
A Appendix

A.1 Algorithm for Simulating Hybrid System with Stochastic Events

Algorithm 1: Dynamics simulation for hybrid system
Input : model parameter θ, start time t0, end time tN , initial state z(t0)
Output : event sequenceH
initialize t = t0, j = 0, H = {}, z = z(t0)
while t < tN do

dt = AdpativeForwardStepSize(z, t, θ) . from ODE solver
(τj ,kj) = SimulateNextEvent(z, t, θ) . sample exponential distribution
if τj > t+ dt then

z = StepForward(z, dt, θ) . 1st term in Eq. (11)
else
H = H ∪ {(τj ,kj)} . record event
j = j + 1
dt = τj − t . shrink step size
z = StepForward(z, dt, θ)
z = JumpForward(z, (τj ,kj), θ) . 2nd term in Eq. (11)

end
t = t+ dt

end

Note that when an event i happens within the step size dt proposed by the ODE solver, dt needs to
shrink so that t+ dt is no larger than τi.

A.2 Adjoint Sensitivity Analysis at Discontinuities

When the jth event happens at timestamp τj , the left and right limits of latent variables are related by,

z(τ+j ) = z(τj) + w(z(τj),kj , τj ; θ) (15)

where all the time dependent variables are left continuous in time. According to Remark 2 from [45],
the left and right limits of adjoint sensitivity variables at a discontinuity satisfy

a(τj) = a(τ+j )

(
∂z(τ+j )

∂z(τj)

)
. (16)

Substituting Eq. (15) in Eq. (16) gives,

a(τj) = a(τ+j )

(
I +

∂w(z(τj),kj , τj ; θ)

∂z(τj)

)
= a(τ+j ) + a(τ+j )

∂ [w(z(τj),kj , τj ; θ)]

∂z(τj)
. (17)

Moreover, Eq. (16) can be generalized to obtain the jump of aθ and at at the discontinuities. In the
work of Chen et al. [7], the authors define an augmented latent variables and its dynamics as,

zaug(t) =

[
z
θ
t

]
(t),

dzaug(t)

dt
= faug(z, t; θ) =

[
f(z, t; θ)

0
1

]
, aaug(t) = [a aθ at] (t).

(18)

Following the same convention, we define the augmented jump function at τj as,

waug(z(τj),kj , τj ; θ) =

[
w(z(τj),kj , τj ; θ)

0
0

]
. (19)
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We can verify that the left and right limits of the augmented latent variables satisfy

zaug(τ+j ) =

z(τj)

θ
τj

+

w(z(τj),kj , τj ; θ)

0
0

 = zaug(τj) + waug(z(τj),kj , τj ; θ). (20)

The augmented dynamics is only a special case of the general Neural ODE framework, and the jump
of adjoint variables can be calculated as

aaug(τj) = aaug(τ+j )

(
∂zaug(τ+j )

∂zaug(τj)

)
= [a aθ at] (τ+j )

I + ∂w
∂z(τj)

∂w
∂θ

∂w
∂τj

0 I 0
0 0 1

 , (21)

which is equivalent to Eq. (13).

A.3 Algorithm for Adjoint Method with Discontinuities

Algorithm 2: Algorithm for computing the loss function and its derivatives
Input : model parameter θ, start time t0, end time tN , initial state z(t0), event sequenceH
Output : loss function L and derivatives dL

/
dz(t0) = a(t0), dL

/
dθ = aθ(t0),

dL
/
dt0 = at(t0)

initialize t = t0, z = z(t0)
while t < tN do

dt = AdpativeForwardStepSize(z, t, θ) . from ODE solver
(τj ,kj) = GetNextEvent(H, t) . find next event in sequence
if τj > t+ dt then

z = StepForward(z, dt, θ) . 1st term in Eq. (11)
else

dt = τj − t . shrink step size
z = StepForward(z, dt, θ)
z = JumpForward(z, (τj ,kj), θ) . 2nd term in Eq. (11)

end
t = t+ dt

end
L = L ({z(ti)}, {z(τj)}; θ) . compute loss function

initialize t = tN , a = ∂L
/
∂z(tN ), aθ = 0, at = a · f(z(tN ), tN ; θ), z = z(tN )

while t > t0 do
dt = AdpativeBackwardStepSize(z,a,aθ,at, t, θ) . from ODE solver
(τj ,kj) = GetPreviousEvent(H, t) . find previous event in sequence
if τj < t− dt then

z,a,aθ,at = StepBackward(z,a,aθ,at, dt, θ) . 1st term in Eq. (11), Eq. (9)
else

dt = t− τj . shrink step size
z,a,aθ,at = StepBackward(z,a,aθ,at, dt, θ)
z,a,aθ,at = JumpBackward(z,a,aθ,at, (τj ,kj), θ) . 2nd term in Eq. (11), Eq. (13)

end
t = t+ dt

end
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