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Abstract

We consider the problem of online forecasting of sequences of length n with
total-variation at most Cn using observations contaminated by independent σ-
subgaussian noise. We design an O(n log n)-time algorithm that achieves a cu-
mulative square error of Õ(n1/3C

2/3
n σ4/3 + C2

n) with high probability. We also
prove a lower bound that matches the upper bound in all parameters (up to a log(n)
factor). To the best of our knowledge, this is the first polynomial-time algorithm that
achieves the optimal O(n1/3) rate in forecasting total variation bounded sequences
and the first algorithm that adapts to unknown Cn. Our proof techniques leverage
the special localized structure of Haar wavelet basis and the adaptivity to unknown
smoothness parameters in the classical wavelet smoothing [Donoho et al., 1998].
We also compare our model to the rich literature of dynamic regret minimization
and nonstationary stochastic optimization, where our problem can be treated as
a special case. We show that the workhorse in those settings — online gradient
descent and its variants with a fixed restarting schedule — are instances of a class
of linear forecasters that require a suboptimal regret of Ω̃(

√
n). This implies that

the use of more adaptive algorithms is necessary to obtain the optimal rate.

1 Introduction

Nonparametric regression is a fundamental class of problems that has been studied for more than half
a century in statistics and machine learning [Nadaraya, 1964, De Boor et al., 1978, Wahba, 1990,
Donoho et al., 1998, Mallat, 1999, Scholkopf and Smola, 2001, Rasmussen and Williams, 2006]. It
solves the following problem:

• Let yi = f(ui)+ Noise for i = 1, ..., n. How can we estimate a function f using data points
(u1, y1), ..., (un, yn) and the knowledge that f belongs to a function class F?

Function class F typically imposes only weak regularity assumptions on the function f such as
boundedness and smoothness, which makes nonparametric regression widely applicable to many
real-life applications especially those with unknown physical processes.

A recent and successful class of nonparametric regression technique called trend filtering [Steidl et al.,
2006, Kim et al., 2009, Tibshirani, 2014, Wang et al., 2014] was shown to have the property of local
adaptivity [Mammen and van de Geer, 1997] in both theory and practice. We say a nonparametric
regression technique is locally adaptive if it can cater to local differences in smoothness, hence
allowing more accurate estimation of functions with varying smoothness and abrupt changes. For
example, for functions with bounded total variation (when F is a total variation class), standard
nonparametric regression techniques such as kernel smoothing and smoothing splines have a mean
square error (MSE) of O(n−1/2) while trend filtering has the optimal O(n−2/3).
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Trend filtering is, however, a batch learning algorithm where one observes the entire dataset ahead
of the time and makes inference about the past. This makes it inapplicable to the many time series
problems that motivate the study of trend filtering in the first place [Kim et al., 2009]. These include
influenza forecasting, inventory planning, economic policy-making, financial market prediction and so
on. In particular, it is unclear whether the advantage of trend filtering methods in estimating functions
with heterogeneous smoothness (e.g., sharp changes) would carry over to the online forecasting
setting. The focus of this work is in developing theory and algorithms for locally adaptive online
forecasting which predicts the immediate future value of a function with heterogeneous smoothness
using only noisy observations from the past.

1.1 Problem Setup

1. Fix action time intervals 1, 2, ..., n

2. The player declares a forecasting strategy Ai : Ri−1 → R for i = 1, ..., n.
3. An adversary chooses a sequence θ1:n = [θ1, θ2, . . . , θn]T ∈ Rn.
4. For every time point i = 1, ..., n:

(a) We play xi = Ai(y1, ..., yi−1).
(b) We receive a feedback yi = θi + Zi, where Zi is a zero-mean, independent

subgaussian noise.

5. At the end, the player suffers a cumulative error
∑n
i=1 (xi − θi)2.

Figure 1: Nonparametric online forecasting model. The focus of the proposed work is to design
a forecasting strategy that minimizes the expected cumulative square error. Note that the problem
depends a lot on the choice of the sequence θi. Our primary interest is on sequences with bounded
total variation (TV) so that

∑n
i=2|θi − θi−1|≤ Cn, but we will also talk about the adaptivity of our

method to easier problems such as forecasting Sobolev and Holder functions.

We propose a model for nonparametric online forecasting as described in Figure 1. This model can
be re-framed in the language of the online convex optimization model with three differences.

1. We consider only quadratic loss functions of the form `t(x) = (x− θt)2.
2. The learner receives independent noisy gradient feedback, rather than the exact gradient.
3. The criterion of interest is redefined as the dynamic regret [Zinkevich, 2003, Besbes et al.,

2015]:

Rdynamic(A, `1:n) := E

[
n∑

t=1

`t(xt)

]
−

n∑

t=1

inf
xt
`t(xt).

The new criterion is called a dynamic regret because we are now comparing to a stronger dynamic
baseline that chooses an optimal x in every round. Of course in general, the dynamic regret will
be linear in n [Jadbabaie et al., 2015]. To make the problem non-trivial, we restrict our attention to
sequences of `1, ..., `n that are regular, which makes it possible to design algorithms with sublinear
dynamic regret. In particular, we borrow ideas from the nonparametric regression literature and con-
sider sequences [θ1, ..., θn] that are discretizations of functions in the continuous domain. Regularity
assumptions emerge naturally as we consider canonical functions classes such as the Holder class,
Sobolev class and Total Variation classes [see, e.g., Tsybakov, 2008, for a review].

1.2 Assumptions

We consolidate all the assumptions used in this work and provide necessary justifications for them.

• (A1) The time horizon for the online learner is known to be n.
• (A2) The parameter σ2 of subgaussian noise in the observations is known.
• (A3) The ground truth denoted by θ1:n = [θ1, ..., θn]T has its total variation bounded by some posi-

tive Cn, i.e., we take F to be the total variation class TV(Cn) := {θ1:n ∈ Rn : ‖Dθ1:n‖1≤
Cn} where D is the discrete difference operator. Here Dθ1:n = [θ2 − θ1, . . . , θn − θn−1]T .

• (A4) |θ1|≤ U .
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The knowledge of σ2 in assumption (A2) is primarily used to get the optimal dependence of σ in
minimax rate. This assumption can be relaxed in practice by using the Median Absolute Deviation
estimator as described in Section 7.5 of Johnstone [2017] to estimate σ2 robustly. Assumption (A3)
features a samples from a large class of functions with spatially inhomogeneous degree of smoothness.
The functions residing in this class need not even be continuous. Our goal is to propose a policy
that is locally adaptive whose empirical mean squared error converges at the minimax rate for this
function class. We stress that we do not assume that the learner knows Cn. The problem is open and
nontrivial even when Cn is known. Assumption (A4) is very mild as it puts restriction only to the
first value of the sequence. This assumption controls the inevitable prediction error for the first point
in the sequence.

1.3 Our Results

The major contributions of this work are summarized below.

• It is known that the minimax MSE for smoothing sequences in the TV class is Ω̃(n−2/3).
This implies a lowerbound of Ω̃(n1/3) for the dynamic regret in our setting. We present a
policy ARROWS (Adaptive Restarting Rule for Online averaging using Wavelet Shrinkage)
with a nearly minimax dynamic regret Õ(n1/3) and a run-time complexity of O(n log n).

• We show that a class of forecasting strategies — including the popular Online Gradient
Descent (OGD) with fixed restarts [Besbes et al., 2015], moving averages (MA) [Box and
Jenkins, 1970] — are fundamentally limited by Ω̃(

√
n) regret.

• We also provide a more refined lower bound that characterized the dependence of U,Cn
and σ, which certifies the adaptive optimality of ARROWS in all regimes. The bound also
reveals a subtle price to pay when we move from the smoothing problem to the forecasting
problem, which indicates the separation of the two problems when Cn/σ � n1/4, a regime
where the forecasting problem is strictly harder (See Figure 3).

• Lastly, we consider forecasting sequences in Sobolev classes and Holder classes and establish
that ARROWS can automatically adapt to the optimal regret of these simpler function classes
as well, while OGD and MA cannot, unless we change their tuning parameter (to behave
suboptimally on the TV class).

2 Related Work

The topic of this paper sits well in between two amazing bodies of literature: nonparametric regression
and online learning. Our results therefore contribute to both fields and hopefully will inspire more
interplay between the two communities. Throughout this paper when we refer Õ(n1/3) as the optimal
regret, we assume the parameters of the problem are such that it is acheivable (see Figure 3).

Nonparametric regression. As we mentioned before, our problem — online nonparametric fore-
casting — is motivated by the idea of using locally adaptive nonparametric regression for time
series forecasting [Mammen and van de Geer, 1997, Kim et al., 2009, Tibshirani, 2014]. It is more
challenging than standard nonparametric regression because we do not have access to the data in the
future. While our proof techniques make use of several components (e.g., universal shrinkage) from
the seminal work in wavelet smoothing [Donoho et al., 1990, 1998], the way we use them to construct
and analyze our algorithm is new and more generally applicable for converting non-parametric
regression methods to forecasting methods.

Adaptive Online Learning. Our problem is also connected to a growing literature on adaptive online
learning which aims at matching the performance of a stronger time-varying baseline [Zinkevich,
2003, Hall and Willett, 2013, Besbes et al., 2015, Chen et al., 2018b, Jadbabaie et al., 2015, Hazan
and Seshadhri, 2007, Daniely et al., 2015, Yang et al., 2016, Zhang et al., 2018a,b, Chen et al., 2018a].
Many of these settings are highly general and we can apply their algorithms directly to our problem,
but to the best of our knowledge, none of them achieves the optimal Õ(n1/3) dynamic regret.

In the remainder of this section, we focus our discussion on how to apply the regret bounds in
non-stationary stochastic optimization [Besbes et al., 2015, Chen et al., 2018b] to our problem while
leaving more elaborate discussion with respect to alternative models (e.g. the constrained comparator
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approach [Zinkevich, 2003, Hall and Willett, 2013], adaptive regret [Jadbabaie et al., 2015, Zhang
et al., 2018a], competitive ratio [Bansal et al., 2015, Chen et al., 2018a]), as well as the comparison
to the classical time series models to Appendix A.

Regret from Non-Stationary Stochastic Optimization The problem of non-stationary stochastic
optimization is more general than our model because instead of considering only the quadratic
functions, `t(x) = (x− θt)2, they work with the more general class of strongly convex functions and
general convex functions. They also consider both noisy gradient feedbacks (stochastic first order
oracle) and noisy function value feedbacks (stochastic zeroth order oracle).

In particular, Besbes et al. [2015] define a quantity Vn which captures the total amount of “variation”
of the functions `1:n using Vn :=

∑n−1
i=1 ‖`i+1 − `i‖∞. 1 Chen et al. [2018b] generalize the notion to

Vn(p, q) :=
(∑n−1

i=1 ‖`i+1 − `i‖qp
)1/q

for any 1 ≤ p, q ≤ +∞ where ‖·‖p:= (
∫
|·(x)|pdx)1/p is the

standard Lp norm for functions2. Table 1 summarizes the known results under the non-stationary
stochastic optimization setting.

Table 1: Summary of known minimax dynamic regret in the non-stationary stochastic optimization
model. Note that the choice of q does not affect the minimax rate in any way, but the choice of p does.
“-” indicates that the no upper or lower bounds are known for that setting.

Noisy gradient feedback Noisy function value feedback
Assumptions on `1:n p = +∞ 1 ≤ p < +∞ p = +∞ 1 ≤ p < +∞
Convex & Lipschitz Θ(n2/3V

1/3
n ) O(n

2p+d
3p+dVn(p, q)

p
3p+d ) - -

Strongly convex & Smooth Θ(n1/2V
1/2
n ) Θ(n

2p+d
4p+dVn(p, q)

2p
4p+d ) Θ(n2/3V

1/3
n ) Θ(n

4p+d
6p+dVn(p, q)

2p
6p+d )

Our assumption on the underlying trend θ1:n ∈ F can be used to construct an upper bound of
this quantity of variation Vn or Vn(p, q). As a result, the algorithms in non-stationary stochastic
optimization and their dynamic regret bounds in Table 1 will apply to our problem (modulo additional
restrictions on bounded domain). However, our preliminary investigation suggests that this direct
reduction does not, in general, lead to optimal algorithms. We illustrate this observation in the
following example.
Example 1. Let F be the set of all bounded sequences in the total variation class TV (1). It can be
worked out that Vn(p, q) = O(1) for all p, q. Therefore the smallest regret from [Besbes et al., 2015,
Chen et al., 2018b] is obtained by taking p→ +∞, which gives us a regret of O(n1/2). Note that we
expect the optimal regret to be Õ(n1/3) according to the theory of locally adaptive nonparametric
regression.

In Example 1, we have demonstrated that one cannot achieve the optimal dynamic regret using known
results in non-stationary stochastic optimization. We show in section 3.1 that “Restarting OGD”
algorithm has a fundamental lower bound of Ω̃(

√
n) on dynamic regret in the TV class.

Online nonparametric regression. As we finalize our manuscript, it comes to our attention that our
problem of interest in Figure 1 can be cast as a special case of the “online nonparametric regression”
problem [Rakhlin and Sridharan, 2014, Gaillard and Gerchinovitz, 2015]. The general result of
Rakhlin and Sridharan [2014] implies the existence of an algorithm that enjoys a Õ(n1/3) regret for
the TV class without explicitly constructing one, which shows that n1/3 is the minimax rate when
Cn = O(1) (see more details in Appendix A). To the best of our knowledge, our proposed algorithm
remains the first polynomial time algorithm with Õ(n1/3) regret and our results reveal more precise
(optimal) upper and lower bounds on all parameters of the problem (see Section 3.4).

3 Main results

We are now ready to present our main results.
1The Vn definition in [Besbes et al., 2015] for strongly convex functions are defined a bit differently, the

‖·‖∞ is taken over the convex hull of minimizers. This creates some subtle confusions regarding our results
which we explain in details in Appendix I.

2We define Vn(p, q) to be a factor of n−1/q times bigger than the original scaling presented in [Chen et al.,
2018b] so the results become comparable to that of [Besbes et al., 2015].
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3.1 Limitations of Linear Forecasters

Restarting OGD as discussed in Example 1, fails to achieve the optimal regret in our setting. A
curious question to ask is whether it is the algorithm itself that fails or it is an artifact of a potentially
suboptimal regret analysis. To answer this, let’s consider the class of linear forecasters — estimators
that outputs a fixed linear transformation of the observations y1:n. The following preliminary
result shows that Restarting OGD is a linear forecaster . By the results of Donoho et al. [1998],
linear smoothers are fundamentally limited in their ability to estimate functions with heterogeneous
smoothness. Since forecasting is harder than smoothing, this limitation gets directly translated to the
setting of linear forecasters.
Proposition 2. Online gradient descent with a fixed restart schedule is a linear forecaster. Therefore,
it has a dynamic regret of at least Ω̃(

√
n).

Proof. First, observe that the stochastic gradient is of form 2(xt − yt) where xt is what the agent
played at time t and yt is the noisy observation θt + Independent noise. By the online gradient
descent strategy with the fixed restart interval and an inductive argument, xt is a linear combination of
y1, ..., yt−1 for any t. Therefore, the entire vector of predictions x1:t is a fixed linear transformation
of y1:t−1. The fundamental lower bound for linear smoothers from Donoho et al. [1998] implies that
this algorithm will have a regret of at least Ω̃(

√
n).

The proposition implies that we will need fundamentally new nonlinear algorithmic components to
achieve the optimal O(n1/3) regret, if it is achievable at all!

3.2 Policy

In this section, we present our policy ARROWS (Adaptive Restarting Rule for Online averaging using
Wavelet Shrinkage). The following notations are introduced for describing the algorithm.

• th denotes start time of the current bin and t be the current time point.
• ȳth:t denotes the average of the y values for time steps indexed from th to t.

• pad0(yth , ..., yt) denotes the vector (yth − ȳth:t, ..., yt − ȳth:t)
T zero-padded at the end till its

length is a power of 2. i.e, a re-centered and padded version of observations.
• T (x) where x is a sequence of values, denotes the element-wise soft thresholding of the sequence

with threshold σ
√
β log(n)

• H denotes the orthogonal discrete Haar wavelet transform matrix of proper dimensions
• Let Hx = α = [α1, α2, ..., αk]T where k being a power of 2 is the length of x. Then the vector

[α2, ..., αk]T can be viewed as a concatenation of log2 k contiguous blocks represented by
α[l], l = 0, ..., log2(k)− 1. Each block α[l] at level l contains 2l coefficients.

ARROWS: inputs - observed y values, time horizon n, std deviation σ, δ ∈ (0, 1], a hyper-
parameter β > 24

1. Initialize th = 1, newBin = 1, y0 = 0

2. For t = 1 to n:
(a) If newBin == 1, predict xtht = yt−1, else predict xtht = ȳth:t−1

(b) set newBin = 0, observe yt and suffer loss (xtht − θt)2

(c) Let ỹ = pad0(yth , ..., yt) and k be the padded length.
(d) Let α̂(th : t) = T (Hỹ)

(e) Restart Rule: If 1√
k

∑log2(k)−1
l=0 2l/2‖α̂(th : t)[l]‖1> σ√

k
then

i. set newBin = 1
ii. set th = t+ 1

Our policy is the byproduct of following question: How can one lift a batch estimator that is minimax
over the TV class to a minimax online algorithm?
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Restarting OGD when applied to our setting with squared error losses reduces to partitioning the
duration of game into fixed size chunks and outputting online averages. As described in Section 3.1,
this leads to suboptimal regret. However, the notion of averaging is still a good idea to keep. If within
a time interval, the Total Variation (TV) is adequately small, then outputting sample averages is
reasonable for minimizing the cumulative squared error. Once we encounter a bump in the variation,
a good strategy is to restart the averaging procedure. Thus we need to adaptively detect intervals with
low TV. For accomplishing this, we communicate with an oracle estimator whose output can be used
to construct a lowerbound of TV within an interval. The decision to restart online averaging is based
on the estimate of TV computed using this oracle. Such a decision rule introduces non-linearity and
hence breaks free of the suboptimal world of linear forecasters.

The oracle estimator we consider here is a slightly modified version of the soft thresholding estimator
from Donoho [1995]. We capture the high level intuition behind steps (d) and (e) as follows.
Computation of Haar coefficients involves smoothing adjacent regions of a signal and taking difference
between them. So we can expect to construct a lowerbound of the total variation ‖Dθ1:n‖1 from these
coeffcients. The extra thresholding step T (.) in (d) is done to denoise the Haar coefficients computed
from noisy data. In step (e), a weighted L1 norm of denoised coefficients is used to lowerbound
the total variation of the true signal. The multiplicative factors 2l/2 are introduced to make the
lowerbound tighter. We restart online averaging once we detect a large enough variation. The first
coefficient α̂(th : t)1 is zero due to the re-centering caused by pad0 operation. The hyper-parameter
β controls the degree to which we shrink the noisy wavelet coefficients. For sufficiently small β, It is
almost equivalent to the universal soft-thresholding of [Donoho, 1995]. The optimal selection of β is
described in Theorem 3.

We refer to the duration between two consecutive restarts inclusive of the first restart but exclusive of
the second as a bin. The policy identifies several bins across time, whose width is adaptively chosen.
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Figure 2: An illustration of ARROWS on a sequence with heterogeneous smoothness. We compare
qualitatively (on the left) and quantitatively (on the right) to two popular baselines: (a) restarting
online gradient descent [Besbes et al., 2015]; (b) the moving averages [Box and Jenkins, 1970] with
optimal parameter choices. As we can see, ARROWS achieves the optimal Õ(n1/3) regret while the
baselines are both suboptimal.

3.3 Dynamic Regret of ARROWS

In this section, we provide bounds for non-stationary regret and run-time of the policy.

Theorem 3. Let the feedback be yt = θt + Zt, t = 1, . . . , n and Zt be independent, σ-subgaussian
random variables. If β = 24 + 8 log(8/δ)

log(n) , then with probability at least 1 − δ, ARROWS achieves

a dynamic regret of Õ(n1/3‖Dθ1:n‖2/31 σ4/3 + |θ1|2+‖Dθ1:n‖22+σ2) where Õ hides a logarithmic
factor in n and 1/δ.

Proof Sketch. Our policy is similar in spirit to restarting OGD but with an adaptive restart schedule.
The key idea we used is to reduce the dynamic regret of our policy in probability roughly to a sum of
squared error of a soft thresholding estimator and number of restarts. This was accomplished by using
a Follow The Leader (FTL) reduction. For bounding the squared error part of the sum we modified
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the threshold value for the estimator in Donoho [1995] and proved high probability guarantees for
the convergence of its empirical mean. To bound the number of times we restart, we first establish a
connection between Haar coefficients and total variation. This is intuitive since computation of Haar
coefficients can be viewed as smoothing the adjacent regions of a signal and taking their difference.
Then we exploit a special condition called “uniform shrinkage” of the soft-thresholding estimator
which helps to optimally bound the number of restarts with high probability.

Theorem 3 provides an upper bound of the minimax dynamic regret for forecasting the TV class.

Corollary 4. Suppose the ground truth θ1:n ∈ TV (Cn) and |θ1|≤ U . Then ‖Dθ1:n‖1≤ Cn. By
noting that ‖Dθ1:n‖2≤ ‖Dθ1:n‖1, under the setup in Theorem 3 ARROWS achieves a dynamic regret
of Õ(n1/3C

2/3
n σ4/3 + U2 + C2

n + σ2) with probability at-least 1− δ.

Remark 5 (Adaptivity to unknown parameters.). Observe that ARROWS does not require the knowl-
edge of Cn.It adapts optimally to the unknown TV radius Cn := ‖Dθ1:n‖1 of the ground truth θ1:n.
The adaptivity to n can be achieved by a standard doubling trick. σ, if unknown, can be robustly
estimated from the first few observations by a Median Absolute Deviation estimator (eg. Section 7.5
of Johnstone [2017]), thanks to the sparsity of wavelet coefficients of TV bounded functions.

3.4 A lower bound on the minimax regret

We now give a matching lower bound of the expected regret, which establishes that ARROWS is
adaptively minimax.

Proposition 6. Assume min{U,Cn} > 2πσ and n > 3, there is a universal constant c such that

inf
x1:n

sup
θ1:n∈TV(Cn)

E

[
n∑

t=1

(xt(y1:t−1)− θt)2

]
≥ c(U2 + C2

n + σ2 log n+ n1/3C2/3
n σ4/3).

The proof is deferred to the Appendix I. The result shows that our result in Theorem 3 is optimal up
to a logarithmic term in n and 1/δ for almost all regimes (modulo trivial cases of extremely small
min{U,Cn}/σ and n)3.

Remark 7 (The price of forecasting). The result also shows that forecasting is strictly harder
than smoothing. Observe that a term with C2

n is required even if σ = 0, whereas in the case
of a one-step look-ahead oracle (or the smoothing algorithm that sees all n observations) does
not have this term. This implies that the total amount of variation that any algorithm can handle
while producing a sublinear regret has dropped from Cn = o(n) to Cn = o(

√
n). Moreover, the

regime where the n1/3C
2/3
n σ4/3 term is meaningful only when Cn = o(n1/4). For the region where

σn1/4 � Cn � σn1/2, the minimax regret is essentially proportional to C2
n. This is illustrated in

Figure 3.

We note that in much of the online learning literature, it is conventional to consider a slightly more
restrictive setting with bounded domain, which could reduce the minimax regret. The following
remark summarizes a variant of our results in this setting.

Remark 8 (Minimax regret in bounded domain). If we consider predicting sequences
from a subset of the TV (Cn) ball having an extra boundedness condition |θi|≤
B for i = 1 . . . n, it can be shown that (see Appendix I) minimax regret is
Ω̃
(

min{nB2, nσ2, n1/3C
2/3
n σ4/3}+B2 + min{nB2, BCn}+ σ2

)
. In particular, forecasting is

still strictly harder than smoothing due to the min{nB2, BCn} term in the bound. The discussion in
Appendix I, shows a way of using ARROWS whose regret can match this lower bound.

3When both U andCn are moderately small relative to σ, the lower bound will depend on σ a little differently
because the estimation error goes to 0 faster than 1/

√
n. We know the minimax risk exactly for that case as

well but it is somewhat messy [see e.g. Wasserman, 2006]. When they are both much smaller than σ, e.g., when
min{U,Cn} ≤ σ/

√
n, then outputting 0 when we do not have enough information will be better than doing

online averages.
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Figure 3: An illustration of the minimax (dynamic) regret of forecasters and smoothers as a function

of Cn. The non-trivial regime for forecasting is when Cn lies between σ
√

log(n)
n and σ n1/4

where forecasting is just as hard as smoothing. When Cn > σ n1/4, forecasting is harder than
smoothing. The yellow region indicates the extra loss incurred by any minimax forecaster. The
green region marks the extra loss incurred by a linear forecaster compared to minimax forecasting
strategy. The figure demonstrates that linear forecasters are sub-optimal even in the non-trivial
regime. When Cn > σ n1/2, it is impossible to design a forecasting strategy with sub-linear regret.

For Cn > σ n, identity function is optimal estimator for smoothing and when when Cn < σ
√

log(n)
n ,

online averaging is optimal for both problems.

3.5 The adaptivity of ARROWS to Sobolev and Holder classes

It turns out that ARROWS is also adaptively optimal in forecasting sequences in the discrete Sobolev
classes and the discrete Holder classes, which are defined as

S(C ′n) = {θ1:n : ‖Dθ1:n‖2≤ C ′n}, H(B′n) = {θ1:n : ‖Dθ1:n‖∞≤ B′n}.
These classes feature sequences that are more spatially homogeneous than those in the TV
class. The minimax cumulative error of nonparametric estimation in the discrete Sobolev class
is Θ(n2/3[C ′n]2/3σ4/3) [see e.g., Sadhanala et al., 2016, Theorem 5 and 6].
Corollary 9. Let the feedback be yt = θt + Zt where Zt is an independent, σ-subgaussian random
variable. Let θ1:n ∈ S(C ′n) and |θ1|≤ U . If β = 24 + 8 log(8/δ)

log(n) , then with probability at least 1− δ,

ARROWS achieves a dynamic regret of Õ(n2/3[C ′n]2/3σ4/3 + U2 + [C
′

n]2 + σ2) where Õ hides a
logarithmic factor in n and 1/δ.

Thus despite the fact that ARROWS is designed for total variation class, it adapts to the optimal rates
of forecasting sequences that are spatially regular. To gain some intuition, let’s minimally expand the
Sobolev ball to a TV ball of radius Cn =

√
nC ′n. The chosen scaling of Cn activates the embedding

S(C ′n) ⊂ TV (Cn) (see the illustration in Table 2) with both classes having same minimax rate in
the batch setting. This implies that dynamic regret of ARROWS is simultaneously minimax optimal
over S(C ′n) and TV (Cn) wrt the term containing n. It can be shown that ARROWS is optimal wrt to
the additive [C

′

n]2, U2, σ2 terms as well. Minimaxity in Sobolev class implies minimaxity in Holder
class since it is known that a Holder ball is sandwiched between two Sobolev balls having the same
minimax rate [see e.g., Tibshirani, 2015]. A proof of the Corollary and related experiments are
presented in Appendix F and J.

3.6 Fast computation

Last but not least, we remark that there is a fast implementation of ARROWS that reduces the overall
time-complexity for n step from O(n2) to O(n log n).
Proposition 10. The run time of ARROWS is O(n log(n)), where n is the time horizon.

The proof exploits the sequential structure of our policy and sparsity in wavelet transforms, which
allows us to have O(log n) incremental updates in all but O(log n) steps. See Appendix G for details.
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Table 2: Minimax rates for cumulative error
∑n
i=1(θ̂i − θ)2 in various settings and policies that

achieve those rates. ARROWS is adaptively minimax across all of the described function classes
while linear forecasters fail to perform optimally over the TV class. For simplicity, we assume U is
small and hide a log n factors in all the forecasting rates.

Class Minimax rate for
Forecasting

Minimax rate for
Smoothing

Minimax rate for
Linear Forecasting

TV ‖Dθ1:n‖1≤ Cn n1/3C
2/3
n σ4/3 + C2

n + σ2 n1/3C
2/3
n σ4/3 + σ2 n1/2Cnσ + C2

n + σ2

Sobolev ‖Dθ1:n‖2≤ C ′n n2/3[C ′n]2/3σ4/3 + [C ′n]2 + σ2 n2/3[C ′n]2/3σ4/3 + σ2 n2/3[C ′n]2/3σ4/3 + [C ′n]2 + σ2

Holder ‖Dθ1:n‖∞≤ Ln nL
2/3
n σ4/3 + nL2

n + σ2 nL
2/3
n σ4/3 + σ2 nL

2/3
n σ4/3 + nL2

n + σ2

Minimax Algorithm ARROWS
Wavelet Smoothing

Trend Filtering
Restarting OGD

Moving Averages

Holder class
<latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit><latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit><latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit><latexit sha1_base64="LN7O5UbXN9o4/Pag4si6CtiFtPo=">AAAB/HicbZDNSgMxFIUz9a/Wv9Eu3QSL4KrMiKDLopsuK9hWaEvJpHfa0ExmSO6IZaiv4saFIm59EHe+jem0C229EPg4597k5gSJFAY979sprK1vbG4Vt0s7u3v7B+7hUcvEqebQ5LGM9X3ADEihoIkCJdwnGlgUSGgH45uZ334AbUSs7nCSQC9iQyVCwRlaqe+WuwiPmNVjOQBNuWTGTPtuxat6edFV8BdQIYtq9N2v7iDmaQQK8xs6vpdgL2MaBZcwLXVTAwnjYzaEjkXFIjC9LF9+Sk+tMqBhrO1RSHP190TGImMmUWA7I4Yjs+zNxP+8TorhVS8TKkkRFJ8/FKaSYkxnSdCB0MBRTiwwroXdlfIR04yjzatkQ/CXv7wKrfOqb/n2olK7XsRRJMfkhJwRn1ySGqmTBmkSTibkmbySN+fJeXHenY95a8FZzJTJn3I+fwAp+JUW</latexit>

Holder class
<latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit><latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit><latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit><latexit sha1_base64="0nL9NX74S0Uxvw8i8fw2PcQ4Isk=">AAAB/XicdVDJSgNBEO1xN25xuXlpDIKnMIsavYlePEYwCyQh9PTUxMaehe4aMQ7BX/HiQRGv/oc3/8bOIqjog4LHe1XdVc9PpdBo2x/W1PTM7Nz8wmJhaXllda24vlHXSaY41HgiE9X0mQYpYqihQAnNVAGLfAkN//ps6DduQGmRxJfYT6ETsV4sQsEZGqlb3Goj3GJ+nsgAFOWSaT0odIslu+xVDr2DCrXLh+6x5zqGuPsVzz2gTtkeoUQmqHaL7+0g4VkEMY6eaDl2ip2cKRRcwqDQzjSkjF+zHrQMjVkEupOPth/QXaMENEyUqRjpSP0+kbNI637km86I4ZX+7Q3Fv7xWhuFRJxdxmiHEfPxRmEmKCR1GQQOhgKPsG8K4EmZXyq+YYhxNYMMQvi6l/5O6W3YMv9gvnZxO4lgg22SH7BGHVMgJOSdVUiOc3JEH8kSerXvr0XqxXsetU9ZkZpP8gPX2CdW0lXc=</latexit>

�
f
�� |f(x) � f(y)|  |x � y|

 
<latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit><latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit><latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit><latexit sha1_base64="PFmmii6qAwPnsJTeDYeqiF0NNWc="></latexit>

kD✓k1  1

n<latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit><latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit><latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit><latexit sha1_base64="aQxeA7UOax7zF5bp6lGAZ3bsTTA="></latexit>

kD✓k2  1p
n

<latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit><latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit><latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit><latexit sha1_base64="jbXw7gPVVzF721BXtLO6GEn6bGo="></latexit>

Z 1

0

(f 0(x))2dx  1
<latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit><latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit><latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit><latexit sha1_base64="reTkaROGHYsWGPk4ljFRben8RN4="></latexit>

Sobolev class
<latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit><latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit><latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit><latexit sha1_base64="t+wKjaxSRJRm1e5P9fZiN4PLo3k=">AAAB/XicdVBNSwMxEM3W7/pVP25egkXwVLK1rfYmevGoaFVoS8mmUxua3SzJrFiX4l/x4kERr/4Pb/4b01pBRR8MPN6bSWZeECtpkbF3LzMxOTU9MzuXnV9YXFrOrayeW50YATWhlTaXAbegZAQ1lKjgMjbAw0DBRdA7HPoX12Cs1NEZ9mNohvwqkh0pODqplVtvINxgeqoDreCaCsWtHbRyeVYosqpfKlJW2ClXGas4UqlWK2VG/QIbIU/GOG7l3hptLZIQIhy9UPdZjM2UG5RCwSDbSCzEXPT4FdQdjXgItpmOth/QLae0aUcbVxHSkfp9IuWhtf0wcJ0hx6797Q3Fv7x6gp29ZiqjOEGIxOdHnURR1HQYBW1LAwJV3xEujHS7UtHlhgt0gWVdCF+X0v/JebHgO35Syu8fjOOYJRtkk2wTn+ySfXJEjkmNCHJL7skjefLuvAfv2Xv5bM1445k18gPe6weBNpXo</latexit>

TV class
<latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit><latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit><latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit><latexit sha1_base64="goXcrjHVFO0qA7dLAhmKLjMsaJU=">AAAB+HicbZDLSgMxFIbP1Futl466dBMsgqsyI4Iui25cVuhFaIeSSTNtaOZCckasQ5/EjQtF3Poo7nwb0+kstPVA4OP/z0lOfj+RQqPjfFultfWNza3ydmVnd2+/ah8cdnScKsbbLJaxuvep5lJEvI0CJb9PFKehL3nXn9zM/e4DV1rEUQunCfdCOopEIBhFIw3sah/5I2atDmGSaj0b2DWn7uRFVsEtoAZFNQf2V38YszTkEeY39FwnQS+jCgWTfFbpp5onlE3oiPcMRjTk2svyxWfk1ChDEsTKnAhJrv6eyGio9TT0TWdIcayXvbn4n9dLMbjyMhElKfKILR4KUkkwJvMUyFAozlBODVCmhNmVsDFVlKHJqmJCcJe/vAqd87pr+O6i1rgu4ijDMZzAGbhwCQ24hSa0gUEKz/AKb9aT9WK9Wx+L1pJVzBzBn7I+fwDkx5M6</latexit>

kD✓k1  1
<latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit><latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit><latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit><latexit sha1_base64="H/FjkNQsLNtFjMCwdAFadT8Vmt0=">AAAB/HicbZDLSgNBEEV7fMb4imbppjEIrsKMCLoM6sJlBPOAzDD0dCpJk56H3TVCmMRfceNCEbd+iDv/xk4yC0280HC4VUVV3yCRQqNtf1srq2vrG5uFreL2zu7efungsKnjVHFo8FjGqh0wDVJE0ECBEtqJAhYGElrB8Hpabz2C0iKO7nGUgBeyfiR6gjM0ll8qu+MbFweAzB37jivhgTp+qWJX7ZnoMjg5VEiuul/6crsxT0OIkEumdcexE/QyplBwCZOim2pIGB+yPnQMRiwE7WWz4yf0xDhd2ouVeRHSmft7ImOh1qMwMJ0hw4FerE3N/2qdFHuXXiaiJEWI+HxRL5UUYzpNgnaFAo5yZIBxJcytlA+YYhxNXkUTgrP45WVonlUdw3fnldpVHkeBHJFjckocckFq5JbUSYNwMiLP5JW8WU/Wi/VufcxbV6x8pkz+yPr8AfeflE4=</latexit>

sup
n2N+

0x1<...<xn1

nX

i=0

|f(xi+1) � f(xi)|  1

<latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit><latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit><latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit><latexit sha1_base64="kjndIXIK4IvbmQL5TLTFn/I2oo8="></latexit>

Canonical Scalinga Forecasting Smoothing Linear Forecasting
TV Cn � 1 n1/3 n1/3 n1/2

Sobolev C ′n � 1/
√
n n1/3 n1/3 n1/3

Holder Ln � 1/n n1/3 n1/3 n1/3

aThe “canonical scaling” are obtained by discretizing functions in canon-
ical function classes. Under the canonical scaling, Holder class ⊂ Sobolev
class ⊂ TV class, as shown in the figure on the left. ARROWS is optimal for
the Sobolev and Holder classes inscribed in the TV class. MA and Restarting
OGD on the other hand require different parameters and prior knowledge of
variational budget (i.e Cn or C′n) to achieve the minimax linear rates for the
TV class and the Sobolev/Holder class.

3.7 Experimental Results

To empirically validate our results, we conducted a number of numerical simulations that compares
the regret of ARROWS, (Restarting) OGD and MA. Figure 2 shows the results on a function with
heterogeneous smoothness (see the exact details and more experiments in Appendix B) with the hyper-
parameters selected according to their theoretical optimal choice for the TV class (See Theorem 11,
12 for OGD and MA in Appendix C). The left panel illustrates that ARROWS is locally adaptive to
heterogeneous smoothness of the ground truth. Red peaks in the figure signifies restarts. During the
initial and final duration, the signal varies smoothly and ARROWS chooses a larger window size for
online averaging. In the middle, signal varies rather abruptly. Consequently ARROWS chooses a
smaller window size. On the other hand, the linear smoothers OGD and MA use a constant width and
cannot adapt to the different regions of the space. This differences are also reflected in the quantitative
evaluation on the right, which clearly shows that OGD and MA has a suboptimal Õ(

√
n) regret while

ARROWS attains the Õ(n1/3) minimax regret!

4 Concluding Discussion

In this paper, we studied the problem of online nonparametric forecasting of bounded variation
sequences. We proposed a new forecasting policy ARROWS and proved that it achieves a cumulative
square error (or dynamic regret) of Õ(n1/3C

2/3
n σ4/3+σ2+U2+C2

n) with total runtime ofO(n log n).
We also derived a lower bound for forecasting sequences with bounded total variation which matches
the upper bound up to a logarithmic term which certifies the optimality of ARROWS in all parameters.
Through connection to linear estimation theory, we assert that no linear forecaster can achieve the
optimal rate. ARROWS is highly adaptive and has essentially no tuning parameters. We show that it is
adaptively minimax (up to a logarithmic factor) simultaneously for all discrete TV classes, Sobolev
classes and Holder classes with unknown radius. Future directions include generalizing to higher
order TV class and other convex loss functions.
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A Discussion on other related works

Regret from Adaptive Optimistic Mirror Descent. In Jadbabaie et al. [2015], the authors propose
Adaptive Optimistic Mirror Descent (AOMD) algorithm that minimizes the dynamic regret against a
comparator sequence {ut}nt=1. Their learning framework is the full information setting where learner
predict xt ∈ X for a convex set X ⊆ Rd. Then a loss function ft(x) is revealed to the learner. To
capture the regularity of the comparator, they define a quantity Cn(u1, u2, ..., un) :=

∑n
t=1‖ut −

ut−1‖. They capture the regularity of loss functions by incorporating some external knowledge about
their gradients via a predictable sequence {Mt}nt=1. They define: Dn :=

∑n
t=1‖∇ft(xt)−Mt‖2∗.

Finally to account for the temporal variability of ft, they introduce Vn as discussed earlier. The final
regret bound is expressed in terms of these three quantities. However, their algorithm is adaptive and
requires no prior knowledge about them.

We note that our problem can be reduced to their framework if one considers loss functions ft(x) =
(x− yt)2. Then the expected dynamic regret against the comparator sequence {θt}nt=1 is given by

n∑

t=1

E[(x− yt)2 − (θt − yt)2] = E[

n∑

t=1

(x− θt)2], (1)

where the expectation at right hand side is over the randomness of forecasting strategy. Hence we
observe that their regret bound can be directly applied to bound the dynamic regret of our problem.
It can be shown that (see Appendix H) given a fixed total variation bound Cn = O(1), then Vn and
Dn can be proved to be O(n) with high probability. Plugging this into their regret bound yields an
Õ(
√
n) rate in probability. However, it is unclear that whether AOMD is fundamentally limited by

this rate or is there a potential suboptimality in their analysis of regret on our particular problem.

Other Dynamic Regret minimizing policies. [Yang et al., 2016] defines a path variation budget
that is equivalent to our Cn to characterize the sequence of convex loss functions. However, under
the noisy gradient feedback structure, they use a version of restarting OGD to get C1/2n1/2 regret
rate. This is very similar to the policy in [Besbes et al., 2015]. Since OGD is a linear forecaster, it is
sub-optimal for predicting bounded variation sequences under the squared error metric.

In [Koolen et al., 2015], they consider minimizing the dynamic regret wrt to a comparator class
that obeys ‖Dθ1:n‖2≤ C ′n. This is basically the discrete Sobolev class. As shown in appendix E,
our policy is minimax for forecasting such sequences as well when the observed values are noisy
versions of the ground truth. However it should be noted that [Koolen et al., 2015] does not have this
distributional assumption on the observations.

[Chen et al., 2018a] considers the Smoothed Online Convex Optimization framework where they
simultaneously minimize the hitting loss ft and a switching cost. They provide dynamic regret bounds
on this composite cost in the setting that ft is known to the learner before making the prediction. If
we consider ft(x) = (x− yt)2, then the baseline they compare against reduces to the offline Trend
Filtering (TF) estimate when

∑n
i=2|xt − xt−1|≤ L = Cn. Then Theorem 10 of [Chen et al., 2018a]

states that the cumulative composite cost incurred by their proposed policy differs from that of the TF
estimate by a term that is O(

√
nCn). However, this doesn’t translate to a meaningful regret bound in

our setting.

[Hall and Willett, 2013] proposes the Dynamic Mirror Descent (DMD) algorithm that make use of a
family of dynamical models for making prediction at each time step. They achieve a dynamic regret
bound of O(

√
n(1 +Vφt(θT ))) where the second term measures the quality of the dynamical models

in predicting ground truth.

Comparison to Online Isotonic Regression. [Kotłowski et al., 2016] considers the dynamic regret
minimization,

n∑

t=1

(xt − yt)2 − min
(θ1,...,θn)

n∑

t=1

(θt − yt)2,

where yt ≤ B is a label revealed by the environment, xt ≤ B is the prediction of the learner, and the
comparator sequence should obey 0 ≤ θ1 ≤ ... ≤ θn ≤ B. Here B is a fixed positive number. Note
that their setting and our framework are mutually reducible to each other in terms of regret guarantees
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via 1. They propose a minimax policy that achieves a dynamic regret of Õ(n1/3) which translates to
an Õ(n1/3) in probability in our setting under the isotonic ground truth restriction.

We note that the isotonic comparator sequence belong to a TV class of variational budget Cn = B.
By using an argument similar to that in appendix H which involves converting to deterministic noise
setting and conditioning on a high probability event, it can be shown that our policy is out of the box
minimax with high probability in isotonic framework when observations are noisy versions of an
isotonic sequence.

Comparison to Online Non-Parametric regression methods. We note that our problem falls into
the more general framework of online non-parametric regression setting studied in [Rakhlin and
Sridharan, 2015]. We can reduce our dynamic regret minimization to their framework by using a
similar argument as above through (1). Since the bounded TV class is sandwiched between Besov
spaces B1

1,q for the range 1 ≤ q ≤ ∞, the discussion in section 5.8 of [Rakhlin and Sridharan, 2015]
establishes that minimax growth w.r.t n as O(n1/3) in the online setting for TV class. Thus our
bounds, modulo logarithmic factor, matches with theirs though we give the precise dependence on
Cn and σ as well. It is worthwhile to point out that while the bound in [Rakhlin and Sridharan, 2015]
is non-constructive, we achieve the same bound via an efficient algorithm.

[Gaillard and Gerchinovitz, 2015] proposes a minimax policy wrt to comaparator functions that are
Holder smooth. In particular, for the Holder class H1 that satisfy |f(x) − f(y)|≤ λ|x − y|, their
algorithm yields a regret of Õ(n1/3). It is known ([Tibshirani, 2015]) that H1 is sandwiched between
two Sobolev balls having the same minimax rate in the iid batch statistical learning setting. Since our
policy is optimal for Sobolev space (appendix F), it is also optimal over Holder ball H1 when the
observations are noisy versions of a Holder smooth functions. Though the framework of [Gaillard
and Gerchinovitz, 2015] doesn’t impose this distributional assumption. The runtime of their policy
for H1 class is O(n7/3 log n). It should be noted that Sobolev and Holder classes are arguably easier
to tackle than the TV class since both of them can be embedded inside a TV class.

Strongly Adaptive Regret. Daniely et al. [2015] introduced the notion of Strongly Adaptive (SA)
regret where the online learner is guaranteed to have low static regret for any interval within the
duration of the game. They also propose a meta algorithm which can convert an algorithm of good
static regret to one with good SA regret. However low static regret for any interval doesn’t help in
our setting because in each interval we are competing with a stronger dynamic adversary. A notion of
SA dynamic regret would an interesting topic to explore.

For minimizing dynamic regret, Zhang et al. [2018b] proposed a meta policy that uses an algorithm
with good SA regret as its subroutine. Hence we can use their framework with squared error loss
functions as discussed above. They show that OGD has an SA regret of O(log(n)) for strongly
convex loss functions. Using OGD as the subroutine and applying corollary 7 of their paper yields a
bound Õ(n). By a similar argument one gets the same linear regret rate when online newton step is
used as the subroutine. However, we should note that their algorithm works without the knowledge
of radius of the TV ball Cn.

Classical time series forecasting models. Finally, we note that our work is complementary to
much of the classical work in time-series forecasting (e.g., Box-Jenkins method/ARIMA Box and
Jenkins [1970], Hidden Markov Models [Baum and Petrie, 1966]). These methods aim at using
dynamical systems to capture the recurrent patterns under a stationary stochastic process, while we
focus on harnessing the nonstationarity. Our work is closer to the “trend smoothing” literature (e.g.,
the celebrated Hodrick-Prescott filter [Hodrick and Prescott, 1997], trend filtering [Kim et al., 2009,
Tibshirani, 2014, Hutter and Rigollet, 2016]).

B Additional Experiments

The function that we generated in Figure 2 is a hybrid function which in the first half is a “discretized
cubic spline” with more knots closely placed towards the end. In the second half it is a Doppler
function f(t) = sin

(
2π(1+ε)
t/n+0.38

)
with n being the time horizon. We observe noisy data yi =
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Figure 4: An illustration of ARROWS on a linear trend which has homogeneous smoothness
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Figure 5: An illustration of ARROWS on a step trend with abrupt inhomogeneity.

f(i/n) + zi, i = 1, ..., n and zi are iid normal variables with σ = 1. The value of Cn for n > 60K is
around 17. Hence for all n > 83521, we are under the n1/3 regime of σ

√
log(n)/n < Cn < σn1/4.

The window size for moving averages and partition width of OGD were tuned optimally for the
TV class (see Appendix C for details). Figure 2 depicts the estimated signals and dynamic regret
averaged across 5 runs in a log log plot. The left panel illustrates that ARROWS is locally adaptive
to heterogeneous smoothness of the ground truth. Red peaks in the figure signifies restarts. During
the initial and final duration, the signal varies smoothly and ARROWS chooses a larger window size
for online averaging. In the middle, signal varies rather abruptly. Consequently ARROWS chooses a
smaller window size. On the other hand, the linear smoothers OGD and MA attains a suboptimal
Õ(
√
n) regret.

In Figure 4 and 5 we plot the estimates and log-log regret for two more functions: A linear function
that is homogeneously smooth and less challenging and a step function which has an abrupt disconti-
nuity making it more inhomogeneous than linear but have lesser inhomogeneity w.r.t hybrid signal
considered in 3.7. Both OGD and MA were optimally tuned for the TV class as in Appendix C.

The red peaks corresponds to restarts by ARROWS. For linear functions we can see that ARROWS
chooses inter-restart duration/bin-widths that are constant throughout. This is expected as a linear
trend is spatially homogeneous. For the step function, we see that ARROWS restart only once since
the start. Further, notice that it quickly restarts once the bump is hit. For both of these functions,
necessary scaling is done so that we are in the n1/3 regime quite early.

14



C Upper bounds of linear forecasters

In this section we compute the optimal batch size for Restarting OGD and optimal window size for
moving averages to yield the Õ(

√
n) regret rate.

Theorem 11. Let the feedback be yt = θt + Zt where Zt is an independent, σ-subgaussian random
variable. Let θ1:n ∈ TV(Cn). Restarting OGD with batch size of

√
n log n σ

Cn
achieves an expected

dynamic regret of Õ(U2 + C2
n + σCn

√
n).

Proof. Note that in our setting with squared error losses ft(x) = (x − θt)
2, the update rule of

restarting OGD reduces to computing online averages. Thus OGD essentially divides the time
horizon n into fixed size batches and output online averages within each batch. Our objective here is
to compute the optimal batch size that minimizes the dynamic regret.

We will bound the expected regret. Let xt be the estimate of OGD at time t. Let batches be numbered
as 1, ..., dn/Le where L is the fixed batch size. Let the total variation of ground truth within batch i
be Ci. Time interval of batch i is denoted by [t

(i)
h , t

(i)
l ]. Due to bias variance decomposition within a

batch we have,

Ri =

t
(i)
l∑

t=t
(i)
h

E[(xt − θt)2] = (θ
t
(i)
h −1

− θ
t
(i)
h

)2 +

t
(i)
l∑

t=t
(i)
h +1

(θt − θ̄t(i)h :t−1
)2 +

σ2

t− t(i)h
, (2)

≤ (θ
t
(i)
h −1

− θ
t
(i)
h

)2 + LC2
i + σ2(2 + logL),

with the convention θ0 = 0 and at start of bin our prediction is just the noisy realization of the
previous data point.

Summing across all bins gives,
dn/Le∑

i=1

Ri ≤ LC2
n + 2σ2n(2 + logL)

L
+ U2 + C2

n.

where we have used assumption (A4) to bound the bias of the first prediction. The above expression
can be minimized by setting L =

√
n log n σ

Cn
to yield a regret bound ofO(U2 +C2 +σCn

√
n log n)

Theorem 12. Under the same setup as in Theorem 11, moving averages with window size σ
√
n

Cn
yields

a dynamic regret of O(σCn
√
n+ U2 + C2

n)

Proof. Let the window size of moving averages be denoted by m. Consider the prediction at a time
xt, t ≥ m. By bias variance decomposition we have,

E[(xt − θt)2] =

(
θi −

∑i−1
j=i−m θj
m

)2

+
σ2

m
.

By Jensen’s inequality,
(
θi −

∑i−1
j=i−m θj
m

)2

≤
∑i−1
j=i−m(θj − θi)2

m
,

≤
2
∑i−1
j=i−m(j − i+ 1 +m)(θj+1 − θj)2

m
,by (a+ b)2 ≤ 2a2 + 2b2.

Notice that the term (θi − θi−1)2 will be multiplied by a factor m in the above bias bound at time
point i, m− 1 times in the next time point i+ 1 and so on. By summing this bias bound across the
times points, we obtain

n∑

i=m

2
∑i−1
j=i−m(j − i+ 1 +m)(θj+1 − θj)2

m
≤ 4m

n−1∑

i=1

(θi − θi+1)2 + U2,

≤ 4mC2
n + U2.
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The squared bias for the initial points can be bounded by.

m−1∑

i=1

(θi − θ̂(1:i−1))
2 ≤ U2 + C2

n.

Summing the variance terms yields,

n∑

t=1

Var(xt) =

m−1∑

t=1

σ2

t
+

n∑

t=m

σ2

m
,

≤ (1 + logm+ n)σ2

m
.

Thus the total MSE can be minimized by setting m = σ
√
n

Cn
, we obtain a dynamic regret bound of

O(σCn
√
n+ U2 + C2

n)

D Proof of useful lemmas

We begin by recording an observation that follows directly from the policy.

Lemma 13. For mth bin that spans the interval [t
(m)
h , t

(m)
l ], discovered by the policy, let the lengths

of α̂(t
(m)
h : t

(m)
l − 1) and α̂(t

(m)
h : t

(m)
l ) be k and k+ respectively. Then

∑log2(k)−1
l=0 2l/2‖α̂(t

(m)
h : t

(m)
l − 1)[l]‖1≤ σ and

∑log2(k+)−1
l=0 2l/2‖α̂(t

(m)
h : t

(m)
l )[l]‖1> σ

Next we prove the marginal sub-gaussianity of the wavelet coefficients.
Lemma 14. Consider the observation model yi = θi + σzi, where zi is iid sub-gaussian with
parameter 1, i = 1, .., n. Let αi denote the wavelet coefficients of the sequence z = pad0(y1, ...yn).
Then each αi is sub-gaussian with parameter 2σ.

Proof. Without loss of generaility let’s charecterize α1. Let u = [u1, ...un, un+1, . . . , u|z|]T denote
the first row of the orthonormal wavelet transform matrix. Then,

α1 =

n∑

i=1

yi


ui(1−

1

n
)−

n∑

j=1,j 6=i

uj
n


 .

Thus α1 is a differentiable function of iid sub-gaussian noise zi. We can find its Lipschtiz constant by
bounding the gradient w.r.t zi as follows,

‖∇α1(z1, ..., zn)‖2 ≤ σ




n∑

i=1

2u2
i (1−

1

n
)2 +

2

n

n∑

j=1,j 6=i
u2
j




1
2

,

≤ σ (2 + 2)
1
2 ,

= 2σ.

By proposition 2.12 in Johnstone [2017] we conclude that α1 sub-gaussian with parameter 2σ.

In the next lemma, we record the uniform shrinkage property of soft-thresholding estimator.
Lemma 15. For any interval [th, tl], let Y = pad0(yth , ..., ytl) and Θ = pad0(θth , ..., θtl). Then
|(T (HY ))i|≤ |(HΘ)i| with probability at-least 1− 2n3−β/8 for each co-ordinate i.

Proof. Consider a fixed bin [
¯
l, l̄] with zero padded vector Y ∈ Rk. Due to sub-gaussian tail inequality,

we have |(HY )i − (HΘ)i|≤ σ
√
β log(n) with probability at-least 1− 2/nβ/8. Consider the case

(HΘ)i ≥ σ
√
β log(n). Then both the scenarios (HY )i ≤ σ

√
β log(n) and (HY )i > σ

√
β log(n)

16



leads to shrinkage to a value that is smaller than |(HΘ)i| in magnitude due to soft-thresholding
with threshold set to σ

√
β log(n). Now consider the case when 0 ≤ (HΘ)i ≤ σ

√
β log(n).

Again, soft-thresholding in both scenarios (HY )i ≤ σ
√
β log(n) and σ

√
β log(n) ≤ (HY )i ≤

(HΘ)i + σ
√
β log(n) leads to shrinkage to a value that is smaller than |(HΘ)i| in magnitude. One

can come up with a similar argument for the case where (HΘ)i ≤ 0. Now applying a union bound
across all O(n) co-ordinates and all O(n2) bins, we get the statement of the lemma.

Lemma 16. The number of bins, M , discovered by the policy is at-most
max{1, 2n1/3C

2/3
n σ−2/3 log(n)} with probability at-least 1− 2n3−β/2.

Proof. Let Θm = [θ
(m)
1 , θ

(m)
2 , ..., θ

(m)
p ]T be the mean subtracted and zero padded ground truth

sequence values in mth bin [
¯
l, l̄] discovered by our policy. y(m) = [y

(m)
1 , y

(m)
2 , ..., y

(m)
p ]T be

the corresponding mean subtracted and zero padded observations. Note that due to zero padding
p ≤ 2(l̄ −

¯
l) and some of the last values in the vector can be zeroes. Let αm(

¯
l : l̄) = HΘ denotes

the discrete wavelet coefficient vector. We can view the computation of the Haar coefficients as a
recursion. At each level l of the recursion, the entire length p, is divided into 2l intervals. Let the
sample averages of elements of Θm in these intervals be denoted by the sequence {θ̃1, θ̃2, ..., θ̃2l}.
Let α(l)

m ∈ R2l denotes the vector of Haar coefficients at level l.

First note that the Haar coefficient α(l)
m (i) = 1

2

√
p
2l

(θ̃2i − θ̃2i−1) with i = 1, ..., 2l.

‖α(l)
m ‖21 ≤

p

2l+2




2l∑

i=1

|θ̃2i − θ̃2i−1|




2

,

≤ pTV 2[
¯
l − 1 : l̄]

2l
,

where TV [a, b] denotes the total variation of the true sequence in the interval [a, b]. The last inequality
holds because the total variation of the smoothed sequence must be at-most four times the entire total
variation of true sequence. The factor 4 is due to the fact that total variation when we pad a mean
zero sequence with zeroes is at-most twice the total variation before zero padding.

We have,

1√
p

log2(p)−1∑

l=0

2l/2‖α(l)
m ‖1 ≤ log p TV [

¯
l − 1 : l̄].

In the policy we compute α̂m(
¯
l : l̄) = T (Hy(m)) with the soft thresholding factor of σ

√
β log(n).

From lemma 15, we have |(T (Y ))i|≤ |(HΘ)i| ∀i ∈ [1, p] with probability at-least 1 − 2n3−β/8.
Since [

¯
l, l̄] is a bin discovered by policy, lemma 13 gives a lowerbound on ‖αm(

¯
l : l̄)‖ . Putting it all

together yields the relation,

σ√
p
<

1√
p

log2(p)−1∑

l=0

2l/2‖α̂(l)
m (

¯
l : l̄)‖1≤

1√
p

log2(p)−1∑

l=0

2l/2‖α(l)
m (

¯
l : l̄)‖1≤ log(p)TV [

¯
l−1 : l̄], (3)

with probability at-least 1− 2n3−β/8.

Thus the total variation in the time interval [
¯
l − 1, l̄] can be lower bounded in probability as

TV [
¯
l − 1 : l̄] >

σ√
p log n

.

Due to assumption (A3) we have,
M∑

i=1

TV [
¯
li − 1 : l̄i] = Cn,
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where [
¯
li : l̄i] are the bins discovered by the policy.

Let pi be the padded width of bin i discovered by the policy. Then,

Cn log n ≥
M∑

i=1

σ√
pi
,

≥ M2σ
∑M
i=1

√
pi
,

where the last line is obtained via Jensen’s inequality. Now using Holder’s inequality ‖x‖β≤
d

1
β− 1

α ‖x‖α for 0 < β ≤ α, x ∈ Rd with α = 1/2, β = 1 and noting that
∑M
i=1 pi ≤ 2T gives,

σM2 ≤ Cn log n

M∑

i=1

√
pi,

≤ Cn log n
√
Mn.

Hence we get M ≤ (2n)1/3(Cn log n)2/3σ−2/3 ≤ 2n1/3C
2/3
n σ−2/3 log(n).

When Cn = 0, (3) implies that our policy will not restart with probability at-least 1 − 2n3−β/8

making M = 1.

We restate two useful results from Donoho [1995].

Lemma 17. Consider the observation model y = α+Z, where y ∈ Rk and |Zi|≤ δ∀ i ∈ [1, k]. Let
α̂δ be the soft thresholding estimator with input y and threshold δ, then

‖α̂δ − α‖2≤
k∑

i=1

min{α2
i , 4δ

2}.

Lemma 18. Consider the observation model y = α + Z, where y ∈ Rk, α ∈ A and each Zi is
sub-gaussian with parameter σ2. If A is solid and orthosymmetric, then

inf
α̂

sup
α∈A

E[‖α̂− α‖2] ≥ 1

2.22
sup
A

k∑

i=1

min{α2
i , σ

2}.

Let’s pause a moment to ponder how remarkable the above lemma is. The observations need not be
even iid. Given A is solid and orthosymmetric, all that is required is the marginal sub-gaussianity as
the soft-thresholding operation works co-ordinate wise. Now we reprove theorem 4.2 from Donoho
[1995] with a slight modification of threshold value in the estimator.

Theorem 19. With probability at-least 1−2n−β/2, under the model in lemma 18, the soft thresholding
estimator α̂δ with δ = σ

√
β log(n) obeys

‖α̂δ − α‖2≤ 8.88β(1 + log(n)) inf
α̂

sup
α∈A

E[‖α̂− α‖2]. (4)
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Proof. Consider the soft thresholding estimator α̂δ . By Gaussian tail inequality we have P (supi|Zi|≥
δ) ≤ 2n−β/2. Conditioning on the event supi|Zi|≤ δ and applying lemma 17,

‖α̂δ − α‖2 ≤
k∑

i=1

min{α2
i , 4δ

2},

=

k∑

i=1

min{α2
i , 4βσ

2 log(n)},

≤ max{1, 4β log(n)}
k∑

i=1

min{α2
i , σ

2},

≤ (1 + 4β log(n)) sup
α∈A

k∑

i=1

min{α2
i , σ

2},

≤ 4β(1 + log(n)) 2.22 inf
α̂

sup
α∈A

E[‖α̂− α‖2],

where the last line follows from lemma 18.

It can be shown that wavelet coefficients of functions residing in the TV class is solid and orthosym-
metric. As shown in lemma 14, the noisy wavelet coefficients are marginally sub-gaussian. Thus in
the coefficient space, we are under the same observation model as in lemma 18. Using a uniform
bound argument across all O(n2) bins and all O(n) points within a bin along with lemma 14 leads to
the following corollary.
Corollary 20. The soft-thresholded wavelet coefficients of re-centered and zero padded noisy data
within any interval [th, tl] satisfy relation (4) with probability atleast 1− 2n3−β/8.

Next, we record an important preliminary bound that will be used in proving the main result.

Lemma 21. With probability at-least 1− δ
2 , the total squared error for online averaging between

two arbitrarily chosen time points th and tl satisfies
tl∑

t=th

(xtht −θt)2 ≤ 4σ2 log(4n3/δ)(2+log(tl−th+1))+2(θth−1−θth)2 +2

tl∑

t=th+1

(θ̄th:t−1−θt)2.

(5)

Proof. Throughout this lemma we assume the notation θ0 = 0. For proving this, first we bound the
squared error for online sample averages within a bin, b[

¯
l, l̄], that starts and ends at fixed times

¯
l and

l̄ respectively. Then a uniform bound argument will be used for bounding the squared error within
any arbitrarily chosen bin. Note that b[

¯
l, l̄] represents any fixed time interval and may not be even

chosen by the policy. For t ∈ [
¯
l, l̄], consider the prediction x̄lt, with same notation as used in the

policy. Define a random variable Zt as

Zt =
(x̄
l
t − θt)− (λt − θt)
σ
√

1/[t−
¯
l]1+

,

where [x]1+ = max{1, x}, λl = θ
¯
l−1 and λt = θ̄

¯
l:t−1,∀t >

¯
l. Zt is subgaussian with variance

parameter 1 and mean 0. Hence by sub-gaussian tail inequality, we have P (|Zt|≥
√

2 log(4/δ)) ≤
δ/2. By noting that length of a bin is O(n) and applying uniform bound across all time points within
the current bin we have

P

(
sup

¯
l≤t≤l̄

|Zt|≥
√

2 log(4n3/δ)

)
≤ δ/2n2.

Hence with probability at-least 1− δ/2n2,

|x̄lt − θt|≤ |λt − θt|+σ
√

2 log(4n3/δ)

[t−
¯
l]1+

,∀t ∈ [
¯
l, l̄]. (6)
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So the squared error within a bin can be bounded in probability as

l̄∑

t=
¯
l

(x̄
l
t − θt)2 ≤ 2(θ

¯
l−1 − θ

¯
l)

2 + 2

l̄∑

t=
¯
l+1

(θ̄
¯
l:t−1 − θt)2 + 2

l̄∑

t=
¯
l

σ2 2 log(4n3/δ)

[t−
¯
l]1+

.

Here we applied the inequality (a+b)2 ≤ 2a2 +2b2 on (6). Ultimately we are interested in analyzing
the MSE within a bin detected by the policy. However the observations within a bin satisfies the
restarting criterion of the policy and cannot be regarded independent. To break free of this constraint,
we uniformly bound the quantity of interest — MSE here — across all possible bins. Noting that
number of bins is O(n2) and applying uniform bound across all bins gives the following single sided
tail bound.

Let E denote the event:
supb[

¯
l:l̄](x̄

l
t − θt)2 − 2(θ

¯
l−1 − θ

¯
l)

2 − 2
∑l̄
t=

¯
l+1(θ̄

¯
l:t−1 − θt)2 − 2

∑l̄
t=

¯
l σ

2 2 log(4n3/δ)
[t−

¯
l]1+

≥ 0.

Then,

P (E) ≤ δ/2.
Hence with probability at-least 1− δ/2, any bin b[th : tl] satisfies (5).

Since (5) holds for any arbitrary interval of the time axis, it is particularly true for the bins discovered
by the policy. Therefore the total squared error T of the policy is upper bounded in probability by the
sum of bin bounds of the form,

T ≤
M∑

m=1

4σ2 log(4n3/δ)(2+log(t
(m)
l −t(m)

h +1))+2(θ
t
(m)
h
−1
−θ

t
(m)
h

)2+2

t
(m)
l∑

t=t
(m)
h

+1

(θ̄
t
(m)
h

:t−1
−θt)2, (7)

where the outer sum iterates over the bins and M is the total number of bins. The first term inside
the outer summation can be controlled if we can upper bound M . Now we set out to prove our main
theorem.

E Proof of Theorem 1

From the discussion in section 1.1, the goal of bounding dynamic regret of the policy can be achieved
by bounding the total squared error of its predictions. Our solution proceeds in two steps. First we
upper bound the total squared error within a bin. Then we construct an upper bound for the number
of bins spawned by the policy. With these two bounds in place, we bound the total squared error of
the policy (7).

Let’s first proceed to get a bound on the last summation term in (7). We use a reduction towards
Follow The Leader (FTL) strategy. The term is basically the regret incurred by an FTL game with
quadratic loss function for the duration [th, tl].

Let Θ(th : tl − 1) = pad0(θth , ..., θtl−1) = [Θth , ...,Θth+k−1]T denotes mean subtracted the zero
padded true sequence in the interval [th, tl − 1]. Then,

tl∑

t=th

(θ̄th:t−1 − θt)2 = (θ̄th:tl−1 − θtl)2 +

tl−1∑

t=th

(θ̄th:t−1 − θt)2,

≤ (θ̄th:tl−1 − θtl)2 +

tl−1∑

t=th

(θ̄th:t−1 − θt)2

(t− th + 1)
+

tl−1∑

t=th

(θ̄th:tl−1 − θt)2,

= (θ̄th:tl−1 − θtl)2 +

tl−1∑

t=th

(θ̄th:t−1 − θt)2

(t− th + 1)
+ ‖Θ(th : tl − 1)‖2. (8)

We have applied FTL reduction for online game of predicting the true sequence θth , ..., θtl−1 to get
(8).

In the discussion below we assume that ‖Dθ1:n‖1≤ Cn and |θ1|≤ U .
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Now let’s try to bound the term ‖Θ(th : tl − 1)‖22. This is basically the regret of the best expert. By
triangle inequality,

‖Θ(th : tl − 1)‖2 ≤ ‖α̂(th : tl − 1)‖21+‖α̂(th : tl − 1)− α(th : tl − 1)‖22,

≤




log2(p)−1∑

l=0

2l/2‖α̂(th : tl − 1)[l]‖1




2

+ ‖α̂(th : tl − 1)− α(th : tl − 1)‖22, (9)

where p is the padded length.

We can base our online averaging restart rule on the output of wavelet smoother. Suppose we decide
to restart when ‖α̂(th : tl)‖1≥ Kn−1/3 for a constant K. Then the first term of (9) gives the optimal
rate of O(n1/3) when summed across all bins. But the estimation error term ‖α̂(th : tl − 1)−Θ(th :
tl − 1)‖2 should also be controlled. If the smoother is minimax over any bin [th, tl], then we can
hope to get minimaxity over the entire horizon. However, the total variation inside the bin is not
known to the smoother. This is where the adaptive minimaxity of wavelet smoother comes to rescue.

Suppose F denotes the class of functions f with total variation TV (f) ≤ Cn. Let A denote the set
of all coefficients of the continuous wavelet transform of functions f ∈ F . Then A ⊂ Θ

1/2
1,∞(Cn),

where Θ
1/2
1,∞(Cn) is a Besov body as defined in Donoho et al. [1998]. The minimax rate of estimation

in this Besov body is O(n−2/3C
2/3
n σ4/3) where n is the number of observations. However, this is

the rate of convergence of the L2 function norm instead of the discrete (input-averaged) norm that we
consider here. Over the Besov spaces, these two norms are close enough that the rates do not change
(see section 15.5 of Johnstone [2017]). Hence Corollary 20 can be used to control the bias.

Let ŷ(th : t) denotes the soft-thresholding estimates of the vector pad0(yth:t).
i.e ŷ(th : t) = HTT (H pad0(y(th : t))).

(θ̄th:tl−1 − θtl)2 ≤ 2(θtl−1 − θtl)2 + 2(θ̄th:tl−1 − θtl−1)2,

≤ 2(θtl−1 − θtl)2 + 4(ŷ(th : tl − 1)[tl − 1]− (θ̄th:tl−1 − θtl−1))2

+ 4(ŷ(th : tl − 1)[tl − 1])2. (10)

Since L1 norm is greater than L2 norm, the policy’s restart rule implies that

(ŷ(th : tl − 1)[tl − 1])2 ≤ σ2 (11)

Combining (10) and (11), we get

(θ̄th:tl−1 − θtl)2 ≤ 2(θtl − θtl−1)2 + γ1(tl − th)1/3 TV 2/3[th : tl] σ
4/3 + σ2, (12)

where last line holds with probablity atleast 1− 2n3−β/8 due to Corollary 20. Here γ1 is a constant
which can depend logarithmically on the width tl − th.

Now let’s bound the second term in (8). For any t ∈ [th, tl − 1] we have,
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tl−1∑

t=th

(θ̄th:t−1 − θt)2

(t− th + 1)
≤

tl−1∑

t=th

2(θt − θt−1)2 + 2(θ̄th:t−1 − θt−1)2

t− th + 1
,

≤
tl−1∑

t=th

2(θt − θt−1)2

+

tl−1∑

t=th

4(ŷ(th : t− 1)[t− 1]− (θ̄th:t−1 − θt−1))2 + 4(ŷ(th : t− 1)[t− 1])2

t− th + 1
,

≤
tl−1∑

t=th

2(θt − θt−1)2 + (γ2(tl − th)1/3 TV 2/3[th : tl] σ
4/3 + 4σ2)(1 + log n),

(13)

where the last line holds with probability at-least 1− 2n3−β/8.

‖Θ(th : tl − 1)‖22 ≤




log2(p)−1∑

l=0

2l/2‖α̂(th : tl − 1)[l]‖1




2

,

+ γ3(tl − th)1/3 TV 2/3[th : tl] σ
4/3,

≤ σ2 + γ3(tl − th)1/3 TV 2/3[th : tl] σ
4/3, (14)

with probability at-least 1− 2n3−β/8 for some constant γ3 which can depend logarithmically on the
width tl − th.

Due to Corollary 20 the bounds (12), (13), (14) all simultaneously holds with probability at-least
1− 2n3−β/8. Combining these bounds, we get

tl∑

t=th

(θ̄th:t−1 − θt)2 ≤ 2‖Dθth:tl‖22+γ(tl − th)1/3 TV 2/3[th : tl] σ
4/3 + 6σ2(1 + log(n)),

with probability at-least 1− 2n3−β/8 and γ = γ1 + γ2(1 + log(n)) + γ3.

When summed across all bins as in (7), with probability at-least 1− 2n3−β/8 we have,

M∑

m=1

t
(m)
l∑

t=t
(m)
h

(θ̄
t
(m)
h :t−1

− θt)2 ≤ U2 + 2‖Dθ1:n‖22+6Mσ2(1 + log n)

+

M∑

m=1

γ (k(m))1/3 TV 2/3[t
(m)
h : t

(m)
l ] σ4/3,

≤ U2 + 2‖Dθ1:n‖22+6Mσ2(1 + log n)

+ γσ4/3n1/3

(
M∑

m=1

k(m)

n

) 1
3
(

M∑

m=1

TV [t
(m)
h : t

(m)
l ]

) 2
3

,(15)

≤ U2 + 2‖Dθ1:n‖22+6Mσ2(1 + log n)

+ 2γσ4/3n1/3C2/3
n . (16)
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Here k(m) is the length of Θ(t
(m)
h : t

(m)
l − 1). The term (θ

t
(m)
h −1

− θ
t
(m)
h

)2 is at-most U2 for the first

bin. We arrive at (15) by applying Holder’s inequality xT y ≤ ‖x‖p‖y‖q with p = 3 and q = 3/2.
For both (15) and (16) we use the fact that

∑M
m=1 k

(m) ≤ 2n where the factor 2 is an artifact of
zero-padding.

By appealing to lemma 16, we have with probability at-least 1− 4n3−β/8,

M∑

m=1

t
(m)
l∑

t=t
(m)
h

(θ̄
t
(m)
h :t−1

− θt)2 ≤ U2 + 2‖Dθ1:n‖22+12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + γσ4/3n1/3C2/3

n . (17)

Next, we proceed to bound the first summation terms in (7). For this, we upperbound the number of
bins to control the concentration terms in (7) when summed across all bins. Essentially our decision
rule should not lead to over binning. Observe that the sum of total variations across all bins is Cn.
If the decision rule guarantees (at-least in probability) that total variation inside any detected bin is
Ω̃(n−1/3), then the number of bins is optimally O(n1/3). Such a TV lower bounding property is
satisfied by wavelet soft-thresholding as described in lemma 16. This is facilitated by the uniform
shrinkage property of soft-thresholding estimator. More precisely,

Let’s denote

Vm = 4σ2 log(2n3/δ)(2 + log(t
(m)
l − t(m)

h + 1)).

Then,
M∑

m=1

Vm ≤ 4σ2 log(4n3/δ)(2 + log(n)) max{1, 2n1/3C2/3
n σ−2/3 log(n)},

≤ 4σ2 log(4n3/δ)(2 + log(n))

+ 8n1/3C2/3
n σ4/3 log(n) log(4n3/δ)(2 + log(n)), (18)

with probability at-least 1− 2n3−β/8. Here [tmh , t
m
l ] corresponds to the mth bin discovered by the

policy. This relation follows due to Lemma 16.

Combining (18) and (17) we have with probability at-least 1− 4n3−β/8 − δ/2
T ≤ 8n1/3C2/3

n σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+ U2 + 2‖Dθ1:n‖22+12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + 2γσ4/3n1/3C2/3

n .

(19)

By observing that ‖Dθ1:n‖2≤ ‖Dθ1:n‖1= Cn we get the bound,

T ≤ 8n1/3C2/3
n σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+ U2 + 2C2
n + 12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + 2γσ4/3n1/3C2/3

n .

The above bounds holds with probability at-least 1− δ, if we set β = 24 + 8 log(8/δ)
log(n) .

We conclude our proof by observing that the above arguments can be readily extended to any batch
smoother that satisfy the following criteria.

• Adaptive minimaxity over any interval within the time horizon.
• The restart decision rule optimally lowerbounds the total variation of any spawned bin.
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Thus our policy can be viewed as a meta-algorithm that lifts a “well behaved smoother” to an optimal
forecaster in the online setting.

Next we remark how the proof can be adapted to the setting where an extra boundedness constraint is
put on the ground truth. i.e, θ1:n ∈ TV (Cn) and |θi|≤ B, i = 1, . . . , n. Then the U2 term in (19)
becomes B2. The additive ‖Dθ1:n‖22 term can be bounded as,

‖Dθ1:n‖22 =

n∑

i=2

(θi − θi−1)2,

≤
n∑

i=2

(|θi|+|θi−1|)(|θi − θi−1|),

≤ 2BCn.

With the boundedness constraint, we also have ‖Dθ1:n‖22≤ 4nB2. This essentially implies that
‖Dθ1:n‖22≤ min{4nB2, 2BCn}.
Thus when ‖θ1:n‖∞≤ B and if we set β = 24 + 8 log(8/δ)

log(n) then with probability at-least 1− δ,

T ≤ 8n1/3C2/3
n σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+B2 + 2 min{4nB2, 2BCn}+ 12σ2 log n

+ 24(log(n))2n1/3C2/3
n σ4/3 + 2γσ4/3n1/3C2/3

n .

(20)

F Adaptive Optimality in Discrete Sobolev class

In this section, we establish that despite the fact that ARROWS is designed for the total variation class,
it adapts to the optimal rates forecasting sequences that are more regular.

The discrete Sobelov class is defined as

S(C ′n) = {θ1:n : ‖Dθ1:n‖2≤ C ′n}.
The minimax cumulative error of nonparametric estimation in the discrete Sobolev class is
θ1:n(n2/3[C ′n]2/3σ4/3) [see e.g., Sadhanala et al., 2016, Theorem 5 and 6].

Recall that the discrete Total Variation class that we considered in this paper is defined as

T (Cn) = {θ1:n : ‖Dθ1:n‖1≤ Cn}.

By the norm inequalities, we know that

T (C ′n) ⊂ S(C ′n) ⊂ T (C ′n
√
n).

The following refinement of our main theorem establishes that ARROWS also achieves the minimax
rate in discrete Sobolev classes.
Theorem 22. Let the feedback be yt = θt + Zt where Zt is an independent, σ-subgaussian random
variable. Let θ1:n ∈ S(C ′n). If β = 24 + 8 log(8/δ)

log(n) , then with probability at least 1− δ, ARROWS

achieves a dynamic regret of Õ(n2/3[C ′n]2/3σ4/3 + U2 + [C
′

n]2 + σ2) where Õ hides a logarithmic
factor in n and 1/δ.

Proof. Let’s minimally expand the Sobolev ball to a TV ball of radius Cn =
√
nC ′n. This chosen

radius of the TV ball is in accordance with the canonical scaling introduced in [Sadhanala et al.,
2016]. This activates the following embedding:

S1(C ′n) ⊆ TV (Cn).
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We can rewrite (19) as

T ≤ 8n1/3‖Dθ1:n‖2/31 σ4/3(2 + log(n)) log(n)

+ 4σ2 log(4n3/δ)(2 + log(n))

+ U2 + 2‖Dθ1:n‖22+12σ2 log n

+ 24(log(n))2n1/3‖Dθ1:n‖2/31 σ4/3 + 2γσ4/3n1/3‖Dθ1:n‖2/31 .

(21)

The above representation reveals the optimality of our policy over Sobolev class S1(C ′n). Enlarging
the Sobolev class to the TV class that contains it does not change the minimax rate in the smoothing
setting. See, e.g., Theorem 5 and 6 of [Sadhanala et al., 2016] and take d = 1, and C ′n = n−1/2Cn.
By using ‖x‖1≤ n1/2‖x‖2 for x ∈ Rn,

‖Dθ1:n‖1
n1/2

≤ ‖Dθ1:n‖2≤ C ′n =
Cn
n1/2

.

Plugging this bound on ‖Dθ1:n‖1 in (21) recovers the minimax regret for the Sobolev class of radius
C ′n. The additional term of ‖Dθ1:n‖22 — similar to as shown in in appendix I — is unavoidable in the
online setting for predicting discrete Sobolev sequences.

Remark 23. Note that T (C ′n) ⊂ S(C ′n), therefore our lower bound from Proposition 6 still applies,
which suggests that the additional [C

′

n]2 + σ2 is required and that ARROWS is an optimal forecaster
for sequences in Sobolev classes as well.

G Fast Computation

We describe the proof of O(n log n) runtime guarantee below.

We use an inductive argument. Without loss of generality let the start of current bin be at time 1.
Suppose we know the wavelet transform of points upto time t. Let the next highest power of 2 for
both t and t+ 1 be p. We identify this value as a pivot for time t and t+ 1. Zero padding is done to hit
this pivot. We can view the pad0 operation at time t+ 1 as the difference between the padded original
data and and a step signal. This step signal assume the value ȳ1:t+1 in time [1, t+1] and 0 in [t+2, p].
For computing wavelet transform of the step, we need to update only O(log(p)) coefficients. Inputs
to the Haar transform of the padded data at times t and t+ 1 differs by just one co-ordinate. Hence
coefficients of only log(p) wavelets need to be changed. Each such change can be performed in O(1)
time in an incremental fashion.

Now let’s consider the case when the pivot for time t+ 1 is 2t. Suppose we know the Haar wavelet
coefficients upto time t. In this case, we need to compute the coefficients of log(t) newly introduced
wavelets that span the interval [t, 2t] since the zero padding will force most of the new wavelet
coefficients to be zero. The computation of each of those new coefficients can be done in O(1) due to
sparsity of signal in interval [t, 2t]. We also need to change the first two wavelet coefficients which
can be done again in in O(1) time. In all these cases, we only need to do soft-thresholding to the
newly updated coefficients. At the base case, when the pivot is just 2, then the computation can
be in O(1) time. Thus within a pivot p, the number of computations required is O(p log(p)) which
translates to O(k(m) log(k(m))) computations within the mth bin. Summing across all the bins yields
a runtime complexity of O(n log(n)).

H Regret of AOMD

In this section we prove that for any predictable sequence {Mt}nt=1, the AOMD algorithm has a
dynamic regret of Õ(

√
n) when applied to our problem. As discussed in Section 2, consider loss

functions ft(x) = (x− yt)2 and comparator sequence {ut}nt=1. First let’s consider a deterministic
noise setting [Donoho, 1995]:

yt = θt + δ σ
√

20 log(n),
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where |δ|≤ 1 is chosen by a clever adversary. Let’s proceed to get a bound on the quantity Dn. The
gradient of our loss function is 2(x− yt). So after observing the values of xt and Mt, an adversary
can pick a suitable δ such that each term of Dn

Dn =

n∑

t=1

‖∇ft(xt)−Mt‖2∗.

can be made O(1). This gives an O(n) bound for Dn.

We can show that Vn is O(n) if we assume that X is compact and all of the yt is bounded. Bounded-
ness of yt follows from the assumptions (A3) and (A4). By appealing to assumption (A3) we see
that

Cn(u1, u2, ..., un) =

n∑

t=1

‖ut − ut−1‖.

Cn(θ1, ..., θn) is O(1). Plugging this into the regret bound specified in Jadbabaie et al. [2015] bounds
the dynamic regret in our setting as Õ(

√
n).

We now relate this deterministic noise setting to the guassian setting where the observations are
produced according to yt = θt + Zt, where Zt is a zero mean sub gaussian with parameter σ2. As
described in proof of theorem 19, P (supi|Zi|≥ σ

√
20 log(n)) ≤ 2n−9. Hence by conditioning on

the event that supi|Zi|≤ σ
√

20 log(n), the regret bound of the deterministic noise setting applies to
gaussian setting with high probability.

I Lower bound proof

Proof of Proposition 6. First, a lower bound of Ω(n1/3C
2/3
n σ4/3) is given by [Donoho et al., 1998]

for the smoothing estimator x1:n that has more information than we do. The argument uses the fact
that the TV-ball is sandwiched between two Besov-bodies with identical minimax rate. To the best of
our knowledge, the dependence on Cn and σ is first made explicit in, e.g., [Birge and Massart, 2001].

By the fact that “the max is larger than the mean”, we have that for any prior distribution P ,

sup
θ1:n∈TV(Cn)

E

[
n∑

t=1

(xt − θt)2

]
≥ Eθ1:n∼P

[
E[

n∑

t=1

(xt − θt)2|θ1:n]

]
.

Take P such that

1. θ1 = U with probability 0.5 and −U otherwise.

2. θ2 = θ1 + Cn with probability 0.5 and θ1 − Cn otherwise.

3. θt = θ2 for t = 3, 4, ..., n.

Note that x1 does not observe anything yet, therefore x1 = 0 is the Bayes optimal decision rule.
This gives a trivial lower bound of E

[
(x1 − θ1)2

]
≥ U2. Now, let’s reveal θ1 to x2 an additional

information, then by the same argument, we have that E
[
(x2 − θ2)2

]
≥ C2

n.

Consider an alternative P when θ1 = ... = θn = θ. Let the noise be iid Gaussian with variance σ2.
In this case the problem reduces to a naive statistical estimation problem with θ ∈ [−U,U ]. For each
t which observes t− 1 iid samples from N (θ, σ2), then by Bickel et al. [1981], the minimax risk for
this problem is

inf
θ̂

sup
θ∈[−U,U ]

E(θ̂ − θ)2 =
σ2

t
− π2σ4

tU2
+ o(

σ4

tU2
).

Summing over t = 2, 3, ..., n, and apply the upper/lower bounds of the harmonic series, we have a
lower bound of

E

[
n∑

t=1

(xt − θt)2

]
≥ max{0, σ2 log(n+ 1)− π2σ4

U2
(1 + log(n))(1 + o(1))}.
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Take the condition that U > 2πσ and n > 3, the above expression can be further lower bounded by
0.5σ2 log(n). Note that this bound applies even if Cn = 0.

Finally, we can similarly apply the same argument to the case when θ1 = 0 and θ2 = ... = θn = θ
and where the constraint is that −Cn ≤ θ ≤ Cn. This gives us a lower bound of

E

[
n∑

t=2

(xt − θt)2

]
≥ max{0, σ2 log(n)− π2σ4

C2
n

(1 + log(n− 1))(1 + o(1))}.

If Cn > 2πσ and n > 3, we can again bound it below by 0.5σ2 log(n). In other word, we get the
σ2 log(n) lower bound provided that either Cn or U is greater than 2πσ.

The proof is complete by taking the average of lower bounds above. We can take c = 1/6.

I.1 Lower bound with extra boundedness constraint on ground truth

Suppose we assume |θi|≤ B, i = 1, . . . , n. Then we can adapt the proof presented above by
considering a prior P such that θi = εiB, i = 1, . . . ,min{n, 1+bCn/2Bc}. θi = θ1+bCn/2Bc,∀i >
min{n, 1+bCn/2Bc}. Here εi are independent random variables assuming value +1 with probability
0.5 and −1 with probability 0.5. Assume that we reveal to learner the probability law of observations
θi. Under this setting we can see that E

[∑n
t=1(xt − θt)2

]
≥ B2 + min{(n− 1)B2, BCn/2}.

Under the setting of yi = θi + εi for iid σ2 sub-gaussian εi, |θi|≤ B and i = 1, . . . , n,[Donoho
et al., 1990] establishes that minimax total squared error scales as nmin{B2, σ2}. This along
with previous discussions imply that in the bounded ground truth setting the minimax risk is
Ω̃
(

min{nB2, nσ2, n1/3C
2/3
n σ4/3}+B2 + min{nB2, BCn}+ σ2

)
.

I.2 Minimax regret using ARROWS for bounded ground truth

From (20) the regret of ARROWS TARROWS satisfy

TARROWS = Õ(n1/3C2/3
n σ4/3 + min{nB2, BCn}+ σ2).

Let T1 be the regret of an algorithm, say A1, that predicts p ∼ N(0, σ2) at time step 1 and zero for
remaining times. Then it can seen that

T1 = O(nB2 + σ2),

= O(nB2 + σ2 + min{nB2, BCn}).

Let T2 be the regret of an algorithm, say A2, that predicts yt−1 at time t. Then,

T2 = O(nσ2 + min{nB2, BCn}).

Now consider running exponentially weighted average forecaster [Cesa-Bianchi and Lugosi, 2006]
with three experts: ARROWS, A1 and A2. Since squared error is exponentially concave, by Proposi-
tion 3.1 of [Cesa-Bianchi and Lugosi, 2006] such a forecaster when run with η = 2 gives a regret T
that satisfy,

T = O (min{TARROWS, T1, T2}+ log 3) ,

= Õ
(

min{nB2, nσ2, n1/3C2/3
n σ4/3}+B2 + min{nB2, BCn}+ σ2 + log 3

)
.

Thus we acheive the optimal cumulative squared error upto a small additive term of log 3. If we look
at the per round regret this additive term contributes to a small O(1/n) quantity.

I.3 Connections to other lower bounds in literature

[Besbes et al., 2015] derived a lower bound of O(n1/2V
1/2
n ) by packing a sequence of quadratic

loss functions. Note that this is larger than the upper bound that we attain with quadratic losses.
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Though this observation seems confusing, a careful study reveals that there is no contradiction.
For constructing the lowerbound, [Besbes et al., 2015] used a variational budget Vn as , Vn =∑n
t=2 supx∈conv(θ1,...θn)|ft(x)−ft−1(x)|= ∑n

t=2 supx∈[θmin,θmax]|(x−θt)2−(x−θt−1)2|, where
conv(.) denotes the convex hull of a sequence of points. This is different from the variational budget
they use in section 2 of their paper and is also different from Cn that we use for the TV class.
When applied to our setting this Vn is no longer proportional to our Cn, instead, it is proportional to
(θmax − θmin)Cn.

The packing set constructed through the functions defined in equation (A-12) of [Besbes et al., 2015]
obeys (θmax − θmin) = 1

2V
1/4
n n−1/4. So we have Cn = Vn

V
1/4
n n−1/4

= V
3/4
n n1/4, where we have

subsumed proportionality constants. Thus we see that Vn =
C4/3
n

n1/3 . Putting this into their lowerbound
recovers exactly our n1/3C2/3 bound.

The additional C2
n term that appears in our upper bound is required for any methods that do online

forecasting of sequences in the TV class. The reason why OGD appears to not require C2
n according

to [Besbes et al., 2015] is because they require the θt to be bounded for all t, while we only require
θ1 to be bounded by U (see Theorem 11).

The lowerbound discussed in [Yang et al., 2016] considers a more general setting of smooth non-
strongly convex sequence of loss functions. Such a lowerbound will not apply in our more restrictive
setting.

J Optimality of linear forecasters in Discrete Sobolev class

In this section we first establish that just like ARROWS, linear strategies such as OGD and MA
are also optimal forecasters for sequences in Discrete Sobolev class. Then we substantiate it using
experiments.

Theorem 24. Let the feedback be yt = θt + Zt where Zt is an independent, σ-subgaussian random
variable. Let θ1:n ∈ S(C ′n). Restarting OGD with batch size of σ

2/3(n logn)1/3

[C′n]2/3
achieves an expected

dynamic regret of Õ(U2 + [C ′n]2 + n2/3[C ′n]2/3σ4/3).

Proof. We stick to the same notations as in Appendix C. Let’s start the analysis from (2). Let
t′ = t− t(i)h .

(θt − θ̄t(i)h :t−1
)2 ≤

(∑t−1

i=t
(i)
h

(θt − θi)
)2

[t′]2
,

≤ t′

[t′]2

t−1∑

i=t
(i)
h

(θt − θi)2,

<∼ L[C ′i]
2.

Hence summing across all points yields,

Ri <∼ L
2[C ′i]

2 + σ2 logL.

So the total expected regret becomes,

dn/Le∑

i=1

Ri <∼ L
2[C ′n]2 +

n

L
σ2 logL.

By choosing L = σ2/3(n logn)1/3

[C′n]2/3
we get the theorem. The additive term [C ′n]2 arises similarly as in

proof of Theorem 11

The optimality of Moving Averages can be proved similarly.
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Remark 25. Thus from Theorems 3, 9, 11, 24 we see that ARROWS is minimax over both the
classes TV (Cn) and S(Cn/

√
n) while linear forecasters such as OGD and MA require different

tuning parameters to perform optimally in each class.

Next, we give numerical experiments substantiating the claims.

Experimental results: Here we consider a doppler function f(t) = sin
(

2π(1+ε)
t/n+0.01

)
with n
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Figure 6: Regret plot for policies calibrated according to Sobolev radius for a Doppler function

being the time horizon. For this function C ′n = ‖Dθ‖2= O(Cn/
√
n) when n is sufficiently large

and ‖Dθ‖2= O(Cn) for small n for a TV bound Cn = O(1). Thus for sufficiently large n, this
sequence belong to a small Sobolev ball with radius O(1/

√
n) while the TV class that encloses that

Sobolev ball as per Theorem 22 has radius O(1).

We observe noisy data yi = f(i/n)+zi, i = 1, ..., n and zi are iid normal variables with σ = 1.Figure
6 plots the regret averaged across 5 runs in a log log scale. The necessary input calibration was made
as per Remark 23 while running ARROWS. We can see that in this case all the algorithms perform in
an optimal manner.

Specifically we identify two regimes one for small n and other for larger n. When n is large, we
obtain the minimax regret rate Õ(n1/3) due to small C ′n which can be considered as O(1/

√
n).

Numerically for n > 105, C ′n is less than 0.1% of Cn. For smaller values of n where C ′n can be
not too small, we attain a regret in accordance with the Õ(n2/3) minimax rate. Numerically when
n < 104, C ′n is atleast 8.5% of Cn which can be considered as O(Cn) = O(1).
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