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E2-Train: Energy-Efficient Deep Network Training with Data-,
Model-, and Algorithm-Level Saving (Supplementary Material)

A PSG Prediction Error Rate Bound Analysis

In this section we analyze the probability of a sign prediction failure bound (3) in PSG (2).

Weight gradient calculation during back propagation. Consider we have a convolutional layer
with weight w and no bias (as is the usual case for modern deep CNNSs), its input is = and the output
is y. During one pass of back propagation, the gradient propagated by its succeeding layer is g,,. We
compute the gradient of the weight as g,, = g (2, g,). Considering only one entry in g,,, it can be
represented by the sum of a series inner product of the corresponding locations in x and g,. For
simplicity and with a little abuse of notations, the one entry the gradient can be represented as:

N
Gw =Y T gyn &

where n iterate over the mini-batch and N is the mini-batch size. The MSB parts used to predict the
gradient signs are denoted as ™" and gi"*, with precision B"*" and Bj's". The corresponding

quantization noise terms are ¢, and g, . The gradient calculated using (4) with £ and gmb'D
denoted as gg}Sb. Then the gradient error, denoted as q,,, can be approximated with

(2Fag,, + 6% nGym) - (5)
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Here the second order noise term is neglected because it is small.

Sign predicition error probability bound. Denote the the sign prediction failure, given a t event as
H, which has three subcases Hy, H,,, H,, as shown in Table 4:

Event | Condition

| guw =0, ‘ngb| >T
| 9w > 0,0 < —1
H, | gw<0,gg‘3b>7'

Table 4: Three cases when a sign prediction error happens in PSG.

Consider Case H:

( ):P(gw—o |gmsb)>7-)
= P(gu = 0)P(|gi™| > 7|9, = 0)
= P(gu = 0)P(gu| > 7|gu = 0)
= P(gy = 0) / X190 ()P (|qu] > Tlgw = 0,X = x) dx
< 20220 [ ool ©

where fx |, —0(X) is the conditional distribution of X given g, = 0, and 6%(¢,) is the variance
of q,,. The inequality comes from Chebychev’s inequality and the fact that ¢, is symmetrically
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514 distributed. Plug 02(qy) = & Efj:l (Ai”gyn

P(gw = 0) .
p(Hy) < 1920 / Fxctoumo() 3 (B2 gynl? + A2, ) dx

2
127 =

2) into (6), we have:

N

P(g

= —lo3 Z (A2llgynll? + A2, |202) g0 :o]
N

127_2 Z (Aillgy,nllz ||93n|| ) G _0]

A2 N A2 N
= 12:2 E [”gy,n”2 ’ lg,,‘,=0] + 123_2 ZE [||$n||2 ) lgq,,=0] . @)

n=1 n=1

515 Consider Case H, and [,,: following similar derivations, we can have:

A2 N 2.1
P(H, ) < o E ||9yn|| G >0 .
N
=[S0 @y + aTgn) 7]
A2 N . 2 1
4 211/ ZE - || n” guw>0 . 7 (8)
A Y A2 1
P(H,) < 2_x ZE ”gy,l” guw <0 ~
N
=[S0 (g, + aEagun) +7]
A v EN
Iy n guw<0
+ 55 2 ©

2
N
n=1 [Zn:l (Iliz:qun + qaq;,ngy,n) + T]

st6 Combining (7-9), we get the probability bound of a sign prediction failure

P(H) = P(H,) + P(H,) + P(H,) < A2E, + A} B,

517 where E and E> are defined as:

- | lgynl® - 1 _
s * L9, #0
E [Hgy,nnz ' ]lgu,:O] + ﬂ Z E N — g7 2|
n=1 n=1 L [Zn=1 (‘Tzqun + q:,{,ngy,n) + T] i
N N
1 1 2] - 1g, 20
B2 < 575 2 B llgual® Lomo] + 57 3 B | - = —2F : |-
n=1 n=1 I [anl (xgqun + qgjngy,n) + 7'] |

s1s  Discussion of the data range. In (3) the data range is assumed to be [—1, 1]. When the data range
st9 changes, however, the bound will not change because it is equivalent with scaling the numerators
s20 and denominators in the derivations above, which corresponds to the adaptive threshold scheme we
s21 introduce in Section 3.3.

s22 B Experiment Settings for PSG in Section 4.4

523 Instead of using the default training settings described in Section 4.1, we use a learning rate of 0.03
s24 and a weight decay of 0.0005 for SignSGD [15] and PSG in Section 4.4, which we found optimal
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for most cases when SignSGD was involved (PSG also uses SignSGD because it predicts the sign to
replace weight gradients). During the experiments, we found it a little bit tricky to find a suitable
learning rate. Because both of SignSGD and PSG use the sign of the gradients to update weights,
they demand smaller learning rate especially when the performance improves and gradients approach
to near zero. The above setting is consistent to the observations in [15] that the learning rate for
SignSGD should be appropriately smaller than that for the baseline algorithm.

C SLU Implementation Details

In our implementation, we adopt the recur-
rent gates (RNNGates) as in [14]. It is com-
posed of a global average pooling followed
by a linear projection that reduces the fea-
tures to a 10-dimensional vector as depicted
in 6. A Long Short Term Memory (LSTM)
[61] network that contains a single layer of
dimension 10 is applied to generate a binary
scalar. As mentioned in [14], this RNN gat-
ing networks design incurs a negligible over-
head compared to its feed-forward counter-
part (0.04% vs. 12.5% of the computation of
the residual blocks when the baseline architecture is a ResNet). In order to further reduce the energy
cost due to loading parameters into the memory, all RNNGates in the SLU share the same weights.

Training with SLU + SMD: We further evaluate the performance of combing the SLU and SMD
techniques. As shown in Fig. 5, training with SLU + SMD consistently boost the inference accuracy
further while reducing the training energy cost. For example, compared to the SD baseline, SLU +
SMD can improve the inference accuracy by 0.43%, while costing 60% lower energy.

Figure 6: Gating networks in SLU are RNNs that share
weights (RNNGates). The RNNGates incurs a negligible
overhead.
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