we used was 782585-500-500-B where B ∈
{1000, 5000}. Here, 782585 is the input sparse feature dimension, and we have two hidden layers
of 500 nodes each. The reported result is for B = 5000. Remarkably, B = 1000 was performing
very similar to B = 5000 in terms of precision. We trained for a total of 20 epochs with each epoch
taking 187.2 seconds. 8 repetitions were trained at a time in parallel. Hence, we needed 4 rounds of
training to train R = 32 repetitions and the total training time is 4*20*187.2 = 14976 seconds (4.16
hrs). The evaluation time is 6.8 ms per test sample.

Amazon-670K: The network architecture we used was 135909-500-500-B where B ∈
{5000, 10000}. Here, 135909 is the input sparse feature dimension and we have two hidden layers
of 500 nodes each. The reported result is for B = 10000. For B = 5000, there a marginal drop in
precision (P@1 of 41.41% vs 40.64%) which is expected. We trained for a total of 40 epochs with
each epoch taking 132.7 seconds. All 32 repetitions were trained in parallel. Hence, total training
time is 5488s (1.524 hrs). The evaluation time is 24.8 ms per test sample.

In all the above cases, we observed the P@1,3,5 forR = 2, 4, 8, 16, 32. We noticed that the increment
in precision from R = 16 to R = 32 is very minimal. This is suggestive of saturation and hence our
choice of R = 32 is justified. From these results and impressions, it is clear that MACH is a very
viable and robust extreme classification algorithm that can scale to a large number of classes.
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Dataset P@k MACH PfastreXML FastXML Parabel DisMEC
Wiki10-31K P@1 (B = 2000) 0.8544 0.8357 0.8303 0.8431 0.8520
d = 101938 P@3 (B = 2000) 0.7142 0.6861 0.6747 0.7257 0.7460
K = 30938 P@5 (B = 2000) 0.6151 0.5910 0.5776 0.6339 0.6590
Delicious-200K P@1 (B = 5000) 0.4366 0.4172 0.4307 0.4697 0.4550
d = 782585 P@3 (B = 5000) 0.4018 0.3783 0.3866 0.4008 0.3870
K = 205443 P@5 (B = 5000) 0.3816 0.3558 0.3619 0.3663 0.3550
Amazon-670K P@1(B = 10000) 0.4141 0.3946 0.3699 0.4489 0.4470
d = 135909 P@3(B = 10000) 0.3971 0.3581 0.3328 0.3980 0.3970
K = 670091 P@5(B = 10000) 0.3632 0.3305 0.3053 0.3600 0.3610

Table 3: Comparison of MACH and popular extreme classification algorithms on few public datasets.
We notice that MACH mostly preserves the precision and slightly betters the best algorithms on half
of the cases. These numbers also establish the limitations of pure tree based approaches FastXML
and PfastreXML. Every 3 rows correspond to one dataset (color coded).

E Metrics of Interest

E.1 Matching Metrics

• Recall@K: Recall is given by

|purchased_products| ∩ |topK predictions|
|purchased_products|

• MAP@k: As name suggests, Mean Average Precision(MAP) is the mean of average preci-
sion for each query where the average precision is given by

sum i = 1 : K of (P@i ∗ 1/K ifpredicitioni is a purchase)

• MRR@k: Mean Reciprocal Rank(MRR) is the mean of the rank of the most relevant
document in the predicted list, i.e.,

1

|Q|

|Q|∑
i=1

1

ranki

where ranki is the position of the most purchased document for ith query.

• nDCG@k: Normalized Discounted Cumulative Gain(NDCG) is given by DCGK
IDCGK

where

DCGK =

K∑
i=1

2reli − 1

log2(i+ 1)

IDCGK = maxi∈{1,2,...,K}
2reli − 1

log2(i+ 1)

Here, reli is 1 if prediction i is a true purchase and 0 otherwise. log2 is sometime replaced
with natural log. Either way, the higher the metric, the better it the model.

E.2 Ranking Metrics

In addition to the above mentioned metrics, we care about Precision@1 in ranking. We want our
top prediction to actually be purchased. Hence we would like to evaluate both P@1, P@1_weighted
(weight comes from num_sessions like in the case of Matching). Further, for an ablation study,
we also want to check if our top prediction is the top purchased document for a given query (we
limit the purchases per query to just the most purchased document). Hence we additionally evaluate
P@1_most_rel and P@1_most_rel_weighted .
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