
A Proof of Theorem 2

Before we begin the proof, let us introduce more notation. Since we only consider
a single critical point, for simplicity of notation we denote the critical point as θ =
(w,V 1,V 2,U2, . . . ,V L,UL, z), without ∗. For l ∈ [2 : L], let Jl(x) := ∇φlz(U lhl−1(x)) ∈
Rnl×ml , i.e., J l(x) is the Jacobian matrix of φlz(·) evaluated at U lhl−1(x), whenever it exists. Also,
let U := col

([
UT

2 · · · UT
L

])
( Rdx .

The proof is divided into two cases: 1) if w /∈ U , and 2) if w ∈ U . For Case 1,
we will show that R(θ∗) ≤ Rlin; we also note that our representation coverage condition
rank(E(x,y)∼P

[
`′′(fθ(x); y)hL(x)hL(x)T

]
) = dx is not required for Case 1. For Case 2, we

will show that at least one of R(θ∗) ≤ Rlin or λmin(∇2R(θ∗)) < 0 has to hold.

Case 1: If w /∈ U . From standard matrix calculus, we can calculate the partial derivatives of R
with respect to w and V l’s. Since θ is a critical point we have

∂R

∂w
(θ) = E [`′(fθ(x); y)hL(x)] = 0,

∂R

∂V l
(θ) = E

[
`′(fθ(x); y)

L∏
k=l+1

(I +UT
k Jk(x)TV T

k )wφlz(Ulhl−1(x))T

]
= 0, l = 2, . . . , L,

∂R

∂V 1
(θ) = E

[
`′(fθ(x); y)

L∏
k=2

(I +UT
k Jk(x)TV T

k )wφ1z(x)T

]
= 0.

For V 2, . . . ,V L, note that we can arrange terms and express the partial derivatives as

∂R

∂V l
(θ) = wE

[
`′(fθ(x); y)φlz(Ulhl−1(x))

]T
+

L∑
k=l+1

UT
kEk = 0, (1)

where Ek ∈ Rml×nl are appropriately defined matrices. Note that any column of
∑L
k=l+1U

T
kEk is

in U . Sincew /∈ U , the sum being zero (1) implies that E
[
`′(fθ(x); y)φlz(Ulhl−1(x))

]
= 0 (because

w /∈ U already implies thatw 6= 0), for all l ∈ [2 : L]. Similarly, we have E
[
`′(fθ(x); y)φ1z(x)

]
=

0.

Now, from E [`′(fθ(x); y)hL(x)] = 0,

0 =E [`′(fθ(x); y)hL(x)]

=E
[
`′(fθ(x); y)

(
hL−1(x) + V Lφ

L
z (ULhL−1(x))

)]
=E [`′(fθ(x); y)hL−1(x)] + V LE

[
`′(fθ(x); y)φLz (ULhL−1(x))

]
=E [`′(fθ(x); y)hL−1(x)] = · · · = E [`′(fθ(x); y)x] .

Recall that by convexity, `(p; y)− `(q; y) ≤ `′(p; y)(p− q). Now for any t ∈ Rdx , we can apply this
inequality for p = fθ(x) = wThL(x) and q = tTx:

E [`(fθ(x); y)]− E
[
`(tTx; y)

]
≤ E

[
`′(fθ(x); y)(wThL(x)− tTx)

]
= wTE [`′(fθ(x); y)hL(x)]− tTE [`′(fθ(x); y)x] = 0.

Thus, E [`(fθ(x); y)] ≤ E
[
`(tTx; y)

]
for all t, so taking infimum over t gives R(θ∗) ≤ Rlin.

Case 2: If w ∈ U . For this case, we will consider the Hessian of R with respect to w and V l, for
each l ∈ [L]. We will show that if E

[
`′(fθ(x); y)φlz(Ulhl−1(x))

]
6= 0, then λmin(∇2R(θ)) < 0.

This implies that if E
[
`′(fθ(x); y)φlz(Ulhl−1(x))

]
= 0 for all l ∈ [L], then by the same argument

as in Case 1 we have R(θ∗) ≤ Rlin; otherwise, we have λmin(∇2R(θ)) < 0.

Because θ is a twice-differentiable critical point of R(·), if we apply perturbation δ to θ and do
Taylor expansions, what we get is

R(θ + δ) = R(θ) + 1
2δ

T∇2R(θ)δ + o(‖δ‖2). (2)
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So, if we apply a particular form of perturbation δ, calculate R(θ + δ), and then show that the
sum of all second-order perturbation terms are negative for such a δ, it is equivalent to showing
1
2δ

T∇2R(θ)δ < 0, hence λmin(∇2R(θ)) < 0.

Now fix any l ∈ [2 : L], and consider perturbing w by ε and V l by ∆, while leaving all other
parameters unchanged. We will choose ∆ = αβT , where α ∈ Rdx is chosen from α ∈ U⊥, the
orthogonal complement of U , and β ∈ Rnl will be chosen later. We will now compute R(θ + δ)
directly from the network architecture. The residual block output h1(x), . . . , hl−1(x) stays invariant
after perturbation because their parameters didn’t change. For l-th residual block, the output after
perturbation, denoted as h̃l(x), becomes

h̃l(x) = hl(x) + ∆φlz(U lhl−1(x)).

The next residual block output is

h̃l+1(x) = h̃l(x) + V l+1φ
l+1
z (U l+1h̃l(x))

= hl(x) + ∆φlz(U lhl−1(x)) + V l+1φ
l+1
z

(
U l+1hl(x) +U l+1∆φlz(U lhl−1(x))

)
(a)
= hl(x) + ∆φlz(U lhl−1(x)) + V l+1φ

l+1
z (U l+1hl(x))

= hl+1(x) + ∆φlz(U lhl−1(x)),

where (a) used the fact that U l+1∆ = U l+1αβ
T = 0 because α ∈ U⊥. We can propagate this up to

h̃L(x) and similarly show h̃L(x) = hL(x) + ∆φlz(U lhl−1(x)). Using this, the network output after
perturbation, denoted as fθ+δ(·), is

fθ+δ(x) = (w + ε)T
(
hL(x) + ∆φlz(U lhl−1(x))

)
= fθ(x) + εThL(x) +wT∆φlz(U lhl−1(x)) + εT∆φlz(U lhl−1(x))
(b)
= fθ(x) + εThL(x) + εT∆φlz(U lhl−1(x)),

where (b) used wT∆ = wTαβT = 0 because w ∈ U and α ∈ U⊥. Using this, the risk function
value after perturbation is

R(θ + δ) = E [`(fθ+δ(x); y)]

= E
[
`(fθ(x) + εThL(x) + εT∆φlz(U lhl−1(x)); y)

]
(c)
= E

[
`(fθ(x); y) + `′(fθ(x); y)

(
εThL(x) + εT∆φlz(U lhl−1(x))

)
+ 1

2`
′′(fθ(x); y)

(
εThL(x)

)2
+ o(‖δ‖2)

]
(d)
= R(θ) + E

[
`′(fθ(x); y)εT∆φlz(U lhl−1(x)) + 1

2`
′′(fθ(x); y)

(
εThL(x)

)2]
+ o(‖δ‖2),

where (c) used Taylor expansion of `(·; y) and (d) used that E[`′(fθ(x); y)hL(x)] = ∂R
∂w (θ) = 0.

Comparing with the expansion (2), the second term in the RHS corresponds to the second-order
perturbation 1

2δ
T∇2R(θ)δ.

Now note that

E
[
`′(fθ(x); y)εT∆φlz(U lhl−1(x)) + 1

2`
′′(fθ(x); y)

(
εThL(x)

)2]
=εT∆E

[
`′(fθ(x); y)φlz(U lhl−1(x))

]
+ 1

2ε
TE
[
`′′(fθ(x); y)hL(x)hL(x)T

]
ε.

Let A := E[`′′(fθ(x); y)hL(x)hL(x)T ] and b := E
[
`′(fθ(x); y)φlz(U lhl−1(x))

]
for simplity. By

the representation coverage condition of the theorem A is full-rank, hence invertible. We can
choose ε = −A−1∆b to minimize the expression above, then the minimum value we get is
− 1

2b
T∆TA−1∆b.

First, note that A is positive definite, and so is A−1. If b 6= 0, we can choose β = b, so
∆b = αβT b = ‖b‖2 α 6= 0, so − 1

2b
T∆TA−1∆b < 0. This proves that λmin(∇2R(θ)) < 0

if E
[
`′(fθ(x); y)φlz(U lhl−1(x))

]
6= 0, as desired.

The case when l = 1 can be done similarly, by perturbing w and V 1. This finishes the proof.
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B Proof of Theorem 4

Since we only consider a single critical point, we denote the critical point as θ = (w, z), without ∗.
By the same argument as in Case 1 of Proof of Theorem 2, we can use convexity of ` to get the
following bound:

E [`(fθ(x); y)]− E
[
`(t̂Tx; y)

]
≤ E

[
`′(fθ(x); y)(wThL(x)− t̂Tx)

]
= (w − t̂)TE [`′(fθ(x); y)hL(x)] + t̂TE [`′(fθ(x); y)(hL(x)− x)]

(a)
= t̂TE

[
`′(fθ(x); y)

∑L

l=1
φlz(hl−1(x))

]
≤ µ‖t̂‖

L∑
l=1

E
[
‖φlz(hl−1(x))‖

]
,

where (a) used the fact that E [`′(fθ(x); y)hL(x)] = ∂R
∂w = 0. Now, for any fixed l ∈ [L], using

Assumption 5.1 we have

‖φlz(hl−1(x))‖ ≤ ρl‖hl−1(x))‖
≤ ρl(‖hl−2(x)‖+ ‖φl−1z (hl−2(x))‖)
≤ ρl(1 + ρl−1)‖hl−2(x)‖

≤ · · · ≤ ρl
l−1∏
k=1

(1 + ρk)‖x‖.

Substituting this bound to the one above, we get

R(θ)−Rlin ≤ µ‖t̂‖E [‖x‖]
L∑
l=1

ρl

l−1∏
k=1

(1 + ρk) = µ‖t̂‖E [‖x‖]
(∏L

k=1
(1 + ρk)− 1

)
.

C Proof of Theorem 5

First, we collect the symbols used in this section. Given a real number p, define [p]+ := max{p, 0}
and [p]− := max{−p, 0}. Notice that |p| = [p]+ +[p]−. Recall that given a vector x, let ‖x‖ denotes
its Euclidean norm. Recall also that given a matrix M , let ‖M‖ denote its spectral norm, and ‖M‖F
denote its Frobenius norm.

The proof is done by a simple induction argument using the “peeling-off” technique used for
Rademacher complexity bounds for neural networks. Before we start, let us define the function class
of hidden layer representations, for 0 ≤ l ≤ L:

Hl := {hl : Rdx 7→ Rdx | ‖V j‖F , ‖U j‖F ≤Mj for all j ∈ [l]},

defined with the same bounds as used in FL. Note thatH0 is a singleton with the identity mapping
x 7→ x. Also, define Fl to be the class of functions represented by a l-block ResNet (0 ≤ l ≤ L):

Fl := {x 7→ wThl(x) | ‖w‖ ≤ 1, hl ∈ Hl}.

Note that if l = L, this recovers the definition of FL in the theorem statement. Since

F0 := {x 7→ wTx | ‖w‖ ≤ 1},

it is well-known that R̂n(F0|S) ≤ B√
n

. The rest of the proof is done by proving the following:

R̂n(Fl|S) ≤ (1 + 2M2
l )R̂n(Fl−1|S),

for l ∈ [L].
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Fix any l ∈ [L]. Then, by the definition of Rademacher complexity,

nR̂n(Fl|S) = Eε1:n

 sup
‖w‖≤1,
hl∈Hl

n∑
i=1

εiw
Thl(xi)


=Eε1:n

 sup
‖w‖≤1,

hl−1∈Hl−1

sup
‖V l‖F≤Ml

‖U l‖F≤Ml

n∑
i=1

εiw
T (hl−1(xi) + V lσ(U lhl−1(xi)))



≤Eε1:n

 sup
‖w‖≤1,

hl−1∈Hl−1

n∑
i=1

εiw
Thl−1(xi)

+ Eε1:n

 sup
‖w‖≤1,

hl−1∈Hl−1

sup
‖V l‖F≤Ml

‖U l‖F≤Ml

n∑
i=1

εiw
TV lσ(U lhl−1(xi))


︸ ︷︷ ︸

=:A

.

The first term in RHS is nR̂n(Fl−1|S) by definition. It is left to show an upper bound for the second
term in RHS, which we will call A .

First, because ‖w‖ ≤ 1 and ‖V l‖ ≤ ‖V l‖F ≤Ml, we have ‖V T
l w‖ ≤Ml. So, by using dual norm,

A = E

 sup
‖v‖≤Ml,
‖U l‖F≤Ml

hl−1∈Hl−1

vT
n∑
i=1

εiσ(U lhl−1(xi))

 = MlE

 sup
‖U l‖F≤Ml,
hl−1∈Hl−1

∥∥∥∥∥
n∑
i=1

εiσ(U lhl−1(xi))

∥∥∥∥∥
 .

Let uT1 , u
T
2 , . . . , u

T
k be the rows of U l. Then, by positive homogeneity of ReLU σ, we have∥∥∥∥∥
n∑
i=1

εiσ(U lhl−1(xi))

∥∥∥∥∥
2

=

k∑
j=1

‖uj‖2
(

n∑
i=1

εiσ

(
uTj hl−1(xi)

‖uj‖

))2

.

The supremum of this quantity over u1, . . . , uk under the constraint that ‖U l‖2F =
∑k
j=1 ‖uj‖

2 ≤
M2
l is attained when ‖uj‖ = Ml for some j and ‖uj′‖ = 0 for all other j′ 6= j. This means that

A

Ml
= E

 sup
‖U l‖F≤Ml,
hl−1∈Hl−1

∥∥∥∥∥
n∑
i=1

εiσ(U lhl−1(xi))

∥∥∥∥∥
 = E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

∣∣∣∣∣
n∑
i=1

εiσ(uThl−1(xi))

∣∣∣∣∣


= E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

[
n∑
i=1

εiσ(uThl−1(xi))

]
+

+

[
n∑
i=1

εiσ(uThl−1(xi))

]
−


≤ E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

[
n∑
i=1

εiσ(uThl−1(xi))

]
+

+ E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

[
n∑
i=1

εiσ(uThl−1(xi))

]
−


(a)
= 2E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

[
n∑
i=1

εiσ(uThl−1(xi))

]
+

 (b)
= 2E


 sup
‖u‖≤Ml,
hl−1∈Hl−1

n∑
i=1

εiσ(uThl−1(xi))


+


(c)
= 2E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

n∑
i=1

εiσ(uThl−1(xi))

 (d)
≤ 2E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

n∑
i=1

εiu
Thl−1(xi)

 ,
where equality (a) is due to symmetry of Rademacher random variables and (b) uses sup [t]+ =
[sup t]+. Equality (c) uses the fact that the supremum is nonnegative, because setting u = 0
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already gives
∑n
i=1 εiσ(uThl−1(xi)) = 0. Inequality (d) uses contraction property of Rademacher

complexity.

Lastly, one can notice that

E

 sup
‖u‖≤Ml,
hl−1∈Hl−1

n∑
i=1

εiu
Thl−1(xi)

 = MlE

 sup
‖w‖≤1,

hl−1∈Hl−1

n∑
i=1

εiw
Thl−1(xi)

 = MlnR̂n(Fl−1|S).

This establishes
A ≤ 2M2

l nR̂n(Fl−1|S),

which leads to the conclusion that

R̂n(Fl|S) ≤ (1 + 2M2
l )R̂n(Fl−1|S),

as desired.
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