
A Full LFADS model

The following description is adapted from [1].

LFADS is based on a variational autoencoder (VAE) [2], adapted to model sequences (as in [3]).
The VAE consists of two main components, an encoder and a generator (aka. decoder). The encoder
takes as input the binned spike data, x, and transforms them into a conditional distribution over z,
Q(z|x), where z is a vector of stochastic latent variables, and Q(z|x) is a learnable approximation of
the posterior distribution of the generator, Q(z|x) ≈ P (z|x) = P (x|z)P (z)/P (x). The generator
denoted by P (x|z), then receives samples drawn from the posterior distribution Q(z|x), and maps
them back into the approximation of the data x̂. Over the course of training, the autoencoder tries
produce x̂ that resemble x.

The network’s objective function is to maximize the likelihood of the data while minimizing the
Kullback-Leibler (KL) divergence between the encoding distribution Q(z|x) and an uninformative
Gaussian prior P (z), over all data points.

For the rest of this section, we denote an affine transformation (v = Wu+ b) from a vector u to
a vector v as v = W(u), we use [·, ·] to denote vector concatenation, and we denote a temporal
update of a recurrent neural network receiving an input as statet = RNNa(statet−1, inputt), for an
RNN named ’a’, where different superscripts denote different RNN networks which do not share
parameters. Gated Recurrent Units (GRU) [4] were used to implement all the RNN networks.

A.1 LFADS Encoder

We denote the spiking neural data for T trials by x1:T . We assume that x1:T are observed samples
from a Poisson process with underlying rates r1:T . Through the autoencoding process, LFADS infers
a set of low-dimensional latent "factors" f1:T . The factors are produced by the generator RNN, as
described in section A.2. The firing rates can be constructed through a affine transformation of the
factors, followed by an exponential nonlinearity, r1:T = exp(Wrate(f1:T)).

The binned spiking data x1:T is fed into the bidirectional RNN encoder network RNNg0, with final
cell state Eg0. The output of this network is used to set the initial state of the generator RNN
(described in A.2). Specifically, the initial state of the generator RNN is defined by the approximate
posterior Qg0(g0|x), with means and diagonal covariance matrices taken as an affine transformation
of the (concatentated) final states of the bidirectional RNNs Eg0.

µg0 = Wµg0
(Eg0) (1)

σg0 = exp

(
1

2
Wσg0

(Eg0)

)
. (2)

The initial conditions ĝ0 are then sampled from the resulting distribution

ĝ0 ∼ Qg0 (g0|x) = N (g0 | µg0 ,σg0) (3)

To allow LFADS to model data generated by a potentially non-autonomous underlying process, a
set of time-varying “inferred inputs” u1:T are also provided as the input to the generator RNN. This
expands the latent variables to z = {g0,u1:T }. Thus the approximate posterior distribution for
LFADS consists of two conditional Gaussian distributions, one for g0 and one for ut.

The approximate posterior distribution for the inferred inputs ut is obtained through a second
bidirectional encoder RNN network (RNNce) with time-varying cell state Econ

t , and a unidirectional
controller RNN (RNNcon). RNNce processes the binned spiking data, and its time-varying cell state
Econ
t is fed to the controller RNN along with a delayed version of the latent factors, ft−1.

ct = RNNcon (ct−1, [E
con
t , ft−1]) . (4)

The initial state of the controller network, c0, is defined as a trainable bias initialized to the 0 vector.

The inferred inputs seen by the generator, ût, are samples from diagonal Gaussian distributions where
mean and log-variance are given by an affine transformation of the cell state of the controller RNN,
ct,

ût ∼ Qu (ut |x) = N (ut |µu
t ,σ

u
t) (5)

1

with

µu
t = Wµu

(ct) (6)

σu
t = exp

(
1

2
Wσu

(ct)

)
. (7)

An information bottleneck is imposed on the controller output to the generator by limiting the
dimensionality of ut (a hyperparameter), and by applying a KL penalty described in Section A.3.
Here, we used diagonal Gaussian priors for g0 and u1, and an autoregressive Gaussian prior (described
in Section A.4) for ut with t > 1.

A.2 LFADS Generator

An RNN network (RNNgen) is used to implement the generator, while the factors are obtained through
affine transformation of the generator states (denoted by gt), f1:T = Wfac(g1:T). The generator’s
initial state g0 is obtained by drawing samples from the learnable posterior distribution Qg0 (g0|x).
The LFADS generator, including the inferred inputs, is described by the following equations. The
initial condition for the generator is sampled from its approximate posterior according to (3). The
inferred inputs, ût, are sampled from the approximate posterior according to (5) and fed into the
network for each time step t = 1, . . . , T , and the generator states are updated from the old states and
the current inferred inputs,

gt = RNNgen (gt−1, ût) (8)

ft = Wfac(gt) (9)

rt = exp
(
Wrate (ft)

)
(10)

(11)

A.3 The loss function

The loss function has been described in the main text. We describe it here again for completeness.
The loss function is defined as the log likelihood of the data,

∑
x logP (x1:T), marginalized over all

latent variables, which is optimized in a VAE setting by maximizing a variational lower bound, L, on
the marginal data log-likelihood,

logP (x1:T) ≥ L = Lx − LKL, (12)

where

Lx =

〈
T∑
t=1

log
(

Poisson(xt|rt)
)〉

g0,u1:T

(13)

LKL =
〈
DKL

(
N (g0 | µg0 ,σg0) ‖ P g0 (g0)

)〉
g0

+〈
DKL

(
N (u1 | µu

1,σ
u
1) ‖ P u1 (u1)

)〉
g0,u1

+〈
T∑
t=2

DKL

(
N (ut | µu

t ,σ
u
t) ‖ P u (ut|ut−1)

)〉
g0,u1:T

. (14)

The brackets denote marginalizations over the sub-scripted variables.

A.4 Autogressive prior for inferred inputs

A zero-mean autoregressive (AR) process with one time lag is defined by

s(t) = αs(t− 1) + εs(t), (15)

with 0 ≤ α < 1 and noise variable εs(t) drawn from N (0, σ2
ε). This prior is used for inferred inputs

ut with t > 1, separately for each dimension, where the AR process autocorrelations and variances
are initialized to user-defined values and trained along with rest of the parameters in LFADS.

2

B Generation of synthetic data using an input-driven RNN

To precisely measure the performance of LFADS in inferring firing rates, we needed a spiking dataset
that reflects a dynamical system where ground truth neural firing rates were known. Therefore we
created synthetic neural data by using an input-driven RNN as a model of a neural system, following
[5], Sections 4.2-3. Briefly, we simulated an RNN with N = 50 artificial units whose temporal
evolution followed

τ ẏ(t) = −y(t) + γWy tanh(y(t)) +Bq(t), (16)

with y(t) being an N = 50-length vector, γ = 2.5, and τ = 0.025s. Wy specifies the RNN’s
recurrent connectivity, with elements drawn from N (0, 1/N). q(t) was a two-dimensional time-
varying input to the system, with samples at each point drawn independently fromN (0, 1). Elements
of B were also drawn independently from N (0, 1). Spiking data were then generated by drawing
Poisson samples from the rates of the RNN’s artificial units (i.e., tanh(y(t))) after shifting and
scaling these rates to span the range 0-30 spikes/sec. We simulated 4000 trials, 1 sec each, which
included 400 unique "conditions". For a given condition, individual trials began with the RNN in the
same initial state, but used different random inputs q and different random draws of Poisson spiking.
for the tests based on synthetic data, we binned spiking data into 10 ms bins, resulting in trials that
were 100 steps long, and split the data into 3200 training and 800 validation trials.

C Testing coordinated dropout using a linear autoencoder

To illustrate the effectiveness of coordinated dropout (CD), we applied CD to a simple example,
the case of attempting to uncover latent structure from low-dimensional, noise-corrupted data using
a linear autoencoding network. To generate synthetic data with low-D structure, we created a D-
dimensional vector of factors f(t) by sampling from N (0, 1). We then projected the factors onto an
M -dimensional (D < M) vector ytrue(t) using a readout matrix W, where elements of W were
set by sampling from N (0, 1). Our observed data, y, was then taken as a noise-corrupted version of
ytrue, where y = ytrue +N (0, 1).

0 50 100 150 200
Epoch

0

1

2

3

4

Lo
ss

 (M
SE

) Train loss
True loss
Lower bound

0 50 100 150 200
Epoch

0

1

2

3

4

Lo
ss

 (M
SE

) Train loss
True loss
Lower bound

 (trained without CD)

 (trained with CD)

(a) (b)

(c) (d)

Figure 1: (a) Training loss (red) and
true loss (blue) for a simple linear au-
toencoder applied to noise-corrupted, low-
dimensional data. (b) The resulting weight
matrix. (c) Loss when CD is used for train-
ing. (d) Resulting weight matrix.

Our goal was then to recover ytrue from y, assuming no
knowledge of ytrue, using a simple linear autoencoder.
ŷ = Û× y. In this exercise, we only wanted to demon-
strate the autoencoder’s behavior when its capacity was
far higher than the data dimensionality. Therefore we
did not constrain the autoencoder’s dimensionality, that
is, Û was an [M ×M] matrix. In training the autoen-
coder, the objective was to minimize the reconstruc-
tion loss, i.e., argminÛ||ŷ − y||. The weights of Û
were randomly initialized and trained via backpropaga-
tion and stochastic gradient descent. While this train-
ing approach attempts to minimize the error in recon-
structing the observed data (i.e., lossrecon = ||ŷ − y||),
an ideal approach would of course minimize the error
in reconstructing the unobserved, noise-free data (i.e.,
losstrue = ||ŷ − ytrue||).
We setD = 5,M = 40, and used 1000 and 200 samples
for training and for validation, respectively. Figure 1(a)
shows the results. As no constraints were applied to
the dimensionality of the autoencoder, it unsurprisingly
converges to a trivial solution that simply outputs y, i.e.,
setting Û to the identity matrix (Figure 1(b)). This solution of course achieves excellent reconstruction
loss on noisy data even for held out observations. However, in terms of estimating ytrue (blue curve
in Figure 1(a)), this solution is heavily overfit.

Figure 1(c) shows the results with the same approach after CD is added. We set the "keep ratio"
to 0.8, i.e., on each training step, the network saw 80% of the data samples, and we only allowed
the gradient to backpropagate on the complimentary 20% of samples. While the reconstruction loss
on the observed data lossrecon (red curve) is much worse than before, the reconstruction loss on

3

the unobserved data losstrue is dramatically improved, as the system does not overfit over time. As
shown in Figure 1(d), in this simple linear autoencoder, CD is effectively equivalent to preventing
the diagonal weights in Û from being trained. However, because CD is applied at the level of the
data input/output, it can be used for arbitrary network architectures, even when the "diagonal" is not
clearly defined.

References
[1] Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,

Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, page 1, 2018.

[2] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[3] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[5] David Sussillo, Rafal Jozefowicz, LF Abbott, and Chethan Pandarinath. Lfads-latent factor
analysis via dynamical systems. arXiv preprint arXiv:1608.06315, 2016.

4

	Full LFADS model
	LFADS Encoder
	LFADS Generator
	The loss function
	Autogressive prior for inferred inputs

	Generation of synthetic data using an input-driven RNN
	Testing coordinated dropout using a linear autoencoder

