
A Model-based Multi-view Reinforcement Learning Algorithm

For completeness, we provide the Model-based Multi-view reinforcement learning algorithm below.

Algorithm 1 Model-based Multi-view Reinforcement Learning through Model Predictive Control
1: gather dataset DRAND of random trajectories
2: initialize empty dataset DRL, MPC planning horizon H , and randomly initialize ,✓it ,�it for

it 2 {1, . . . , N}
3: for iter=1 to max_iter do
4: train ,✓it ,�it by performing gradient descent on Lr(✓it ,�it),Lp(,✓it ,�it), and

LH(✓it ,�it), using DRAND and DRL

5: for t = 1 to T do
6: get agent’s current observation oit

t
from an available view it

7: infer agent’s current state st using �it

8: use ,✓it ,�it to estimate optimal action sequence

A(H)
t

= argmax
A(H)

t

t+H�1X

t0=t

r(ôi
t0
t0 ,at0),

where ôit
t
= oit

t
, ô

i
t0+1

t0+1 ⇠ p
✓
i
t0+1 (ot0+1|ht0+1),ht0+1 = g (st0 ,ht0 ,at0), st0 ⇠ q�i

t0 (st0 |ht0)

9: execute first action at from selected action sequence A(H)
t

10: add (oit
t
,at) to DRL

11: end for
12: end for

Algorithm 2 Model-based Multi-view Reinforcement Learning through Policy Transfer (MV-PT)
1: gather dataset DRAND of random trajectories
2: initialize empty dataset DRL, model-free policy !, and randomly initialize ,✓it ,�it for it 2

{1, . . . , N}
3: for iter=1 to max_iter do
4: train ,✓it ,�it by performing gradient descent on Lr(✓it ,�it),Lp(,✓it ,�it), and

LH(✓it ,�it), using DRAND and DRL for target view(s) and policy learning view(s)
5: for t = 1 to T do
6: get agent’s current observation oit

t
from an available view it

7: infer agent’s current state st using �it

8: train ! by performing gradient descent based on a standard model-free algorithm using
st and at

9: add (oit
t
,at) to DRL

10: if need to act in view it then
11: get action at from ! using st
12: end if
13: end for
14: end for

B Derivatives of Multi-view Model-free Policy Gradient

The type of algorithm we employ for model-free multi-view reinforcement learning falls in the class
of policy gradient algorithms, which update the agent’s policy-defining parameters ! 2 R

d directly
by estimating a gradient in the direction of higher reward. Given the problem definition in Equation 1,
the gradient of the loss with respect to the network parameters ! can be computed as:

r!E⌧M
⇥
RT

�
⌧M�⇤

=

Z
p⇡M

!

�
⌧M�

r! log
⇥
p⇡M

!

�
⌧M�⇤

RT

�
⌧M�

d⌧M

= E⌧M
⇥
r! log

⇥
p⇡M

!

�
⌧M�⇤

RT

�
⌧M�⇤

,

13

(a) �o ! �t (b) �o ! �h (c) �o ! �c (d) �o ! �m

Figure 5: Atari Pong variants.

where we used the “likelihood-ratio” trick in the third step of the derivation. Now, one can proceed
by taking a sample average of the gradient using Monte Carlo to update the policy parameters !,
suggesting the following update rule:

!k+1 ⇡ !k + ⌘
k
1

M

MX

j=1

r! log
⇥
p⇡M

!

�
⌧M
j

�⇤
RT

�
⌧M
j

�
.

Mote Carlo estimation above is a fast approximation of the gradient for the current policy with
convergence speed of O

⇣
1p
M

⌘
to the true gradient independent of the number of parameters of

the policy. It is also worth noting that although the trajectory distribution depends on the unknown
initial state distribution, unknown observation models, and hidden state dynamics, the gradient only
includes policy components that can be controlled by the agent.

Though fast in convergence to the true gradient, Monte Carlo estimates suffer from high variance,
e.g., it is easy to show that variance grows linearly in the time horizon. Unfortunately, the naive
approach of sampling big-enough batch sizes is not an option in reinforcement learning due to the
high cost of collecting samples, i.e., interacting with the environment. For this reason, literature has
focused on introducing baselines aiming to reduce variance [46, 48]. We follow a similar approach
here, and introduce an observation based baseline to reduce the variance of our gradient estimate. Our
baseline, B�(Ht), will take as inputs observations and actions7, and learn to predict future returns
given the current policy. Such a baseline can easily be represented as an LSTM recurrent neural
network as noted in [47]. Consequently, we can rewrite our update rule as:

!k+1 = !k + ⌘
k
1

M

MX

j=1

TX

t=1

r! log ⇡M
⇣
aj

t
|Hj

t

⌘⇣
R(sj

t
,aj

t
)� B�(Hj

t
)
⌘
. (6)

C Experiment Details

C.1 Model learning details

C.1.1 View Settings of Atari Pong

As shown in Fig. (5), each variant corresponds to one transformation from �o: (a) the transposed
�t, which is transformed from the state observation of �o by clockwise rotating 90� and horizontal
flipping; (b) the horizontal-swapped �h, which is generated by vertically splitting the observation
frame of �o from the center and swapping the left part with the right part; (c) the inverse �c,
which is created by exchanging the background color with the paddles/ball color of �o; and (d) the
mirror-symmetric �m, which reflects �o like a mirror by horizontally swapping the observation.

C.1.2 Multi-view Model Setting

Different from the original Atari Pong observations, we (1) transform each frame to a binary matrix;
(2) remove the scoreboard; and (3) resize each frame to D = 64 ⇤ 64 to serve as the observation of �o.
The action space is formed by all six available discrete actions of the original Atari environment. The
observation model adopts the same architecture as a typical VAE with K = 32. The memory model
is a 32-units LSTM connected to the same output layer of the observation model. We set the batch

7Even though this baseline is action-dependent, one can show it to be unbiased. The trick is to realize that a
history at time t is independent of action ut and rather depends on all action up to the t� 1th instance.

14

(a) (b)

Figure 6: Validating the importance of key elements in �o. (a) Sum of absolute weights connected
to s in the reconstruction network; (b) Mean absolute gradients of output to s in the reconstruction
network.

Table 2: Hyperparameters for PPO
Cartpole Hopper RACECAR

Horizon (T) 2048 2048 2048
Adam stepsize 3 ⇤ 10�4 3 ⇤ 10�4 3 ⇤ 10�4

Num. epochs 15 10 15
Mini-batch size 1024 32 1024
Discount (�) 0.99 0.99 0.99
GAE parameter (�) 0.95 0.95 0.95
Number of actors 1 1 8
Clipping parameter ✏ 1 ⇤ 10�5 1 ⇤ 10�5 1 ⇤ 10�5

VF coeff. c1 0.5 0.5 0.5
Entropy coeff. c2 0 0 0

size for each task as 16 and the sequence length of LSTM as 25. We alternate the training process
for the multi-view model between minimizing Lr and Lp by setting each training iteration with 20
prediction iterations and 10 reconstruction iterations, since the adjustment of the observation model
to satisfy the learning of shared dynamics will affect model’s reconstruction ability. We explore
training the shared dynamics on two views with corresponding inputs and non-corresponding inputs,
i.e., using corresponding states from different views as training data or not, to verify the performance
of multi-view models.

To collect the training data covering most dynamics of the Pong environment, we use an agent with
random policy to play the game for 10, 000 episodes with an episode length of 1000. At each training
time step, we randomly sample 16 trajectories of length 25 from the dataset as the training data for �o,
and transform these samples to corresponding observations as the training data for �i, thus explicitly
making the training input for different views share the same transition dynamics.

C.1.3 Additional Experiment Results

To further validate the importance of key elements in extracting the underlying dynamics, we show
the weights of the reconstruction network connected to s of �o in Fig. (6a). As the sum of absolute
weights connected to key elements are much larger than others, the change of key elements will
apply higher influence to the reconstruction output õ, thus illustrating their significance in latent
representations.

We then compute the gradients of the output õ with respect to the s to observe which part of s
contributes more to the visual stimuli. As shown in Fig. (6b), the mean absolute gradients of key
elements are significantly larger, while other elements have nearly zero gradients (no contributions to
õ). Consequently, the shared dynamics are mainly expressed by key elements.

15

Table 3: Hyperparameters for DDPG and Hindsight Experience Replay
Parking

Cycles to collect samples 50
Training batch size 40
Sample batch size 256
HER strategy future
Discount (�) 0.98
clip return 50
actor learning rate 0.001
critic learning rate 0.001
average coefficient 0.95
clip range 5
num-rollouts-per-mpi 2
noise ✏ 0.2
random ✏ 0.3
buffer size 1 ⇤ 106
replay-k 4
clip-ratio 200

C.2 Policy learning details

We use the same structure for the multi-view model as mentioned in Sect. C.1. For all environments,
we generate 100 initial roll-out trajectories using random policies (except for the Cartpole, where
we only generate 20 rollouts). We use PPO as the model-free policy learning algorithm for MV-PT
and MV-MF in the Cartpole, hopper and RACECAR tasks, and list the hyperparameters in Table 2.
For the parking environment, we use DDPG [45] with hindsight experience replay [43], and list the
hyperparameters in Table 3. For model-based baselines, we implement PILCO following the original
setting from [44], and choose the MLP with one hidden layer of 128 units and ReLU activation
functions.

References
[43] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,

O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[44] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning
in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(2):408–423, Feb 2015.

[45] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[46] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

[47] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal
of the IGPL, 18(5):620–634, 2010.

[48] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

16

	Introduction
	Multi-View Reinforcement Learning
	Multi-View Markov Decision Processes
	Multi-View Reinforcement Learning Objective

	Solution Methods
	Model-Free Multi-View Reinforcement Learning through Observation Augmentation
	Model-Based Multi-View Reinforcement Learning
	Multi-View Model Learning
	Distribution Parameterization and Implementation Details
	Policy Transfer and Few-Shot Reinforcement Learning

	Experiments
	Modeling Results
	Policy Learning Results

	Related Work
	Conclusions
	Model-based Multi-view Reinforcement Learning Algorithm
	Derivatives of Multi-view Model-free Policy Gradient
	Experiment Details
	Model learning details
	View Settings of Atari Pong
	Multi-view Model Setting
	Additional Experiment Results

	Policy learning details

