
1 Supplementary material

Proof of Proposition 1. Let w =
∑

i wivi/v̄. Then it trivially satisfies
∑

i wivi = v̄w. Let
wmin = mini wi and wmax = maxi wi. We need to show that nwmin ≤ w ≤ nwmax. Note that
w =

∑
i wivi/v̄ ≥

∑
i wminvi/v̄ = wmin

∑
i vi/v̄ = wminnv̄/v̄ = nwmin. Similarly, we can show

that w =
∑

i wivi/v̄ ≤ nwmax. The following proposition captures the relation between a layer of
the concrete system and its left abstraction.

Proof of Proposition 2. Let (v1, v2) ∈ [|T |]i. Let S0 and S1 be the left and right layers of labs(T , j,
P ), respectively. From the definition of the semantic of INN given by Definition 3, we know that
for any s′ ∈ S1, v2(s′) = σ(

∑
s∈S0

ws,s′v1(s) + bs′), where for every s, W l
0(s, s′) ≤ ws,s′ ≤

Wu
0 (s, s′), bl1(s′) ≤ bs′ ≤ bu1 (s′). We can group together all neurons that are merged together in

P , and rewrite the above as v2(s′) = σ(
∑

ŝ∈P
∑

s∈ŝ ws,s′v1(s) + bs′). From Proposition 1, we can
replace

∑
s∈ŝ ws,s′v1(s) by vŝwŝ, where vŝ =

∑
s∈ŝ v1(s)/|ŝ| andwŝ is such that |ŝ|mins∈ŝ ws,s′ ≤

wŝ ≤ |ŝ|maxs∈ŝ ws,s′ . Consider a valuation v̂1, where v̂1(ŝ) = vŝ =
∑

s∈ŝ v1(s)/|ŝ|. Since, the
average is in between the minimum and maximum values, v̂1 ∈ AV(v1). Now v2 can be rewritten
using v̂1 as v2(s′) = σ(

∑
ŝ∈P vŝwŝ + bs′) = σ(

∑
ŝ∈P v̂1(ŝ)wŝ + bs′), where |ŝ|mins∈ŝ ws,s′ ≤

wŝ ≤ |ŝ|maxs∈ŝ ws,s′ . Since ws,s′ also satisfies |ŝ|mins∈ŝW
l
0(s, s′) ≤ wŝ ≤ |ŝ|maxs∈ŝ W

u
0 (s, s′),

we see that v2 ∈ Postlabs(T ,j,P )(AV(v1)) (since, v2 and v̂1 satisfy the semantics of labs(T , j, P )).

Proof of Proposition 3. Consider v̂2 ∈ AV(v2). Then v̂2(ŝ′) = αv2(s′1) + (1− α)v2(s′2), where
s′1 is the node in ŝ′ for which v2 at the node is the minimum and s′2 is the node in ŝ′ for which
v2 at the node is the maximum. Let S0 and S1 be the nodes in the left and right layers of T .
v2(s′i) = σ(

∑
s∈S0

ws,s′i
v1(s) + bs′i), where for every s, W l

0(s, s′i) ≤ ws,s′i
≤Wu

0 (s, s′i), b
l
1(s′i) ≤

bs′i ≤ bu1 (s′i). v̂2(ŝ′) = αv2(s′1) + (1 − α)v2(s′2) = ασ(
∑

s∈S0
ws,s′1

v1(s) + bs′1) + (1 −
α)σ(

∑
s∈S0

ws,s′2
v1(s) + bs′2). Let us first consider the case where the expressions within σ are

non-negative. Then v̂2(ŝ′) = α(
∑

s∈S0
ws,s′1

v1(s) + bs′1) + (1 − α)(
∑

s∈S0
ws,s′2

v1(s) + bs′2) =∑
s∈S0

(αws,s′1
+(1−α)ws,s′2

)v1(s)+(αbs′1 +(1−α)bs′2) =
∑

s∈S0
ws,s′1,s

′
2
v1(s)+bs′1,s′2), where

ws,s′1,s
′
2

= (αws,s′1
+ (1− α)ws,s′2

) and bs′1,s′2 = αbs′1 + (1− α)bs′2 . Note that ws,s′1,s
′
2

and bs′1,s′2
are in the edge weights and biases of the abstract system. If

∑
s∈S0

ws,s′2
v1(s) + bs′2 is negative,

then v2(s′2) = v2(s′1) = 0, hence, v̂2(ŝ′) = 0 can be simulated using either the values used to obtain
v2(s′1) or v2(s′2). If v2(s′1) = 0, but v2(s′2) > 0, then we note that

∑
s∈S0

ws,s′1
v1(s) + bs′1) ≤ 0

and (
∑

s∈S0
ws,s′2

v1(s) + bs′2) > 0, any linear combination of the two can still be obtained using v1,
and (1− α)(

∑
s∈S0

ws,s′2
v1(s) + bs′2) is between the two values and can be obtained from v1, and

further, applying σ would give us v2(s′2).

Proof of Lemma 1. Suppose (v, v′) ∈ [|T |]i. Then from Proposition 2, we have
v′ ∈ Postlabs(T ,i,Pi+1)(AV(v)), and further, from Proposition 3, we have AV(v′) ⊆
Postrabs(labs(T ,i,Pi+1),Pi)(AV(v)). Finally, from Lemma 2, we obtain that AV(v′) ⊆ PostT/P,i(AV(v)).

Proof of Theorem 1. Suppose (v, v′) ∈ [|T |], then there exists a sequence of valuations
v0, v1, · · · , vk, where v0 = v′ and vi ∈ PostT ,i(vi−1) for i > 0. From Lemma 1, we know
that since (vi, vi+1) ∈ [|T |]i, AV(vi+1) ⊆ PostT/P,i(AV(vi)). Since, [|T |] is the composition of
[|T |]i, we obtain that AV(vk) ⊆ PostT/P (AV(v0)). If the nodes in the input and output layer are not
merged, then, AV(v0) = {v0} = {v} and AV(vk) = {vk} = {v′}. Therefore, (v, v′) ∈ [|T |].

Proof of Theorem 2. First, let us prove that if (v, v′) ∈ [|T |]i, then there is a valuation z ∈ Val(Qi),
such that Enc(T, i) is satisfied with values v, v′ and z. In fact, it suffices to fix an s′ and show that
Ci+1

s′ is satisfied by v, v′(s′) and z(qs′). First, note that v′(s′) ≥ 0 since it is obtained by applying
the ReLU function, so the second constraint in Ci+1

s′ is satisfied. From the semantics, we know
that v′(s′) = σ(

∑
s∈Si

ws,s′v(s) + bs′), where W l
i (s, s′) ≤ ws,s′ ≤ Wu

i (s, s′) and bli(s
′) ≤ bs′ ≤

bui (s′). Hence, σ(
∑

s∈Si
W l

i (s, s′)v(s) + bli(s
′)) ≤ v′(s′) ≤ σ(

∑
s∈Si

Wu
i (s, s′)v(s) + bui (s′)).

Let v′′(s′) =
∑

s∈Si
ws,s′v(s) + bs′ , that is, v′(s′) = σ(v′′(s′)).

1



Case v′′(s′) ≥ 0: v′(s′) = v′′(s′) and we have
∑

s∈Si
W l

i (s, s′)v(s) + bli(s
′) ≤ v′(s′) ≤∑

s∈Si
Wu

i (s, s′)v(s) + bui (s′). Hence, for z(qs′) = 0, the first, third and fourth constraints in
Ci+1

s′ are satisfied.

Case v′′(s′) < 0: In this case, v′(s′) = 0 and we set z(qs′) = 1.
∑

s∈Si
W l

i (s, s′)v(s) +

bli(s
′) ≤

∑
s∈Si

ws,s′v(s) + bs′ = v′′(s′) < 0 = v′(s′), so the first constraint is satisfied.∑
s∈Si

Wu
i (s, s′)v(s) + bui (s′) + Mqs′ =

∑
s∈Si

Wu
i (s, s′)v(s) + bui (s′) + M . Since, M is an

upperbound on the absolute value of xs′ before applying the ReLU operation,
∑

s∈Si
Wu

i (s, s′)v(s)+

bui (s′) +M is positive, and hence, satisfies the third constraint. The fourth constraint is satisfied by
the choice of M , that is, M ≥ xs′ .
Next, we prove the other direction. Suppose Ci+1

s′ is satisfied for every s′ by some v, v′, z, then we
show that (v, v′) ∈ [|T |]i.

Case z(qs′) = 0: In this case, we have
∑

s∈Si
W l

i (s, s′)xs + bli(s
′) ≤ xs′ ≤

∑
s∈Si

Wu
i (s, s′)xs +

bui (s′). Since, ReLU is a monotonic function and xs′ > 0 by the second constraint, we have σ(xs′) =
xs′ and hence, σ(

∑
s∈Si

W l
i (s, s′)xs + bli(s

′)) ≤ xs′ ≤ σ(
∑

s∈Si
Wu

i (s, s′)xs + bui (s′)). Hence,
xs′ = σ(

∑
s∈Si

ws,s′xs + bs′) for some W l
i (s, s′) ≤ ws,s′ ≤ Wu

i (s, s′) and bli(s
′) ≤ bs′ ≤ bui (s′).

Hence, v′(s′) is obtained from v using the definition of [|T |]i.

Case z(qs′) = 1: In this case, xs′ = 0 and
∑

s∈Si
W l

i (s, s′)xs + bli(s
′) ≤ xs′ = 0. Therefore

σ(
∑

s∈Si
W l

i (s, s′)xs + bli(s
′)) = 0 = xs′ , therefore v′(s′) is obtained from v using the definition

of [|T |]i.
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