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A Pseudocode for Model-Free Nested-Gradient Algorithms

In this section, we provide the pseudocode of the model-free nested-gradient algorithms, which are
built upon the nested-gradient updates proposed in §4.

First, as essential elements in the nested-gradient, the gradient ∇KC(K,L) and the correlation ma-
trix ΣK,L for givenK,L can be estimated via samples. The estimates are obtained from the function
Est(K;L), which is tabulated in Algorithm 1. The estimate of∇KC(K,L), denoted by ̂∇KC(K,L),
is obtained via zeroth-order optimization algorithms, where the perturbation Ui is drawn from a ball
with fixed radius.

Given Algorithm 1, we then summarize the model-free updates for solving the inner-loop minimiza-
tion problem, i.e., finding K(L) as a subroutine Inner-NG(L) in Algorithm 2. Note that among
updates (4.3)-(4.5), only the policy gradient and the natural PG updates can be converted to model-
free versions.

After a finite number T of inner-loop updates in Algorithm 2, the approximate stationary point
solutionKT is then substituted into the outer-loop nested-gradient update, as shown in Algorithm 3.
Note that the example uses projected NG update only, since the corresponding projection operator
PGDΩ [·], see definition in (4.10), does not rely on the iterate Lt at each iteration t. Then after a finite
number T of projected NG iterates, the algorithm outputs the solution pair

(
K̂(LT ), LT

)
.

Algorithm 1 Est(K;L): Estimating ̂∇KC(K,L) and Σ̂K,L at K for given L

1: Input: K,L, number of trajectories m, rollout length R, smooth parameter r, dimension d̃ =
m1d

2: for i = 1, · · ·m do
3: Sample a policy K̂i = K + Ui, where Ui is drawn uniformly at random over matrices with

‖Ui‖F = r

4: Simulate (K̂i, L) for R steps starting from x0 ∼ D, and collect the empirical estimates Ĉi
and Σ̂i as:

Ĉi =
R∑
t=1

ct , Σ̂i =
R∑
t=1

xtx
>
t

where ct and xt are the costs and states following this trajectory
5: end for
6: Return the estimates:

̂∇KC(K,L) =
1

m

m∑
i=1

d̃

r2
ĈiUi , Σ̂K,L =

1

m

m∑
i=1

Σ̂i.
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Algorithm 2 Inner-NG(L): Model-Free Updates For Finding K(L)

1: Input: L, number of iterations T , initialization K0 such that (K0, L) is stable
2: for τ = 0, · · · , T − 1 do
3: Call Est(Kτ ;L) to obtain the gradient and the correlation matrix estimates:

[ ̂∇KC(Kτ , L), Σ̂Kτ ,L] = Est(Kτ ;L)

4: Either PG update: Kτ+1 = Kτ − α ̂∇KC(Kτ , L),

or natural PG update: Kτ+1 = Kτ − α ̂∇KC(Kτ , L) · Σ̂−1
Kτ ,L

.
5: end for
6: Return the iterate KT

Algorithm 3 Outer-NG: Model-Free Nested-Gradient Algorithms
1: Input: L0, number of trajectories m, number of iterations T , rollout length R, parameter r,

dimension d̃ = m2d
2: for t = 0, · · · , T − 1 do
3: for i = 1, · · ·m do
4: Sample a policy L̂i = Lt + Vi, where Vi is drawn uniformly at random over matrices with

‖Vi‖F = r

5: Call Inner-NG(L̂i) to obtain the estimate of K(L̂i):

K̂(L̂i) = Inner-NG(L̂i)

6: Simulate (K̂(L̂i), L̂i) forR steps starting from x0 ∼ D, and collect the empirical estimates
Ĉi and Σ̂i as:

Ĉi =

R∑
t=1

ct , Σ̂i =

R∑
t=1

xtx
>
t

where ct and xt are the costs and states following this trajectory
7: end for
8: Obtain the estimates of the gradient and the correlation matrix:

̂∇LC̃(Lt) =
1

m

m∑
i=1

d̃

r2
ĈiVi , Σ̂

K̂(Lt),Lt
=

1

m

m∑
i=1

Σ̂i

9: Either projected NG update: Lt+1 = PGDΩ

[
Lt + η

̂∇LC̃(Lt)
]
,

or projected natural NG update: Lt+1 = PNGΩ

[
Lt + η

̂∇LC̃(Lt)Σ̂−1

K̂(Lt),Lt

]
.

10: end for
11: Return the iterate LT .
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B Proofs of Main Results

In this section, we provide proofs for the main results on the convergence of the nested-gradient
algorithms stated in §5.

Notation. For any vector x ∈ Rn and matrix Y ∈ Rm×n, we use ‖x‖, ‖Y ‖, and ‖Y ‖F to denote
the Euclidean norm of x, the induced 2-norm, and the Frobenius norm of Y , respectively. We use
vec(Y ) ∈ Rmn to denote the vectorization of the matrix Y . For any symmetric matrix M ∈ Rn×n,
we use M ≥ 0 and M > 0 to denote the nonnegative-definiteness and positive definiteness of M ,
respectively. For any set S, we use Sc to denote the complement set of S. For any square matrix
A, we use ρ(A) to denote its spectral radius, i.e., the largest absolute value of its eigenvalues, of
matrix A. For any matrix M ∈ Rm×n, we use σmin(M) and σmax(M) to denote its smallest and
largest singular values, respectively. For any real symmetric matrix M ∈ Rn×n, we use λmin(M)
and λmax(M) to denote its smallest and largest eigenvalues, respectively. We use ⊗ to denote the
Kronecker product. For any positive integer m, we use [m] to denote the set of integers {1, · · · ,m}.
We use 0m×n to denote the all-zero matrix with dimensionm×n, and I to denote the identity matrix
with proper dimensions.

For notational convenience, we (re-)define the following functions

value: VK,L(x) = x>PK,Lx,

action-value: QK,L(x, u, v) = x>Qx+ u>Ruu− v>Rvv + VK,L(Ax+Bu+ Cv),

advantage: AK,L(x, u, v) = QK,L(x, u, v)− VK,L(x).

Also, we define

EK,L = (Ru +B>PK,LB)K −B>PK,L(A− CL), (B.1)

FK,L = (−Rv + C>PK,LC)L− C>PK,L(A−BK), (B.2)

µ = σmin

(
Ex0∼Dx0x

>
0

)
, ν = σmin

(
WL∗

)
, (B.3)

where we recall the definitions of PK,L and WL in (3.2) and (4.14), respectively. To simplify the
notation, we denote ζK(L),L by ζ∗L, for any notation ζK,L, e.g., VK,L, QK,L, AK,L, PK,L, etc.

B.1 Auxiliary Lemmas

To proceed with the analysis, we first establish several lemmas that are useful in the ensuing analysis
in general. The first lemma links the value function VK,L and the advantage function AK,L, when
varying K and L, which plays a similar role as Lemma 7 in [25].
Lemma B.1 (Cost Difference Lemma). Suppose both (K,L) and (K ′, L′) are stabilizing. Let
{x′t}t≥0 and {(u′t, v′t)}t≥0 be the sequences of state and action pairs generated by (K ′, L′), i.e.,
starting from x′0 = x and satisfying u′t = −K ′x′t, v′t = −L′x′t. Then, it follows that

VK′,L′(x)− VK,L(x) =
∑
t≥0

AK,L(x′t, u
′
t, v
′
t). (B.4)

Moreover, we have

AK,L(x,−K ′x,−L′x) =2x>(K ′ −K)>EK,Lx+ x>(K ′ −K)>(Ru +B>PK,LB)(K ′ −K)x

+ 2x>(L′ − L)>FK,Lx+ x>(L′ − L)>(−Rv + C>PK,LC)(L′ − L)x

+ 2x>(L′ − L)>C>PK,LB(K ′ −K)x. (B.5)

Proof. Let the sequence of costs generated under (K ′, L′) be denoted by c′t. Then

VK′,L′(x)− VK,L(x) =
∑
t≥0

c′t − VK,L(x) =
∑
t≥0

[
c′t + VK,L(x′t)− VK,L(x′t)

]
− VK,L(x)

=
∑
t≥0

[
c′t + VK,L(x′t+1)− VK,L(x′t)

]
=
∑
t≥0

AK,L(x′t, u
′
t, v
′
t).

Thus, we establish the first argument.
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Moreover, for the second claim, let u = −K ′x and v = −L′x. Then
AK,L(x, u, v) = QK,L(x, u, v)− VK,L(x)

= x>
[
Q+ (K′)>RuK′ − (L′)>RvL′

]
x+ x>(A−BK′ − CL′)>PK,L(A−BK′ − CL′)x− VK,L(x)

= 2x>(K′ −K)>
[
(Ru +B>PK,LB)K −B>PK,L(A− CL)

]
x+ x>(K′ −K)>(Ru +B>PK,LB)

· (K′ −K)x+ 2x>(L′ − L)>
[
(−Rv + C>PK,LC)L− C>PK,L(A−BK)

]
x

+ 2x>(L′ − L)>C>PK,LB(K′ −K)x+ x>(L′ − L)>(−Rv + C>PK,LC)(L′ − L)x

= 2x>(K′ −K)>EK,Lx+ x>(K′ −K)>(Ru +B>PK,LB)(K′ −K)x+ 2x>(L′ − L)>FK,Lx

+ x>(L′ − L)>(−Rv + C>PK,LC)(L′ − L)x+ 2x>(L′ − L)>C>PK,LB(K′ −K)x,

which completes the proof.

For any L ∈ Ω, recall that P ∗L is the solution to the inner-loop Riccati equation (4.2), and K(L) is
the stationary point solution defined in (4.1). We have the following properties of P ∗L and K(L).
Lemma B.2 (Optimality of K(L) and Boundedness of P ∗L). Suppose ΣK,L is full-rank for any K
and L. Recall the definition of the set Ω in (3.4). Then under Assumption 2.1, for any L ∈ Ω, the
inner-loop Riccati equation (4.2) always admits a solution P ∗L > 0, and the control pair (K(L), L) is
stabilizing. Moreover, for any x ∈ Rd, V ∗L (x) ≤ VK̃,L(x) for any K̃ ∈ Rm1×d. Taking expectation

on both sides further yields that C(K(L), L) ≤ C(K̃, L). In addition, P ∗L is bounded and satisfies
Q− L>RvL ≤ P ∗L ≤ P ∗, which implies that C(K(L), L) ≤ C(K∗, L∗).

Proof. Since Q̃L = Q − L>RvL > 0, it follows that (ÃL, Q̃L) is observable. Moreover, Lemma
2.2 shows the existence of the saddle-point (K∗, L∗), implying that for any L ∈ Ω and any x0 ∈ Rd

VK∗,L(x0) ≤ VK∗,L∗(x0) <∞, (B.6)

which further implies that 0 ≤ PK∗,L ≤ PK∗,L∗ . Thus, for the inner LQR problem with any L ∈ Ω,
there always exists a stabilizing control K∗, i.e., (ÃL, B) is always stabilizable [57]. Hence, by
Proposition 4.4.1 in [58], the inner-loop Riccati equation (4.2) always admits a solution P ∗L > 0,
and the control pair (K(L), L) is stabilizing. Moreover, K(L) yields the optimal cost, i.e.,

VK(L),L(x0) ≤ VK̃,L(x0), (B.7)

for any K. Taking expectation over (B.7) on x0 ∼ D yields C(K(L), L) ≤ C(K̃, L).

Furthermore, combining (B.6) and (B.7) yields

VK(L),L(x0) ≤ VK∗,L(x0) ≤ VK∗,L∗(x0), (B.8)

for any x0. As a result, we have P ∗L ≤ P ∗. Taking expectation over (B.8) further gives
C(K(L), L) ≤ C(K∗, L∗). Also, since P ∗L is a solution to Lyapunov equation

P ∗L = Q̃L +K>RuK + [ÃL −BK(L)]>P ∗L[ÃL −BK(L)],

it holds that P ∗L ≥ QL, which completes the proof.

Moreover, we also need the following lemma that characterizes the property of the projection op-
erator in the projected NG updates (4.9), (4.12), and (4.15). Proof of the lemma is provided in
§C.6.
Lemma B.3. For any L1, L2 ∈ Rm2×d, the projection operators defined in (4.10), (4.13), and (4.16)
at iterate L have the following properties:

Tr
[(
L1 − L2

)
Σ∗L
(
PGN

Ω [L1]− PGN
Ω [L2]

)>
WL

]
≥ Tr

[(
PGN

Ω [L1]− PGN
Ω [L2]

)
Σ∗L
(
PGN

Ω [L1]− PGN
Ω [L2]

)>
WL

]
,

Tr
[(
L1 − L2

)
Σ∗L
(
PNG

Ω [L1]− PNG
Ω [L2]

)>] ≥ Tr
[(
PNG

Ω [L1]− PNG
Ω [L2]

)
Σ∗L
(
PNG

Ω [L1]− PNG
Ω [L2]

)>]
,

Tr
[(
L1 − L2

)(
PGD

Ω [L1]− PGD
Ω [L2]

)>] ≥ Tr
[(
PGD

Ω [L1]− PGD
Ω [L2]

)(
PGD

Ω [L1]− PGD
Ω [L2]

)>]
.

Another important result used later is the continuity of P ∗L w.r.t. L, for any L ∈ Ω, whose proof is
deferred to §C.7.
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Lemma B.4. For any L ∈ Ω, let P ∗L > 0 be the solution to the inner-loop Riccati equation (4.2).
Then P ∗L is a continuous function w.r.t L.

Similarly, we also establish the following lemma on the continuity of the correlation matrix ΣK,L
and PK,L w.r.t. K and L, respectively.
Lemma B.5. For any stabilizing control pair (K,L), the correlation matrix ΣK,L, and the solution
PK,L to Lyapunov equation (3.2) are both continuous w.r.t. K and L.

Proof. For stabilizing (K,L), ΣK,L is the unique solution to the following Lyapunov equation

(A−BK − CL)ΣK,L(A−BK − CL)> + Σ0 = ΣK,L, (B.9)

where we denote Ex0∼Dx0x
>
0 > 0 by Σ0. By vectorizing both sides, we can rewrite (B.9) as

Ψ
(
vec(ΣK,L),K, L

)
= vec(ΣK,L),

where the operator Ψ : Rd2 × Rm1×d × Rm2×d → Rd2 is defined as
Ψ
(
vec(ΣK,L),K, L

)
:=
[
(A−BK − CL)⊗ (A−BK − CL)

]
· vec(ΣK,L) + vec(Σ0).

Notice that
∂
[
Ψ
(
vec(ΣK,L),K, L

)
− vec(ΣK,L)

]
∂vec>(ΣK,L)

=
[
(A−BK − CL)⊗ (A−BK − CL)

]
− I,

which is invertible for stabilizing (K,L), since the eigenvalues of
[
(A − BK − CL) ⊗ (A −

BK − CL)
]

have absolute values smaller than one. Hence, by the implicit function theorem [59],
vec(ΣK,L) is continuously differentiable, and also continuous, w.r.t. K and L, which completes the
proof. The proof for PK,L is almost identical, which is omitted here for brevity.

In addition, recalling the definition of Ω in (4.11), we have Ω ⊂ Ω. Hence, by Lemma B.2, for
any L ∈ Ω, P ∗L exists and (K(L), L) is stabilizing. Hence, Σ∗L also exists. We can then bound the
spectral norm of P ∗L and Σ∗L. Also, as P ∗L ≤ P ∗, we can also boundWL defined in (4.14) as follows.
Lemma B.6 (Bounds for ‖PK,L‖, ‖ΣK,L‖, and WL). Recalling the definition of Ω from (4.11) as

Ω :=
{
L ∈ Rm2×d |Q− L>RvL ≥ ζ · I

}
,

it follows that for any L ∈ Ω and any K that makes (K,L) stabilizing
‖PK,L‖ ≤ C(K,L)/µ, ‖ΣK,L‖ ≤ C(K,L)/ζ,

0 < Rv − C>P ∗C ≤WL∗ ≤WL ≤ Rv − C>
[
ξ−1 · I +B(Ru)−1B>

]−1
C ≤ Rv.

Proof. Since (K,L) is stabilizing, C(K,L) can be bounded as

C(K,L) = Ex0∼Dx
>
0 PK,Lx0 ≥ ‖PK,L‖σmin(Ex0x

>
0 ),

since PK,L ≥ P ∗L > 0 is positive definite by Lemma B.2. Moreover, C(K,L) can also be bounded
as

C(K,L) = Tr[ΣK,L(Q+K>RuK − L>RvL)] ≥ Tr(ΣK,L)σmin(Q− L>RvL)

≥ ‖ΣK,L‖σmin(Q− L>RvL) ≥ ‖ΣK,L‖ · ζ,
where the first inequality uses the fact that Q − L>RvL is positive definite, and the last inequality
is due to the definition of the set Ω.

In addition, by matrix inversion lemma, WL can be written as

WL = Rv + C>
[
− P ∗L + P ∗LB(Ru +B>P ∗LB)−1B>P ∗L

]
C

= Rv − C>
[
(P ∗L)−1 +B(Ru)−1B>

]−1
C.

Since Lemma B.2 shows that ξ · I ≤ P ∗L ≤ P ∗, we know that

0 < Rv − C>P ∗C ≤ Rv − C>
[
(P ∗)−1 +B(Ru)−1B>

]−1
C ≤WL

≤ Rv − C>
[
ξ−1 · I +B(Ru)−1B>

]−1
C ≤ Rv,

which completes the proof.

Next, we provide proofs for the convergence of the proposed algorithms.
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B.2 Proof of Proposition 5.1

We first prove the global convergence of the inner-loop updates in (4.3)-(4.5) for given L ∈ Ω. Note
that the proof roughly follows that of Theorem 7 in [25], but requires additional arguments on the
stability of the control pair (Kτ , L), where {Kτ}τ≥0 is generated by the updates in (4.3)-(4.5)1.
From Lemma B.2, we know that under Assumption 2.1, for any L ∈ Ω, the inner LQR problem
always has a solutionK(L). Thus, there always exists someK, namely, K(L), such that (K(L), L)
is stabilizing, which proves the first argument of Proposition 5.1.

Suppose the updates in (4.3)-(4.5) all start with such a stabilizing K. Thus we have

(ÃL −BK)>PK,L(ÃL −BK)− PK,L = −Q̃L −K>RuK. (B.10)

By Lemma B.2, PK,L ≥ P ∗L > 0. Hence, PK,L is always invertible, and (B.10) can be rewritten as

P
− 1

2

K,L(ÃL −BK)>P
1
2

K,LP
1
2

K,L(ÃL −BK)P
− 1

2

K,L = I − P−
1
2

K,L(Q̃L +K>RuK)P
− 1

2

K,L,

which gives that[
ρ(ÃL −BK)

]2
= 1− σmin

[
P
− 1

2

K,L(Q̃L +K>RuK)P
− 1

2

K,L

]
≤ 1− σmin

(
P
− 1

2

K,LQ̃LP
− 1

2

K,L

)
< 1,

(B.11)

where the equation is due to that P−
1
2

K,L(ÃL −BK)>P
1
2

K,L has identical spectrum as ÃL −BK, the
last inequality is due to that Q̃L > 0. Also noticing that

σmin(P
−1/2
K,L Q̃LP

−1/2
K,L ) = σmin(Q̃

1/2
L P−1

K,LQ̃
1/2
L ),

we can thus assert that, if PK′,L ≤ PK,L, we have

1− σmin(P
−1/2
K′,L Q̃LP

−1/2
K′,L ) ≤ 1− σmin(P

−1/2
K,L Q̃LP

−1/2
K,L ). (B.12)

Note that for all the inner updates in (4.3)-(4.5), as long as K 6= K(L), it holds that
‖∇KC(K,L)‖ > 0, i.e., there exists a constant εK > 0 such that ‖∇KC(K,L)‖ ≥ εK . More-
over, the gradient norm ‖∇KC(K,L)‖ must also be upper bounded, since K is stabilizing, and thus
both ‖K‖ and ‖PK‖ are bounded. Also note that both matrices (Ru + B>PK,LB)−1 and Σ−1

K,L

have upper and lower-bounds, since Ru + B>PK,LB ≥ Ru > 0 and ΣK,L ≥ Ex0∼Dx0x
>
0 > 0,

and PK,L is bounded. Therefore, at each K 6= K(L), there exist constants UpperK ,LowerK > 0
such that

α · LowerK ≤ ‖K ′ −K‖ ≤ α · UpperK ,

where K ′ is obtained from the one-step updates in of any of (4.3)-(4.5). We thus define a set Ω1
K ,

which depends on K, as

Ω1
K :=

{
K ′
∣∣ ‖K ′ −K‖ ≤ α · UpperK

}
,

which is compact. On the other hand, define Ω2
K , the lower-level set of K ′ as

Ω2
K :=

{
K ′
∣∣ ρ(ÃL −BK ′) ≤ [1− σmin(P

−1/2
K,L Q̃LP

−1/2
K,L )]1/2 < 1

}
,

which is closed by the continuity and lower-boundedness of ρ(ÃL − BK) w.r.t. K [60]. Hence,
the intersection ΩK = Ω1

K

⋂
Ω2
K is compact. Note that the intersection ΩK 6= ∅, since it at least

contains K. Also, the upper-level set that ensures ρ(ÃL − BK ′) ≥ 1 is closed. Thus, by Lemma
C.6, there exists a positive distance between the two disjoint sets. Denote this distance by δK . Then
any K ′ such that ‖K ′ −K‖ ≤ δK is stabilizing.

Now we take the analysis for Gauss-Newton update (4.5) as an example. If α · UpperK ≤ δK for
any α ∈ [0, 1/2], i.e., the range of α in Lemma 14 of [25] that ensures the contraction of the cost,

1Note that the stability argument has been supplemented in the latest version of [25], during the time of
preparation of this paper. But still, we provide a different approach to show the stability for the Gauss-Newton
and natural nested-gradient updates, which may be of independent interest.
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then both K ′ and K are stabilizing. By further applying Lemma 10 in [25] and the form of (4.5),
we have that for any α ∈ [0, 1/2]

VK′,L(x)− VK,L(x) = (−4α+ 4α2) Tr

[∑
t≥0

(x′t)(x
′
t)
>E>K,L(Ru +B>PK,LB)−1EK,L

]

≤ −2αTr

[∑
t≥0

(x′t)(x
′
t)
>E>K,L(Ru +B>PK,LB)−1EK,L

]
≤ 0, (B.13)

where {x′t}t≥0 is the sequence of states generated by (K ′, L) with x′0 = x for any x ∈ Rd. Hence,
we show the monotonicity of PK′,L, i.e., PK′,L ≤ PK,L, after one-step update of (4.5).

If α · UpperK > δK for some α ∈ [0, 1/2], the one-step update (4.5) may go beyond the stabilizing
region with radius δK . However, we can show as follows that for all the α changing from 0 to
1/2, the updated K ′ remains to be stabilizing. First, there must exist some stepsize β ∈ (0, 1/2)
such that β · UpperK ≤ δK . Let the arrived control gain be K ′β . Then by the argument in the
previous paragraph, we know that PK′β ,L ≤ PK,L. Thus, any K ′ such that ‖K ′−K ′β‖ ≤ δK is also
stabilizing, including the control gain K ′′β updated from K using stepsize 2β. If 2β ≥ 1/2, then
simply choosing α ∈ [0, 1/2] ensures the stability of K ′; if 2β < 1/2, then K ′′β can also be shown
to lead to that PK′′β ,L ≤ PK,L using the argument in (B.13), which further implies that any K ′

such that ‖K ′−K ′′β‖ ≤ δK is also stabilizing. This enables the choice of stepsize 3β starting from
K. Repeating the argument concludes that any choice of α ∈ [0, 1/2] guarantees the stability of
the update. Thus, the linear convergence rate of Gauss-Newton update can be obtained by the proof
of Theorem 7 in [25]. In particular, along the iteration τ ≥ 0, the sequence {PKτ ,L}τ≥0 satisfies
PKτ ,L ≥ PKτ+1,L ≥ PK(L),L.

The proof for natural PG update is similar, except that the upper bound for the stepsize choice is
changed from 1/2 to 1/‖Ru + B>PK,LB‖ (see Lemma 15 in [25]), which can also be covered by
finite times of some β > 0.

For the stability proof of the gradient update, such an idea of using (B.11) and the monotonicity of
PK,L to upper bound the spectral radius ρ(ÃL − BK) does not apply, since only the monotonicity
of C(K,L) instead of PK,L can be shown. Hence, we follow the stability argument in [25] for the
gradient update; see Appendix §C.4 therein.

With the stability arguments verified as above, the last two arguments of the proposition on the
algorithm convergence then follow from Theorem 7 in [25], which completes the proof.

B.3 Proof of Theorem 5.2

We now prove the global convergence of the nested-gradient algorithms. First, since the projection
set Ω ⊆ Ω, we have from Lemma B.2 that the control pair sequence {K(Lt), Lt}t≥0 generated by
the projected updates are always stabilizing, namely, the stability argument holds regardless of the
choice of the stepsize η. Moreover, since Ω ⊆ Ω, the inner-loop updates in (4.3)-(4.5) converge to
K(Lt) with linear rate by Proposition 5.1.

To establish the global convergence result, we first need the following lemma that characterizes the
difference in value functions for any two pairs of control gains (K(L), L) and (K(L′), L′) when
L,L′ ∈ Ω.
Lemma B.7 (Value Difference Between (K(L), L) and (K(L′), L′)). For any matrices L,L′ ∈ Ω,
recalling the definition of WL in (4.14), it follows that

V ∗L′(x)− V ∗L (x) ≥ 2 Tr

[∑
t≥0

x′∗t (x′∗t )>(L′ − L)>F ∗L

]
− Tr

[∑
t≥0

x′∗t (x′∗t )>(L′ − L)>WL(L′ − L)

]
,

where {x′∗t }t≥0 is the sequence of states generated by the control pairs (K(L′), L′) with x′∗0 = x.
Additionally, letting K̃(L,L′) = K(L) − (Ru + B>P ∗LB)−1B>P ∗LC(L′ − L), we have that for
any x

V ∗L′(x)− V ∗L (x) ≤ 2 Tr

[∑
t≥0

x̃′tx̃
′>
t (L′ − L)>F ∗L

]
− Tr

[∑
t≥0

x̃′tx̃
′>
t (L′ − L)>WL(L′ − L)

]
,
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where {x̃′t}t≥0 is the sequence of states generated by the control pairs (K̃(L,L′), L′), with x̃′0 = x.

Proof. First by Lemma B.2, both P ∗L > 0 and P ∗L′ > 0, (K(L), L) and (K(L′), L′) are stabilizing.
Also, from Lemma B.1, we have that for any stabilizing control pair (K ′, L′) and any x ∈ Rd

VK′,L′(x)− V ∗L (x) =
∑
t≥0

A∗L(x′t, u
′
t, v
′
t),

with x′0 = x, u′t = −K ′x′t, and v′t = −L′x′t. Moreover, by definitions of EK,L in (B.2) and K(L)
in (4.1), we have E∗L = 0, which combined with (B.5) further gives that

A∗L(x,−K ′x,−L′x) = x>(K ′ −K(L))>(Ru +B>P ∗LB)(K ′ −K(L))x (B.14)

+ 2x>(L′ − L)>F ∗Lx+ x>(L′ − L)>(−Rv + C>P ∗LC)(L′ − L)x

+ 2x>(L′ − L)>C>P ∗LB(K ′ −K(L))x.

Completing the squares w.r.t. K ′ in (B.14) yields

A∗L(x,−K ′x,−L′x) = 2x>(L′ − L)>F ∗Lx+ x>(L′ − L)>(−Rv + C>P ∗LC)(L′ − L)x

+ x>
[
K ′ −K(L) + (Ru +B>P ∗LB)−1B>P ∗LC(L′ − L)

]>
(Ru +B>P ∗LB)[

K ′ −K(L) + (Ru +B>P ∗LB)−1B>P ∗LC(L′ − L)
]
x

− x>(L′ − L)>C>P ∗LB(Ru +B>P ∗LB)−1B>P ∗LC(L′ − L)x

≥ 2x>(L′ − L)>F ∗Lx− x>(L′ − L)>WL(L′ − L)x, (B.15)

whereWL is as defined in (4.14), and the last inequality follows from the fact thatRu+B>P ∗LB ≥ 0
(since P ∗L > 0). Thus, replacing K ′ in (B.15) with K(L′) yields

V ∗L′(x)− V ∗L (x) ≥ 2 Tr

[∑
t≥0

x′∗t (x′∗t )>(L′ − L)>F ∗L

]
− Tr

[∑
t≥0

x′∗t (x′∗t )>(L′ − L)>WL(L′ − L)

]
,

where x′∗0 = x and x′∗t+1 = [A−BK(L′)−CL′] ·x′∗t follows the trajectory generated by the control
(K(L′), L′). This completes the proof of the lower bound.

On the other hand, by defining K̃(L,L′) = K(L) − (Ru + B>P ∗LB)−1B>P ∗LC(L′ − L), and
letting K ′ = K̃(L,L′) in (B.15), we obtain that

VK̃(L,L′),L′(x)− V ∗L (x) = 2 Tr

[∑
t≥0

x̃′tx̃
′>
t (L′ − L)>F ∗L

]
− Tr

[∑
t≥0

x̃′tx̃
′>
t (L′ − L)>WL(L′ − L)

]
(B.16)

where x̃′0 = x, x̃′t+1 = [A−BK̃(L,L′)−CL′] · x̃′t follows the trajectory generated by the control
(K̃(L,L′), L′). Moreover, since P ∗L′ > 0 and the optimality of K(L′) from Lemma B.2, we have
VK(L′),L′(x) ≤ VK̃(L,L′),L′(x). Therefore, (B.16) further gives

V ∗L′(x)− V ∗L (x) ≤ 2 Tr

[∑
t≥0

x̃′tx̃
′>
t (L′ − L)>F ∗L

]
− Tr

[∑
t≥0

x̃′tx̃
′>
t (L′ − L)>WL(L′ − L)

]
,

which proves the upper bound in the lemma, and thus completes the proof.

Moreover, we establish the following important lemma on the perturbation of the covariance matrix
Σ∗L, whose proof is a little involved and deferred to §C.8.
Lemma B.8 (Perturbation of Σ∗L). Under Assumption 2.1, for any L,L′ ∈ Ω, there exist some
constants BLΩ,BPΩ ,BKΩ > 0, such that if

‖L′ − L‖ ≤ min

{
BL

Ω,
‖B‖

[
BP

Ω‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖
]

BP
Ω‖B‖‖C‖

,
2
(
‖ÃL −BK(L)‖+ 1

)(
BK

Ω ‖B‖+ ‖C‖
)(

BK
Ω

)2‖B‖2 + ‖C‖2 + 2BK
Ω ‖B‖‖C‖

}
,

(B.17)

if follows that

‖Σ∗L′ − Σ∗L‖ ≤ 4
(
‖ÃL −BK(L)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)
· ‖L′ − L‖.
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In addition, we can also bound the norm of the nested-gradient ‖∇LC̃(L)‖, and the norms of the
gradient-mappings, as follows.

Lemma B.9. For any L ∈ Ω, recall the gradient mappings Ĝ∗L, G̃
∗
L, Ǧ

∗
L defined in (5.1), then

2
√
q
·max

{
µν
∥∥Ĝ∗L∥∥, µ∥∥G̃∗L∥∥,∥∥Ǧ∗L∥∥} ≤ ∥∥∇LC̃(L)

∥∥
≤ 2C(K(L), L)

ζ

√
‖WL‖[C(K∗, L∗)− C(K(L), L)]

µ
,

where q = min{m2, d}.

Proof. Recall that by definition∇LC̃(L) = 2F ∗LΣ∗L. Hence, by Lemma B.6,

‖∇LC̃(L)‖2 ≤ 4 Tr
(

Σ∗LF
∗>
L F ∗LΣ∗L

)
≤ ‖Σ∗L‖2 Tr

(
F ∗
>

L F ∗L
)

≤ [C(K(L), L)]2

ζ2
Tr
(
F ∗
>

L F ∗L
)
. (B.18)

On the other hand, for any L′ ∈ Ω, we have

C(K∗, L∗)− C(K(L), L) ≥ C(K(L′), L′)− C(K(L), L)

≥ 2 Tr
[
Σ∗L′(L

′ − L)>F ∗L
]
− Tr

[
Σ∗L′(L

′ − L)>WL(L′ − L)
]
≥ Tr

(
Σ∗L′F

∗>
L W−1

L F ∗L
)

≥ µ

‖WL‖
Tr
(
F ∗
>

L F ∗L
)
, (B.19)

where the first inequality is due to C(K∗, L∗) ≥ C(K(L′), L′) for any L′, the second inequality
follows by taking expectation on both sides of the lower bound in Lemma B.7, the third inequality
follows by completing the squares, and the last one is due to Σ∗L′ ≥ µ·I and σmin(W−1

L ) = 1/‖WL‖.
Combining (B.18) and (B.19) yields the upper bound on ‖∇LC̃(L)‖.

Moreover, by definitions of Ĝ∗L, G̃
∗
L, Ǧ

∗
L, we have

Tr
(
W ∗

1/2

L Ĝ∗LΣ∗LĜ
∗>
L W ∗

1/2

L

)
≤ Tr

(
W ∗

1/2

L W ∗
−1

L F ∗LΣ∗LĜ
∗>
L W ∗

1/2

L

)
≤
∥∥F ∗LΣ∗L

∥∥
F
·
∥∥Ĝ∗L∥∥F , (B.20)

Tr
(
G̃∗LΣ∗LG̃

∗>
L

)
≤ Tr

(
F ∗LΣ∗LG̃

∗>
L

)
≤
∥∥F ∗LΣ∗L

∥∥
F
·
∥∥G̃∗L∥∥F , (B.21)

Tr
(
Ǧ∗LǦ

∗>
L

)
≤ Tr

(
F ∗LΣ∗LǦ

∗>
L

)
≤
∥∥F ∗LΣ∗L

∥∥
F
·
∥∥Ǧ∗L∥∥F , (B.22)

where for all (B.20)-(B.22), the first inequality is due to Lemma B.3, and the second one follows
from Cauchy-Schwartz inequality. Note that

Tr
(
W ∗

1/2

L Ĝ∗LΣ∗LĜ
∗>
L W ∗

1/2

L

)
≥ µσmin(WL)

∥∥Ĝ∗L∥∥2

F
≥ µν

∥∥Ĝ∗L∥∥2

F
, Tr

(
G̃∗LΣ∗LG̃

∗>
L

)
≥ µ‖G̃∗L‖2F ,

which uses the fact that σmin(WL) ≥ σmin(WL∗) = ν from Lemma B.6. This together with (B.20)-
(B.22) gives that

max
{
µν
∥∥Ĝ∗L∥∥F , µ∥∥G̃∗L∥∥F ,∥∥Ǧ∗L∥∥F} ≤ ∥∥F ∗LΣ∗L

∥∥
F
≤
√
q

2
·
∥∥∇LC̃(L)

∥∥, (B.23)

where the second inequality uses the fact that ‖F ∗LΣ∗L‖2F = ‖∇LC̃(L)‖2F /4 and ‖X‖F ≤
√
r‖X‖ ≤√

min{m,n} · ‖X‖ for matrix X ∈ Rm×n of rank r. Dividing both sides by
√
q/2, and using the

fact that ‖X‖F ≥ ‖X‖, we obtain the first inequality in the lemma and complete the proof.

Now we are ready to establish the global convergence of the projected nested-gradient algorithms.

Projected Gauss-Newton Nested-Gradient:

First note that the projected Gauss-Newton nested-gradient update in (4.15) can be written as

Lt+1 = PGNΩ

[
Lt + 2η ·W−1

Lt
F ∗Lt
]

= Lt + 2η · Ĝ∗L, (B.24)
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where we recall that PGNΩ is the projection operator defined in (4.13) and the gradient mapping Ĝ∗L
is defined in (5.1). Since both Lt and Lt+1 lie in Ω, by the lower bound in Lemma B.7 and (B.24),
we can bound the difference between V ∗Lt+1

and V ∗Lt as

V ∗Lt+1
(x)− V ∗Lt(x) ≥ 2ηTr

[∑
t≥0

x′∗t x
′∗>
t

(
Ĝ∗
>

Lt F
∗
Lt + F ∗

>
Lt Ĝ

∗
Lt

)]
− 4η2 Tr

(∑
t≥0

x′∗t x
′∗>
t Ĝ∗

>
LtWLtĜ

∗
Lt

)
,

where {x∗τ}τ≥0 is the state sequence generated by the control (K(Lt+1), Lt+1) with x∗0 = x. Taking
expectation over x0 ∼ D, we have

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2η · Tr

[
Σ∗Lt+1

(
Ĝ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ĝ
∗
Lt

)]
− 4η2 · Tr

(
Σ∗Lt+1

Ĝ∗
>

LtWLtĜ
∗
Lt

)
. (B.25)

In the following, we bound the two terms on the right-hand side of (B.25) separately. For the first
term, since Lt ∈ Ω, applying the property of PGNΩ in Lemma B.3 with L1 = Lt + 2η ·W−1

Lt
F ∗Lt and

L2 = Lt yields

Tr
(
W−1
Lt
F ∗LtΣ

∗
LtĜ

∗>
LtWLt

)
= Tr

(
F ∗LtΣ

∗
LtĜ

∗>
Lt

)
≥ Tr

(
Ĝ∗LtΣ

∗
LtĜ

∗>
LtWLt

)
,

which implies that

Tr
[
Σ∗Lt+1

(
Ĝ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ĝ
∗
Lt

)]
= Tr

[
Σ∗Lt

(
Ĝ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ĝ
∗
Lt

)]
+ Tr

[(
Σ∗Lt+1

− Σ∗Lt
)(
Ĝ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ĝ
∗
Lt

)]
≥ 2 Tr

(
Σ∗LtĜ

∗>
LtWLtĜ

∗
Lt

)
−
∥∥Σ∗Lt+1

− Σ∗Lt
∥∥ · Tr

[(
Ĝ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ĝ
∗
Lt

)]
≥ 2µν

∥∥Ĝ∗Lt∥∥2

F
− 8η

(
‖ÃLt −BK(Lt)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)∥∥Ĝ∗Lt∥∥2

F

∥∥F ∗Lt∥∥F . (B.26)

The first inequality uses triangle inequality. The last inequality uses the following facts: i) since
σmin(Σ∗Lt) ≥ σmin(Ex0∼Dx0x

>
0 ) = µ and σmin(WLt) ≥ σmin(WL∗) = ν (see Lemma B.6), it

follows that

Tr
(

Σ∗LtĜ
∗>
LtWLtĜ

∗
Lt

)
≥ ν Tr

(
Σ∗LtĜ

∗>
Lt Ĝ

∗
Lt

)
≥ µν

∥∥Ĝ∗Lt∥∥2

F
;

ii) from Lemma B.8, if

‖Lt+1 − Lt‖ = 2η‖Ĝ∗Lt‖ ≤ K
L
Ω,

where

KL
Ω = inf

L∈Ω
min

{
BL

Ω,
‖B‖

[
BP

Ω‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖
]

BP
Ω‖B‖‖C‖

,
2
(
‖ÃL −BK(L)‖+ 1

)(
BK

Ω ‖B‖+ ‖C‖
)(

BK
Ω

)2‖B‖2 + ‖C‖2 + 2BK
Ω ‖B‖‖C‖

}
,

(B.27)

is the infimum for the required upper-bound on ‖L′ − L‖ in Lemma B.8, i.e., (B.17), then the
perturbation ‖Σ∗Lt+1

− Σ∗Lt‖ can be bounded as

‖Σ∗Lt+1
− Σ∗Lt‖ ≤ 4η

(
‖ÃLt −BK(Lt)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)
;

iii) Cauchy-Schwartz inequality yields

Tr[(Ĝ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ĝ
∗
Lt)] ≤

∥∥Ĝ∗Lt∥∥2

F

∥∥F ∗Lt∥∥F .
Note that by definition (B.27), KLΩ > 0 since it is the infimum of a strictly positive function of L
that is continuous over a compact set Ω. Combined with the bound on ‖Ĝ∗Lt‖ from Lemma B.9, we
further obtain the requirement for the stepsize η:

η ≤ KLΩζµν
2
√
q · C(K(Lt), Lt)

√
µ

‖WLt‖[C(K∗, L∗)− C(K(Lt), Lt)]
. (B.28)
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Moreover, notice that

Tr
(

Σ∗Lt+1
Ĝ∗
>

LtWLtĜ
∗
Lt

)
≤
∥∥Σ∗Lt+1

∥∥
F

∥∥WLt

∥∥
F

∥∥Ĝ∗Lt∥∥2

F
≤
√
m · C(K(Lt), Lt)‖Rv‖F

µ

∥∥Ĝ∗Lt∥∥2

F
,

(B.29)

where the first inequality is due to Cauchy-Schwartz inequality, and the second one follows from
Lemma B.6 and the fact that ‖X‖F ≤

√
r‖X‖ for any matrix X with rank r. Substituting (B.26)

and (B.29) into (B.25) yields

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥4µνη

∥∥Ĝ∗Lt∥∥2

F

[
1− η

√
m · C(K(Lt), Lt)‖Rv‖F

µ2ν
(B.30)

− 4η

µν

(
‖ÃLt −BK(Lt)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)∥∥F ∗Lt∥∥F],
which gives us another requirement for the stepsize η:

η ≤ 1

2
·
[√

m · C(K(Lt), Lt)‖Rv‖F
µ2ν

+
4

µν

(
‖ÃLt −BK(Lt)‖+ 1

)(
BK

Ω ‖B‖+ ‖C‖
)∥∥F ∗Lt∥∥F ]−1

.

(B.31)

By requiring both (B.28) and (B.31), we can further bound (B.30) as

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2µνη

∥∥Ĝ∗Lt∥∥2

F
. (B.32)

Note that both the upper bounds in (B.28) and (B.31) are lower bounded above from zero, since the
numerators of both bounds are constants, and the denominators are upper bounded for L ∈ Ω, due
to the boundedness of P ∗L, C(K(L), L), and L. Summing up both sides of (B.32) from 0 to t ≥ 1
yields

1

t

t−1∑
τ=0

∥∥Ĝ∗Lτ∥∥2

F
≤
C
(
K∗, L∗

)
− C

(
K(L0), L0

)
2µνηt

,

which shows that (K(Lt), Lt) converges to the NE with sublinear rate, namely, the sequence of
the average of the gradient mapping norm square

{
t−1

∑t−1
τ=0

∥∥Ĝ∗Lτ∥∥2

F

}
t≥1

converges to zero with

O(1/t) rate, so does the sequence
{
t−1

∑t−1
τ=0

∥∥Ĝ∗Lτ∥∥2}
t≥1

.

Projected Natural Nested-Gradient:

The proof for the projected natural NG update (4.12) is similar. We will only cover the argument
that is different from above. Note that (4.12) can be written as

Lt+1 = PNGΩ

[
Lt + 2η · F ∗Lt

]
= Lt + 2η · G̃∗Lt , (B.33)

where PNGΩ is defined in (4.13) with weight matrix Σ∗Lt and G̃∗L is defined in (5.1). Then by Lemma
B.7 and taking expectation x0 ∼ D, we also have (B.25) but with Ĝ∗L replaced by G̃∗L. Then, by the
property of PNGΩ and letting L1 = Lt + 2η · F ∗Lt and L2 = Lt in Lemma B.3 gives

Tr
[
Σ∗Lt

(
G̃∗
>

Lt F
∗
Lt + F ∗

>

Lt G̃
∗
Lt

)]
≥ 2 Tr

(
Σ∗LtG̃

∗>
Lt G̃

∗
Lt

)
.

Hence, we have

Tr
[
Σ∗Lt+1

(
G̃∗
>

Lt F
∗
Lt + F ∗

>

Lt G̃
∗
Lt

)]
= Tr

[
Σ∗Lt

(
G̃∗
>

Lt F
∗
Lt + F ∗

>

Lt G̃
∗
Lt

)]
+ Tr

[(
Σ∗Lt+1

− Σ∗Lt
)(
G̃∗
>

Lt F
∗
Lt + F ∗

>

Lt G̃
∗
Lt

)]
≥ 2µ

∥∥G̃∗Lt∥∥2

F
− 16η

(
‖ÃL −BK(L)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)∥∥G̃∗Lt∥∥2

F

∥∥F ∗Lt∥∥F ,
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where the last inequality uses Lemma B.8, which requires that ‖Lt+1−Lt‖ = 2η‖G̃∗Lt‖ ≤ K
L
Ω (see

KLΩ as defined in (B.27)). This further results in the following bound on the stepsize η, due to the
bound on ‖G̃∗Lt‖ from Lemma B.9:

η ≤ KLΩζµ
2
√
q · C(K(Lt), Lt)

√
µ

‖WLt‖[C(K∗, L∗)− C(K(Lt), Lt)]
. (B.34)

Moreover, we can have another requirement for η, similar to (B.31), as

η ≤ 1

2
·
[√

m · C(K(Lt), Lt)‖Rv‖F
µ2

+
8

µ

(
‖ÃLt −BK(Lt)‖+ 1

)(
BK

Ω ‖B‖+ ‖C‖
)∥∥F ∗Lt∥∥F ]−1

.

(B.35)

Thus, if η satisfies (B.34) and (B.35), we have

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2µη

∥∥G̃∗Lt∥∥2

F
. (B.36)

Summing up both sides of (B.36) from 0 to t ≥ 1 yields

1

t

t−1∑
τ=0

∥∥G̃∗Lτ∥∥2

F
≤
C
(
K∗, L∗

)
− C

(
K(L0), L0

)
2µηt

,

which completes the proof of O(1/t) convergence rate for the sequence
{
t−1

∑t−1
τ=0

∥∥G̃∗Lτ∥∥2}
t≥1

.

Projected Nested-Gradient:

The projected nested-gradient update (4.9) can be written as

Lt+1 = PGDΩ

[
Lt + 2η · F ∗LtΣ

∗
Lt

]
= Lt + 2η · Ǧ∗Lt ,

where PGDΩ is defined in (4.10) and Ǧ∗L is defined in (5.1). By the property of PGDΩ and Lemma B.3,
we have

Tr
(
Ǧ∗
>

Lt F
∗
LtΣ

∗
Lt

)
= Tr

(
Σ∗LtǦ

∗>
Lt F

∗
Lt

)
≥ Tr

(
Ǧ∗
>

Lt Ǧ
∗
Lt

)
,

which implies that

Tr
[
Σ∗Lt+1

(
Ǧ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ǧ
∗
Lt

)]
= Tr

[
Σ∗Lt

(
Ǧ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ǧ
∗
Lt

)]
+ Tr

[(
Σ∗Lt+1

− Σ∗Lt
)(
Ǧ∗
>

Lt F
∗
Lt + F ∗

>

Lt Ǧ
∗
Lt

)]
≥ 2
∥∥Ǧ∗Lt∥∥2

F
− 16η

(
‖ǍL −BK(L)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)∥∥Ǧ∗Lt∥∥2

F

∥∥F ∗Lt∥∥F ,
if, by Lemma B.8, ‖Lt+1 − Lt‖ = 2η‖Ǧ∗Lt‖ ≤ K

L
Ω holds. By the bound on ‖Ǧ∗Lt‖ from Lemma

B.9, we further require

η ≤ KLΩζ
2
√
q · C(K(Lt), Lt)

√
µ

‖WLt‖[C(K∗, L∗)− C(K(Lt), Lt)]
. (B.37)

Also, similar to (B.31), we also require

η ≤ 1

2
·
[√

m · C(K(Lt), Lt)‖Rv‖F
µ

+ 8
(
‖ÃLt −BK(Lt)‖+ 1

)(
BK

Ω ‖B‖+ ‖C‖
)∥∥F ∗Lt∥∥F ]−1

.

(B.38)

Thus, if η satisfies (B.37) and (B.38), we have

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2η

∥∥Ǧ∗Lt∥∥2

F
. (B.39)

Summing up both sides of (B.39) from 0 to t ≥ 1 yields the desiredO(1/t) convergence rate for the
sequence

{
t−1

∑t−1
τ=0

∥∥Ǧ∗Lτ∥∥2}
t≥1

, which thus completes the proof.
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B.4 Proof of Theorem 5.3

Now we analyze the locally linear convergence rates of the projected nested-gradient algorithms.

Projected Gauss-Newton Nested-Gradient:

First, by Assumption 2.1 and the definition of Ω in (4.11), L∗ is an interior point of Ω. Letting
L′ = L∗ and L = Lt in the upper bound of Lemma B.7, we have

C(K∗, L∗)− C
(
K(Lt), Lt

)
≤ 2 Tr

[
ΣK̃t,L∗

(L∗ − Lt)
>F ∗Lt

]
− Tr

[
ΣK̃t,L∗

(L∗ − Lt)
>WLt(L

∗ − Lt)
]

≤ Tr
(

ΣK̃t,L∗
F ∗
>

Lt W
−1
Lt
F ∗Lt

)
≤
∥∥ΣK̃t,L∗

∥∥ · Tr
(
F ∗
>

Lt W
−1
Lt
F ∗Lt

)
, (B.40)

where K̃t is defined as follows

K̃t = K(Lt)− (Ru +B>P ∗LtB)−1B>P ∗LtC(L∗ − Lt) = (Ru +B>P ∗LtB)−1B>P ∗Lt(A− CL
∗),

and the second inequality follows by completing squares. Note that the correlation matrix ΣK̃t,L∗
may be

unbounded, since the control pair (K̃t, L
∗), where K̃t is generated by Lt, may not be stabilizing, unless Lt is

close to L∗, since we know by Assumption 2.1 that (K∗, L∗) is stabilizing. In fact, by the continuity of P ∗L
w.r.t. L from Lemma B.4, and the continuity of ρ(A−BK − CL∗) w.r.t. K [60], there exists a ball centered
at L∗ with radius ω1 > 0, denoted by B(L∗, ω1), such that B(L∗, ω1) ⊆ Ω, and for any Lt ∈ B(L∗, ω1),
ρ(A−BK̃t − CL∗) < 1, i.e., (K̃t, L

∗) is stabilizing. Thus by Lemma B.6, (B.40) can be bounded as

C(K∗, L∗)− C
(
K(Lt), Lt

)
≤ C(K̃t, L

∗)

ζ
· Tr
(
F ∗
>

Lt W
−1
Lt
F ∗Lt

)
≤ C(K

∗, L∗) + ϑ

ζ
· Tr
(
F ∗
>

Lt W
−1
Lt
F ∗Lt

)
,

(B.41)

for some constant ϑ ≥ 0, where the last inequality is due to the continuity of PK,L, and thus
C(K,L) = Tr(Σ0PK,L) where Σ0 = Ex0x

>
0 , w.r.t. K, for given L, from Lemma B.5.

On the other hand, due to the continuity of P ∗L from Lemma B.4, C(K(L), L) = Tr(Σ0P
∗
L) is

continuous w.r.t. L for any L ∈ Ω. Let C̄Ω = supL∈∂Ω C(K(L), L), where ∂Ω denotes the
boundary of the set Ω. Then by continuity and the uniqueness of the maximizer L∗, there exists
some Lt ∈ B(L∗, ω1) around L∗ such that C̄Ω < C(K(Lt), Lt) < C(K∗, L∗), and the upper-
level set ALtΩ := {L | C(K(L), L) ≥ C(K(Lt), Lt)} lies in B(L∗, ω1) (thus also lies in Ω). Since
C(K∗, L∗) is the upper bound of C(K(L), L), the upper-level set ALtΩ is compact. Also, letting
Ωc := Rm2×d/{Ω/∂Ω}, then we know that Ωc = {L |λmax(L>RvL − Q + ζ · I) ≥ 0}, which
is closed since λmax(·) is a continuous function. Thus, by Lemma C.6, there exists a distance
ω2 > 0 between the disjoint sets ALtΩ and Ωc. Thus, for any Lt+1 such that ‖Lt+1 − Lt‖ ≤ ω2,
Lt+1 belongs to Ω, namely, the projection is ineffective, i.e., PGN (Lt+1) = Lt+1. Letting
Lt+1 = Lt + 2ηW−1

Lt
F ∗Lt . In addition, we have∥∥F ∗L∥∥ ≤ ∥∥F ∗LΣ∗L

∥∥∥∥Σ∗
−1

L

∥∥ ≤ √q
2
·
∥∥∇LC̃(L)

∥∥ · 1

σmin

(
Σ∗L
) ≤ √q

2µ
·
∥∥∇LC̃(L)

∥∥,
where the second inequality follows from (B.23) in the proof of Lemma B.9, and the fact that
‖Σ∗−1

L ‖ = σ−1
min

(
Σ∗L
)
. By Lemma B.9, we further have

∥∥F ∗L∥∥ ≤ √q2µ
·
∥∥∇LC̃(L)

∥∥ ≤ √qC(K(L), L)

µζ

√
‖WL‖[C(K∗, L∗)− C(K(L), L)]

µ
. (B.42)

Also, notice that ∥∥W−1
L F ∗L

∥∥ ≤ ∥∥W−1
L

∥∥∥∥F ∗L∥∥ =

∥∥F ∗L∥∥
σmin(WL)

≤
∥∥F ∗L∥∥
ν

. (B.43)

Thus, by (B.42) and (B.43), to ensure ‖Lt+1 − Lt‖ ≤ ω2 we require

η ≤ ω2µνζ

2
√
qC(K(L), L)

√
µ

‖WL‖[C(K∗, L∗)− C(K(L), L)]
,

26



which can be satisfied by the following sufficient condition

η ≤ ω2µνζ

2
√
qC(K∗, L∗)

√
µ

‖Rv‖C(K∗, L∗)
, (B.44)

where we use ‖WL‖ ≤ ‖Rv‖ from Lemma B.6. Note that the bound in (B.44) is independent of L.

In sum, as long as η satisfies (B.44), we know that Lt+1 = Lt + 2ηW−1
L F ∗L still lies in Ω. Hence,

by the lower bound in Lemma B.7, we have

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 4ηTr

(
Σ∗Lt+1

F ∗
>

Lt W
−1
Lt
F ∗Lt

)
− 4η2 Tr

(
Σ∗Lt+1

F ∗
>

Lt W
−1
Lt
F ∗Lt

)
≥ 2ηµ · Tr

(
F ∗
>

Lt W
−1
Lt
F ∗Lt
)
, (B.45)

provided that the stepsize η ≤ 1/2.

Combining (B.41) and (B.45) yields

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2ηµζ

C(K∗, L∗) + ϑ
·
[
C(K∗, L∗)− C

(
K(Lt), Lt

)]
,

which further leads to

C(K∗, L∗)− C
(
K(Lt+1), Lt+1

)
≤
(

1− 2ηµζ

C(K∗, L∗) + ϑ

)
·
[
C(K∗, L∗)− C

(
K(Lt), Lt

)]
. (B.46)

That is, the sequence {C
(
K(Lt), Lt

)
}t≥0 converges to C(K∗, L∗) with linear rate, provided that

η ≤ min

{
1

2
,

ω2µνζ

2
√
qC(K∗, L∗)

√
µ

‖Rv‖C(K∗, L∗)
,
C(K∗, L∗) + ϑ

4µζ

}
.

In addition, by Lemma B.9∥∥∇LC̃(Lt)∥∥2 ≤ 4C(K∗, L∗)2‖Rv‖
µζ2

· [C(K∗, L∗)− C(K(Lt), Lt)],

where we use that C(K(Lt), Lt) ≤ C(K∗, L∗) andWLt ≤ Rv . Thus, (B.46) also implies the locally
linear convergence rate of {‖∇LC̃(Lt)‖2}t≥0, which completes the proof.

Projected Natural Nested-Gradient:

The proof for projected natural nested-gradient is similar to the one above. (B.41) and (B.42) still
hold. Now since the update becomes Lt+1 = Lt + 2ηF ∗Lt , to ensure ‖Lt+1 − Lt‖ ≤ ω2 we require

η ≤ ω2µζ

2
√
qC(K(L), L)

√
µ

‖WL‖[C(K∗, L∗)− C(K(L), L)]
,

which can be satisfied by

η ≤ ω2µζ

2
√
qC(K∗, L∗)

√
µ

‖Rv‖C(K∗, L∗)
. (B.47)

Then, by the lower bound in Lemma B.7, it follows that

C
(
K(Lt+1), Lt+1

)
− C
(
K(Lt), Lt

)
≥ 4ηTr

(
Σ∗Lt+1

F ∗
>

Lt F
∗
Lt

)
− 4η2 Tr

(
Σ∗Lt+1

F ∗
>

Lt WLtF
∗
Lt

)
≥ 4ηTr

(
Σ∗Lt+1

F ∗
>

Lt F
∗
Lt

)
− 4η2‖Rv‖Tr

(
Σ∗Lt+1

F ∗
>

Lt F
∗
Lt

)
≥ 2ηµ · Tr

(
F ∗
>

Lt F
∗
Lt

)
, (B.48)

where the second inequality is due to ‖WLt‖ ≤ ‖Rv‖ from Lemma B.6, and the last inequality
holds if η ≤ 1/(2‖Rv‖). Note that (B.41) further gives

C(K∗, L∗)− C
(
K(Lt), Lt

)
≤ C(K

∗, L∗) + ϑ

ζσmin(WLt)
Tr
(
F ∗
>

Lt F
∗
Lt

)
≤ C(K

∗, L∗) + ϑ

ζν
Tr
(
F ∗
>

Lt F
∗
Lt

)
, (B.49)

which combined with (B.48) yields

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2ηµζν

C(K∗, L∗) + ϑ
·
[
C(K∗, L∗)− C

(
K(Lt), Lt

)]
.
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Therefore, the linear convergence rate follows as

C
(
K∗, L∗

)
− C
(
K(Lt+1), Lt+1

)
≤
(

1− 2ηµζν

C(K∗, L∗) + ϑ

)
·
[
C(K∗, L∗)− C

(
K(Lt), Lt

)]
, (B.50)

provided that the stepsize η satisfies

η ≤ min

{
1

2‖Rv‖
,

ω2µζ

2
√
qC(K∗, L∗)

√
µ

‖Rv‖C(K∗, L∗)
,
C(K∗, L∗) + ϑ

4µζν

}
.

Note that (B.50) also implies the locally linear rate of {‖∇LC̃(Lt)‖2}t≥0, completing the proof.

Projected Nested-Gradient:

By (B.22) and Lemma B.9, we have∥∥F ∗LΣ∗L
∥∥ ≤ ∥∥F ∗LΣ∗L

∥∥
F
≤
√
q

2
·
∥∥∇LC̃(L)

∥∥
≤
√
qC(K(L), L)

ζ

√
‖WL‖[C(K∗, L∗)− C(K(L), L)]

µ
. (B.51)

Since the update becomes Lt+1 = Lt + 2ηF ∗LtΣ
∗
Lt

, to ensure ‖Lt+1 − Lt‖ ≤ ω2, we require

η ≤ ω2ζ

2
√
qC(K∗, L∗)

√
µ

‖Rv‖C(K∗, L∗)
. (B.52)

Then, applying Lemma B.7 we have

C
(
K(Lt+1), Lt+1

)
− C
(
K(Lt), Lt

)
≥ 4ηTr

(
Σ∗Lt+1

Σ∗LtF
∗>
Lt F

∗
Lt

)
− 4η2 Tr

(
Σ∗Lt+1

Σ∗LtF
∗>
Lt WLtF

∗
LtΣ

∗
Lt

)
≥
(
4η − 4η2‖Rv‖‖Σ∗Lt+1

‖
)

Tr
(

Σ∗LtΣ
∗
LtF

∗>
Lt F

∗
Lt

)
− 4η

∥∥Σ∗Lt+1
− Σ∗Lt

∥∥Tr
(

Σ∗LtF
∗>
Lt F

∗
Lt

)
≥
(
4η − 4η2‖Rv‖‖Σ∗Lt+1

‖
)

Tr
(

Σ∗LtΣ
∗
LtF

∗>
Lt F

∗
Lt

)
− 4η

∥∥Σ∗Lt+1
− Σ∗Lt

∥∥
µ

Tr
(

Σ∗LtF
∗>
Lt F

∗
LtΣ

∗
Lt

)
= 4η

(
1− η‖Rv‖‖Σ∗Lt+1

‖ −
∥∥Σ∗Lt+1

− Σ∗Lt
∥∥

µ

)∥∥F ∗LΣ∗L
∥∥2

F
. (B.53)

By recalling Lemma B.8 and the definition of KLΩ in (B.27), if η makes ‖Lt+1 − Lt‖ =
2η‖F ∗LtΣ

∗
Lt
‖ ≤ KLΩ, i.e.,

η ≤ KLΩζ
2
√
qC(K∗, L∗)

√
µ

‖Rv‖C(K∗, L∗)
, (B.54)

then it follows that∥∥Σ∗Lt+1
− Σ∗Lt

∥∥
µ

≤ 4η

µ

(
‖ÃLt −BK(Lt)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)
· ‖Lt+1 − Lt‖

≤ 4ηKLΩ
µ

(
‖ÃLt −BK(Lt)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)
.

If we further require

η ≤ µ

16ηKLΩ
(
‖ÃLt −BK(Lt)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

) , (B.55)

then
∥∥Σ∗Lt+1

− Σ∗Lt
∥∥/µ ≤ 1/4, which also implies that

∥∥Σ∗Lt+1

∥∥ ≤ ∥∥Σ∗Lt
∥∥+

∥∥Σ∗Lt+1
− Σ∗Lt

∥∥ ≤ C(K(Lt), Lt)

ζ
+
µ

4
≤ C(K(Lt), Lt)

ζ
+

∥∥Σ∗Lt+1

∥∥
4

.
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Thus, we can bound
∥∥Σ∗Lt+1

∥∥ ≤ 4C(K(Lt), Lt)/(3ζ). Then if η further satisfies

η ≤ 3ζ

16C
(
K(Lt), Lt

)
‖Rv‖

, (B.56)

we have 1− η‖Rv‖ · ‖Σ∗Lt+1
‖ − ‖Σ∗Lt+1

−Σ∗Lt‖/µ ≥ 1− 1/4− 1/4 = 1/2, which establishes the
bound in (B.53) as

C
(
K(Lt+1), Lt+1

)
− C

(
K(Lt), Lt

)
≥ 2η

∥∥F ∗LΣ∗L
∥∥2

F
. (B.57)

On the other hand, by (B.49), we also have

C(K∗, L∗)− C
(
K(Lt), Lt

)
≤ C(K

∗, L∗) + ϑ

ζνµ2
Tr
(

Σ∗LtF
∗>
Lt F

∗
LtΣ

∗
Lt

)
. (B.58)

Combining (B.57) and (B.58) yields

C
(
K∗, L∗

)
− C

(
K(Lt+1), Lt+1

)
≤
(

1− 2ηµ2ζν

C(K∗, L∗) + ϑ

)
·
[
C(K∗, L∗)− C

(
K(Lt), Lt

)]
,

which gives the locally linear convergence rate if

η ≤ C(K
∗, L∗) + ϑ

4µζν
. (B.59)

In sum, there exists some η that satisfies (B.52), (B.54), (B.55), (B.56), and (B.59), to guaran-
tee the locally linear convergence rates of both {C

(
K(Lt), Lt

)
}t≥0 and {‖∇LC̃(Lt)‖2}t≥0, which

concludes the proof.
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C Supplementary Proofs

In this section, we provide supplementary proofs for some results that are either claimed in the paper
or used in the proofs before.

C.1 Proof of Lemma 2.2

Proof. Since Q − (L∗)>RvL∗ > 0, we know that Q > 0, which implies that (A,Q1/2) is observ-
able. Then by Theorem 3.7 in [15], the existence of P ∗ in Assumption 2.1 shows that the value of
the game (2.8) exists. Moreover, by Lemma 3.1 in [52], such a stabilizing solution P ∗, if exists, is
unique. Hence, by [15, Theorem 3.7], the value of the game (2.8) is represented as x>0 P

∗x0, and
given {u∗t }t≥0, {v∗t }t≥0 achieves the upper-value among any control sequence {vt}t≥0, i.e., for any
x0 ∈ Rd,

∞∑
t=0

ct(xt, u
∗
t , vt) ≤

∞∑
t=0

ct(xt, u
∗
t , v
∗
t ). (C.1)

Also, the closed-loop systemA−BK∗−CL∗ is stable, i.e., the control pair (K∗, L∗) is stabilizing.

On the other hand, by [61], given {v∗t }t≥0, {u∗t }t≥0 achieves the lower-value among any stabi-
lizing control sequence {ut}t≥0; for the control sequence {ut}t≥0 that is not stabilizing, since
Q− (L∗)>RvL∗ > 0, the cost goes to infinity. Hence,

∞∑
t=0

ct(xt, u
∗
t , v
∗
t ) ≤

∞∑
t=0

ct(xt, ut, v
∗
t ), (C.2)

for any control sequence {ut}t≥0. Combining (C.1) and (C.2) yields that ({u∗t }t≥0, {v∗t }t≥0) is a
saddle-point of the game, i.e., the NE of the game (2.8), which completes the proof.

C.2 Proof of Lemma 3.1

Proof. Since by Assumption 2.1, Q− (L∗)>RvL∗ > 0 and ρ(A−BK∗−CL∗) < 1, it suffices to
only consider those L ∈ Ω. For those L, Q+K>RuK −L>RvL > 0, implying that the necessary
and sufficient condition for the cost C(K,L) to be finite is that the control pair (K,L) is stabilizing.
Thus, we can use the counter-example used in the proof of Lemma 2 in [25], by makingB = C = I,
and letting A − CL here equal to the A matrix there, in order to show the nonconvexity of the
feasible set of K for these given L. Hence, minK C(K,L) is a nonconvex minimization problem.
Similarly, by letting A − BK and C here equal to A and B there, respectively, we know that the
set of stabilizing L for these given K is not convex. Therefore, maxL∈Ω C(K,L) is a nonconcave
maximization problem, which completes the proof.

C.3 Proof of Lemma 3.2

Proof. Let CK,L(x) = x>PK,Lx. Then

CK,L(x0) = x>0 (Q+K>RuK − L>RvL)x0 + CK,L((A−BK − CL)x0). (C.3)
Note that CK,L((A − BK − CL)x0) on the right-hand side of (C.3) has both its subscript and the
argument related to K. Thus, we have

∇KC(K,L) = 2RuKx0x
>
0 − 2B>PK,L(A−BK − CL)x0x

>
0 +∇KCK,L(x1)

∣∣
x1=(A−BK−CL)x0

= 2[(Ru +B>PK,LB)K −B>PK,L(A− CL)] ·
∞∑
t=0

xtx
>
t ,

where the second equation follows from induction. Similarly, we can obtain the gradient w.r.t. L as
(3.6), which completes the proof.

C.4 Proof of Lemma 3.3

Proof. Since ΣK,L is full-rank, then if∇KC(K,L) = ∇LC(K,L) = 0, we have

K = (Ru +B>PK,LB)−1B>PK,L(A− CL) (C.4)

L = (−Rv + C>PK,LC)−1C>PK,L(A−BK), (C.5)
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provided that the matrix inversion (−Rv + C>PK,LC)−1 exists. By solving (C.4) and (C.5), we
obtain that

K = [−Rv + C>PK,LC − C>PK,LB(Ru +B>PK,LB)−1B>PK,LC]−1

× [C>PK,LA− C>PK,LB(Ru +B>PK,LB)−1B>PK,LA], (C.6)

L = [Ru +B>PK,LB −B>PK,LC(−Rv + C>PK,LC)−1C>PK,LB]−1

× [B>PK,LA−B>PK,LC(−Rv + C>PK,LC)−1C>PK,LA]. (C.7)

Now it suffices to compare PK,L and P ∗. In fact, at the NE, P ∗ should also satisfy the Lyapunov
equation, i.e.,

P ∗ = Q+ (K∗)>RuK∗ − (L∗)>RvL∗ + (A−BK∗ − CL∗)>P ∗(A−BK∗ − CL∗), (C.8)

where K∗ and L∗ satisfy (2.6) and (2.7). Note that the set of equations (C.6), (C.7), and (3.2) is
essentially the same as the set of equations (2.6), (2.7), and (C.8). Thus, the two sets of equations
have identical solutions, which are all solutions to the GARE (2.3) since the latter can be obtained
by substituting (2.6) and (2.7) into (C.8).

On the other hand, under Assumption 2.1, the solution P ∗ to the GARE (2.3) is unique in the regime
of positive definite matrices that generate a stabilizing control pair (K∗, L∗) following (C.6)-(C.7)
[52, 15]. Hence, such a stable control pair (K,L) coincides with the NE pair (K∗, L∗), which
completes the proof.

C.5 Proof of Lemma 4.1

Proof. Recall the definition of Ω in (4.11) for any 0 < ζ < σmin(Q̃L∗). Then for any L1, L2 ∈ Ω
and λ ∈ [0, 1], we have

[λL1 + (1− λ)L2]>Rv[λL1 + (1− λ)L2]

= λ2L>1 R
vL1 + (1− λ)2L>2 R

vL2 + λ(1− λ)
(
L>1 R

vL2 + L>2 R
vL1

)
≤ λ2L>1 R

vL1 + (1− λ)2L>2 R
vL2 + λ(1− λ)

(
L>1 R

vL1 + L>2 R
vL2

)
≤ [λ2 + (1− λ)2 + 2λ(1− λ)] · (Q− ζ · I) = Q− ζ · I,

where the first inequality follows from (L1 − L2)>Rv(L1 − L2) ≥ 0 for Rv > 0, and the second
inequality is by definition of L1 and L2. This shows that λL1 + (1 − λ)L2 also lies in Ω, which
shows that the set Ω is convex.

Moreover, since the largest eigenvalue of L>RvL − Q + ζ · I, i.e., λmax(L>RvL − Q + ζ · I)
is a continuous function of L, and is lower bounded by −λmax(Q) + ζ, the lower-level set
{L |λmax(L>RvL − Q + ζ · I) ≤ 0} is closed and bounded, i.e., compact, which proves that
Ω is compact, thus completing the proof.

C.6 Proof of Lemma B.3

Proof. We choose the proof for the projected natural NG operator PNGΩ as an example. The proofs
for the other two operators are similar, and follow directly. Recall that the following definition of
PNGΩ at iterate L is

PNGΩ [L̃] = argmin
Ľ∈Ω

Tr
[(
Ľ− L̃

)
Σ∗L
(
Ľ− L̃

)>]
,

whose optimality condition can be written as

Tr
[(
PNGΩ [L̃]− L̃

)
Σ∗L
(
Ľ− PNGΩ [L̃]

)>] ≥ 0, ∀Ľ ∈ Ω.

Letting L̃ = L1 and Ľ = L2, we have

Tr
[(
PNGΩ [L1]− L1

)
Σ∗L
(
PNGΩ [L2]− PNGΩ [L1]

)>] ≥ 0. (C.9)

31



Also, letting L̃ = L2 and Ľ = L1 yields

Tr
[(
PNGΩ [L2]− L2

)
Σ∗L
(
PNGΩ [L1]− PNGΩ [L2]

)>] ≥ 0. (C.10)

Combining (C.9) and (C.10) leads to

Tr
[(
L1 − L2 − PNGΩ [L1] + PNGΩ [L2]

)
Σ∗L
(
PNGΩ [L1]− PNGΩ [L2]

)>] ≥ 0,

namely,

Tr
[(
L1 − L2

)
Σ∗L
(
PNG

Ω [L1]− PNG
Ω [L2]

)>] ≥ Tr
[(
PNG

Ω [L1]− PNG
Ω [L2]

)
Σ∗L
(
PNG

Ω [L1]− PNG
Ω [L2]

)>]
,

which completes the proof.

C.7 Proof of Lemma B.4

Proof. Note that the Riccati equation for the inner problem (see (4.2)) can be rewritten as

P ∗L = Q̃L + Ã>L
[
I + P ∗LB(Ru)−1B>

]−1
P ∗LÃL. (C.11)

We now use the implicit function theorem [59] to show that P ∗L is a continuous function of L. In
fact, using the theorem can even show that P ∗L is continuously differentiable w.r.t. L. To this end, it
suffices to show that vec(P ∗L) is continuous w.r.t. vec(L).

By vectorizing both sides of (C.11), we have

Ψ
(
vec(P ∗L), vec(L)

)
: = vec(Q̃L) + vec

{
Ã>L
[
I + P ∗LB(Ru)−1B>

]−1
P ∗LÃL

}
= vec(Q̃L) +

(
Ã>L ⊗ Ã>L

)
vec
{[
I + P ∗LB(Ru)−1B>

]−1
P ∗L
}

= vec(P ∗L),

where we define a mapping Ψ : Rd2 × Rm2d → Rd2 as above, and also use the relationship
between Kronecker product and matrix vectorization that for any matrices A, B, and X with proper
dimensions

vec(AXB) =
(
B> ⊗A

)
vec(X).

Then by the chain rule of matrix differentials (see Theorem 9 in [62]), we know that

∂vec
{[
I + P ∗LB(Ru)−1B>

]−1
P ∗L
}

∂vec>(P ∗L)

= (P ∗L ⊗ I) ·
∂vec

{[
I + P ∗LB(Ru)−1B>

]−1}
∂vec>(P ∗L)

+ I ⊗
[
I + P ∗LB(Ru)−1B>

]−1
, (C.12)

where I denotes the identity matrices of compatible dimensions.

Now we show that

∂vec
{[
I + P ∗LB(Ru)−1B>

]−1}
∂vec>(P ∗L)

=
{
−B(Ru)−1B> ·

[
I + P ∗LB(Ru)−1B>

]−1}⊗ [I + P ∗LB(Ru)−1B>
]−1

. (C.13)

To this end, since both sides of (C.13) are matrices with dimension d2 × d2, we can compare the
element at the [(j−1)d+i]-th row and the [(l−1)d+k]-th column on both sides with i, j, k, l ∈ [d].
On the left-hand side, we first notice that

∂vec
{[
I + P ∗LB(Ru)−1B>

]−1}
∂[P ∗L]k,l

= −
[
I + P ∗LB(Ru)−1B>

]−1 · ∂[P ∗LB(Ru)−1B>]

∂[P ∗L]k,l
·
[
I + P ∗LB(Ru)−1B>

]−1
,

since for some matrix function F , (F−1)′ = −F−1F ′F−1. Also, due to the fact that

∂[P ∗LB(Ru)−1B>]

∂[P ∗L]k,l
=

 0[
B(Ru)−1B>

]
l,1
· · ·

[
B(Ru)−1B>

]
l,m

0

← k-th row,
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we have[
∂vec

{[
I + P ∗LB(Ru)−1B>

]−1}
∂vec>(P ∗L)

]
(j−1)d+i,(l−1)d+k

=
∂
[[
I + P ∗LB(Ru)−1B>

]−1
]
i,j

∂[P ∗L]k,l

= −
[[
I + P ∗LB(Ru)−1B>

]−1
]
i,k
·

d∑
q=1

[
B(Ru)−1B>

]
l,q
·
[[
I + P ∗LB(Ru)−1B>

]−1
]
q,j
. (C.14)

On the right-hand side of (C.13), we have[
−
{
B(Ru)−1B> ·

[
I + P ∗LB(Ru)−1B>

]−1
}
⊗
[
I + P ∗LB(Ru)−1B>

]−1
]

(j−1)d+i,(l−1)d+k

=
[
−B(Ru)−1B> ·

[
I + P ∗LB(Ru)−1B>

]−1
]
j,l
·
[[
I + P ∗LB(Ru)−1B>

]−1
]
i,k

=
[
−B(Ru)−1B> ·

[
I + P ∗LB(Ru)−1B>

]−1
]
l,j
·
[[
I + P ∗LB(Ru)−1B>

]−1
]
i,k
, (C.15)

where the first equation is due to the definition of Kronecker product, and the second one follows
from that the matrix

−B(Ru)−1B> ·
[
I + P ∗LB(Ru)−1B>

]−1

= −B(Ru)−1B> +B(Ru)−1B>
[
(P ∗L)−1 +B(Ru)−1B>

]−1
B(Ru)−1B>

is symmetric. Therefore, for any (i, j, k, l) ∈ [d], (C.14) and (C.15) are identical, which verifies
(C.13).

Combining (C.13) with (C.12), we have

∂vec
{[
I + P ∗LB(Ru)−1B>

]−1
P ∗L
}

∂vec>(P ∗L)
= I ⊗

[
I + P ∗LB(Ru)−1B>

]−1

+ (P ∗L ⊗ I) ·
{
−B(Ru)−1B> ·

[
I + P ∗LB(Ru)−1B>

]−1}⊗ [I + P ∗LB(Ru)−1B>
]−1

=
{
I − P ∗LB(Ru)−1B> ·

[
I + P ∗LB(Ru)−1B>

]−1}⊗ [I + P ∗LB(Ru)−1B>
]−1

=
[
I + P ∗LB(Ru)−1B>

]−1 ⊗
[
I + P ∗LB(Ru)−1B>

]−1
(C.16)

where the second equation uses the fact that (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and (A ⊗ B) +
(C ⊗ B) = (A + C) ⊗ B, and the last one uses matrix inversion lemma. Hence, we can write the
partial derivative of Ψ

(
vec(P ∗L), vec(L)

)
− vec(P ∗L) as

∂
[
Ψ
(
vec(P ∗L), vec(L)

)
− vec(P ∗L)

]
∂vec>(P ∗L)

=
{
Ã>L
[
I + P ∗LB(Ru)−1B>

]−1
}
⊗
{
Ã>L
[
I + P ∗LB(Ru)−1B>

]−1
}
− I. (C.17)

By definition of K(L) in (4.1), we have

Ã>L
[
I + P ∗LB(Ru)−1B>

]−1
=
{
ÃL
[
I +B(Ru)−1B>P ∗L

]−1
}>

=
[
ÃL −BK(L)

]>
.

By Lemma B.2, we know that L ∈ Ω implies that (K(L), L) is stabilizing, i.e., Ã>L
[
I +

P ∗LB(Ru)−1B>
]−1

has spectral radius less than 1. Therefore, the partial derivative in (C.17) is
invertible, since the eigenvalues of the first matrix on the right-hand side of (C.17) are the products
of any two eigenvalues of Ã>L

[
I + P ∗LB(Ru)−1B>

]−1
, which have absolute values smaller than 1.

In addition, Ψ
(
vec(P ∗L), vec(L)

)
− vec(P ∗L) is continuous w.r.t. both vec(P ∗L) and vec(L). Hence,

we obtain from the implicit function theorem that vec(P ∗L) is a continuously differentiable function
w.r.t. vec(L), so is P ∗L w.r.t. L for all L ∈ Ω, which completes the proof.
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C.8 Proof of Lemma B.8

Proof. The proof is composed of several important lemmas, following the same vein as the proof of
Lemma 16 in [25]. Note that Assumption 2.1 is assumed to hold throughout the proof, and will not
be repeated at each intermediate result.

We first provide the perturbation result for P ∗L in the following proposition. The results are based
on the perturbation theory of algebraic Riccati equations in [63, 64], since for given L, P ∗L is the
solution to the inner-loop Riccati equation (4.2) with cost matrix Q̃L = Q− L>RvL and transition
matrix ÃL = A− CL.
Proposition C.1 (Perturbation of P ∗L). For any L,L′ ∈ Ω, where Ω is defined in (4.11), there exists
some constant BLΩ > 0 such that if ‖L′ − L‖ ≤ BLΩ, it follows that

‖P ∗L′ − P ∗L‖ ≤ BPΩ · ‖L′ − L‖,
for some constant BPΩ > 0.

Proof. The proof is built upon the result of Theorem 4.1 in [64]. First, since both L,L′ ∈ Ω, we
have Q̃L′ , Q̃L ≥ 0, and also B(Ru)−1B> ≥ 0 for both L and L′. This validates the applicability of
[64, Theorem 4.1]. Also note that by Lemma B.2, both P ∗L and P ∗L′ exist and are positive definite.
First recalling the definition of K(L) in (4.1), we have the following relationship:

ÃL −BK(L) = ÃL −B(Ru +B>P ∗LB)−1B>P ∗LÃL = [I +B(Ru)−1B>P ∗L]−1ÃL,

where the second equation uses the matrix inversion lemma.

To simplify the notation, we let ∆ = L′ − L and also define the following quantities2:

δ =
∥∥ÃL′ − ÃL∥∥ = ‖C∆‖, f =

∥∥[I +B(Ru)−1B>P ∗L]−1
∥∥, g = ‖B(Ru)−1B>‖

φ =
∥∥[I +B(Ru)−1B>P ∗L]−1ÃL

∥∥, γ = fδ(2φ+ fδ), ψ =
∥∥P ∗L · [I +B(Ru)−1B>P ∗L]−1

∥∥
TL = I−

[
ÃL −BK(L)

]> ⊗ [ÃL −BK(L)
]>
, ` = ‖T−1

L ‖
−1, H = P ∗L[I +B(Ru)−1B>P ∗L]−1ÃL

p =
∥∥T−1

L

[
I⊗H> + (H> ⊗ I)Π

]∥∥, ε =
1

`

∥∥∆RvL+ L>Rv∆ + ∆>Rv∆
∥∥+

(
p+

ψδ

`

)
‖C∆‖

α = f(‖ÃL‖+ ‖C∆‖), θ =
`

φ+
√
φ2 + `

,

where Π is the vec-permutation matrix [65, pp. 32-34]. Also, from Lemma B.2, we know that
ÃL −BK(L) is stabilizing, which thus implies that ` is finite and

` = 1/‖T−1
L ‖ = σmin(TL) > 0. (C.18)

We note that since Ω is a compact set ofL, and σmin(TL) is a continuous function ofL, ` is uniformly
lower bounded above zero for any L ∈ Ω.

Since the term ‖∆G‖ in [64, Theorem 4.1] is zero here, the first condition in (4.40) of [64] is trivially
satisfied. For the other two conditions in (4.40) there, we require the following sufficient conditions
to hold

1− fgξ∗ ≥ 0,
fδ + φfgξ∗

1− fgξ∗
≤ θ, (C.19)

where ξ∗ is d efined as ξ∗ = (2`ε) · (`/2 + `fgε)−1. Note that if we additionally require
γ = fδ(2φ+ fδ) ≤ f‖C∆‖(2φ+ 2`+ f‖C∆‖) ≤ 2f(φ+ `)‖C‖‖∆‖+ f2‖C‖2‖∆‖2 ≤ `/2, (C.20)

then the definition of ξ∗ here is strictly larger than that in [64]. Thus, if such an ξ∗ satisfies (C.19),
then the other two conditions in (C.19) can be satisfied, too. Moreover, if we also let

ε =
1

`

∥∥∆RvL+ L>Rv∆ + ∆>Rv∆
∥∥+

(
p+

ψδ

`

)
‖C∆‖

≤ 1

`

(
2‖RvL‖‖∆‖+ ‖Rv‖‖∆‖2

)
+
(
p+

ψδ

`

)
‖C∆‖ ≤ (`/2)2

2`fg(`+ 2α)
=

`

8fg(`+ 2α)
(C.21)

2Note that we change some of the notations used in [64, Theorem 4.1] in order to: i) avoid the conflict with
our notations; ii) simplify the bound for better readability.
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hold, then since γ ≤ `/2 from (C.20), the right-hand side of (C.21) satisfies

(`/2)2

2`fg(`+ 2α)
≤ (`− γ)2

`fg(`− γ + 2α+
√

(`− γ + 2α)2 − (`− γ)2
.

This implies that the condition in (4.41) in [64] holds. Then, we obtain from Theorem 4.1 in [64]
that∥∥P ∗L′ − P ∗L∥∥ ≤ ξ∗ =

2`ε

`/2 + `fgε
≤ 4ε =

4

`

∥∥∆RvL+ L>Rv∆ + ∆>Rv∆
∥∥+ 4

(
p+

ψδ

`

)
‖C∆‖

≤ 8

`
‖RvL‖‖∆‖+

4

`
‖Rv‖‖∆‖2 + 4p‖C‖‖∆‖+ 4

ψ

`
‖C‖2‖∆‖2. (C.22)

Now we discuss sufficient conditions of (C.19), (C.20), and (C.21), to ensure a perturbation bound
on P ∗L as desired from (C.22). The two conditions in (C.19) can be written as

fg
2ε

1/2 + fgε
≤ 1 =⇒ fgε ≤ 1/2, fδ +

(
φ+ θ

)
fgξ∗ ≤ θ, (C.23)

where one sufficient condition for the second one to hold is

fδ + 4(φ+ θ)fgε ≤ θ, (C.24)

since ξ∗ ≤ 2ε/(1/2) = 4ε. Note that since fδ ≥ 0 and fgε ≥ 0, (C.24) holds implies that
fgε ≤ 1/2. Hence we only need a sufficient condition for (C.24) to hold, which can be the following
one

f‖C‖‖∆‖+ 4(φ+ θ)fg

(
2

`
‖RvL‖‖∆‖+

1

`
‖Rv‖‖∆‖2 + p‖C‖‖∆‖+

ψ

`
‖C‖2‖∆‖2

)
≤ θ. (C.25)

(C.25) can be satisfied if the following condition on ‖∆‖ holds:

‖∆‖ ≤ min

{
‖C‖+ 4(φ+ θ)g(2‖RvL‖/`+ p‖C‖)

4(φ+ θ)g(‖Rv‖/`+ ψ‖C‖2/`) ,
θ

2f‖C‖+ 8f(φ+ θ)g(2‖RvL‖/`+ p‖C‖)

}
.

(C.26)

Moreover, the condition in (C.20) gives

2f(φ+ `)‖C‖‖∆‖+ f2‖C‖2‖∆‖2 ≤ `/2, (C.27)

which can be satisfied by the following condition on ‖∆‖:

‖∆‖ ≤ min

{
2(φ+ `)

f‖C‖
,

`

8f(φ+ `)‖C‖

}
. (C.28)

Also, by letting

2α = 2f(‖ÃL‖+ ‖C∆‖) ≤ 2f(‖ÃL‖+ ‖C‖) (C.29)

=⇒ `

8fg(`+ 2α)
≥ `

8fg[`+ 2f(‖ÃL‖+ ‖C‖)]
,

the condition in (C.21) can thus be satisfied if we let

1

`

(
2‖RvL‖‖∆‖+ ‖Rv‖‖∆‖2

)
+ (p+ 1)‖C‖‖∆‖+

ψ

`
‖C‖2‖∆‖2 ≤ `

8fg[`+ 2f(‖ÃL‖+ ‖C‖)]
.

(C.30)

Note that conditions (C.29)-(C.30) can be satisfied if

‖∆‖ ≤ min

{
1,

2‖RvL‖+ (p+ 1)`‖C‖
‖Rv‖+ ψ‖C‖2

,
`

16fg[`+ 2f(‖ÃL‖+ ‖C‖)](‖RvL‖/`+ 2(p+ 1)‖C‖)

}
.

(C.31)

Thus, under (C.26), (C.28), and (C.31), the bound (C.22) can be further written as∥∥P ∗L′ − P ∗L∥∥ ≤ [ ‖C‖
(φ+ θ)g

+
16‖RvL‖

`
+ 8p‖C‖

]
· ‖∆‖, (C.32)
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where the inequality follows by using the first bound of ∆ in the min of (C.26). It is straightforward
to see that all the upper bounds on ‖∆‖ from (C.26), (C.28), and (C.31) are lower bounded above
zero, since: i) `, θ and ‖C‖ are all strictly above zero (see (C.18)), so are all the numerators of the
bounds in (C.26), (C.28), and (C.31); ii) the denominators of the bounds are all finite and bounded
above, due to the boundedness of L, i.e., the boundedness of Ω, and the boundedness of P ∗L from
Lemma B.2. In addition, note that all the quantities used in the bounds on ‖∆‖ are norms of matrices
composed of L and P ∗L, which are both continuous functions of L (see Lemma B.4 on the continuity
of P ∗L), over the compact set Ω. Hence, there exists some constant BLΩ > 0, which is the infimum of
the bounds on ‖∆‖ over Ω. Also, from (C.32), there exists some

BPΩ =
‖C‖

(φ+ θ)g
+

16‖RvL‖
`

+ 8p‖C‖,

such that ‖P ∗L′ − P ∗L‖ ≤ BPΩ · ‖L′ − L‖, which completes the proof.

We then need to establish the perturbation of K(L) as in the following lemma.
Lemma C.2. For anyL,L′ ∈ Ω, recalling the definition ofK(L) in (4.1), there exists some constant
BLΩ > 0 such that if

‖L′ − L‖ ≤ min

{
BLΩ,
‖B‖ · (BPΩ‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖)

BPΩ‖B‖‖C‖

}
, (C.33)

it follows that

‖K(L′)−K(L)‖ ≤ 2‖B‖ · (BPΩ‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖)
σmin(Ru)

· ‖L′ − L‖,

where BLΩ,BPΩ are as defined in the proof of Proposition C.1.

Proof. By definition, it holds that

(Ru +B>P ∗
L̃
B)K(L̃) = B>P ∗

L̃
ÃL̃

for both L̃ = L and L̃ = L′. Subtracting both equations yields

B>(P ∗L′ − P ∗L)BK(L) + (Ru +B>PL′B)[K(L′)−K(L)] = B>(P ∗L′ − P ∗L)ÃL′ +B>P ∗LC(L− L′),
which further gives

‖K(L′)−K(L)‖ = ‖(Ru +B>PL′B)−1B>(P ∗L′ − P ∗L)[ÃL −BK(L) + C(L− L′)]
+ (Ru +B>PL′B)−1B>P ∗LC(L− L′)‖

≤ ‖(Ru +B>PL′B)−1‖‖B‖
[
‖P ∗L′ − P ∗L‖

(
‖ÃL −BK(L)‖+ ‖C‖‖L′ − L‖

)
+ ‖P ∗L‖‖C‖‖L′ − L‖

]
≤ ‖B‖
σmin(Ru)

‖P ∗L′ − P ∗L‖
(
‖ÃL −BK(L)‖+ ‖C‖‖L′ − L‖

)
+

‖B‖
σmin(Ru)

‖P ∗L‖‖C‖‖L′ − L‖.

Combined with the bound on ‖P ∗L′ − P ∗L‖ in Proposition C.1, we obtain that

‖K(L′)−K(L)‖ ≤ ‖B‖ · (B
P
Ω‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖)

σmin(Ru)
‖L′ − L‖+

BPΩ‖B‖‖C‖
σmin(Ru)

‖L′ − L‖2,

which combined with the bound on (C.33) gives the desired result.

Now we are ready to establish the perturbation of Σ∗L. We start by defining a linear operator on
symmetric matrices T ∗L (·):

T ∗L (X) :=

∞∑
t=0

[A−BK(L)− CL]tX[A−BK(L)− CL]t
>
,

and its induced norm as

‖T ∗L ‖ := sup
X

T ∗L (X)

‖X‖
,

where sup is taken over all non-zero symmetric matrices. Also, we let Σ0 = E(x0x
>
0 ). Then we

can show that the induced norm ‖T ∗L ‖ is bounded as follows.
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Lemma C.3. For any L ∈ Ω, the induced norm pf ‖T ∗L ‖ is bounded as

‖T ∗L ‖ ≤
C(K(L), L)

µ · ζ
.

Proof. The proof mostly follows the proof of Lemma 17 in [25], except replacing (A−BK) there
by A−BK(L)− CL, and the upper bound of ‖Σ∗L‖ by C(K(L), L)/ζ due to Lemma B.6.

We can also define another operator F∗L(X) as

F∗L(X) = [A−BK(L)− CL]X[A−BK(L)− CL]>,

which, by the same argument as Lemma 18 in [25], gives that
T ∗L = (I−F∗L)−1, (C.34)

where I is the identity operator. Hence, the following proof is to find the bound of
‖Σ∗L′ − Σ∗L‖ = ‖(T ∗L′ − T ∗L )(Σ0)‖ = ‖[(I−F∗L′)−1 − (I−F∗L)−1](Σ0)‖.

To this end, we first have the following bound on ‖F∗L −F∗L′‖.
Lemma C.4. For any L,L′ ∈ Ω, it follows that
‖F∗L′ −F∗L‖ ≤ 2‖A−BK(L)− CL‖

(
‖B‖‖K(L′)−K(L)‖+ ‖C‖‖∆‖

)
+ ‖B‖2‖K(L′)−K(L)‖2 + ‖C‖2‖∆‖2 + 2‖B‖‖C‖‖K(L′)−K(L)‖‖∆‖.

Proof. Let ∆ = L′ − L, then for any symmetric matrix X ,

(F∗L′ −F∗L)(X) =− [A−BK(L)− CL]X
{
B[K(L′)−K(L)] + C∆

}>
−
{
B[K(L′)−K(L)] + C∆

}
X[A−BK(L)− CL]>

+
{
B[K(L′)−K(L)] + C∆

}
X
{
B[K(L′)−K(L)] + C∆

}>
,

which leads to the desired norm bound by using ‖AX‖ ≤ ‖A‖‖X‖ for any operator A.

Moreover, we have the following argument similar to Lemma 20 in [25].
Lemma C.5. If ‖T ∗L ‖‖F∗L′ − F∗L‖ ≤ 1/2, and both (K(L′), L′) and (K(L), L) are stabilizing.
Then

‖(T ∗L′ − T ∗L )(Σ)‖ ≤ 2‖T ∗L ‖‖F∗L′ −F∗L‖‖T ∗L (Σ)‖ ≤ 2‖T ∗L ‖2‖F∗L′ −F∗L‖‖Σ‖.

Proof. The proof follows directly from that of Lemma 20 in [25], which is omitted here for brevity.

We are now ready to prove the perturbation of Σ∗L. To simplify the notation, let

BKΩ =
2‖B‖ ·

(
BPΩ‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖

)
σmin(Ru)

,

then BKΩ > 0. By Lemmas C.2 and C.4, for any L,L′ ∈ Ω, letting ∆ = L′ − L, if

‖∆‖ ≤ min

{
BL

Ω,
‖B‖

[
BP

Ω‖ÃL −BK(L)‖+ ‖P ∗L‖‖C‖
]

BP
Ω‖B‖‖C‖

,
2
(
‖ÃL −BK(L)‖+ 1

)(
BK

Ω ‖B‖+ ‖C‖
)(

BK
Ω

)2‖B‖2 + ‖C‖2 + 2BK
Ω ‖B‖‖C‖

}
,

then
‖F∗L′ −F∗L‖ ≤ 2‖ÃL −BK(L)‖

(
BKΩ ‖B‖‖∆‖+ ‖C‖‖∆‖

)
+
(
BKΩ
)2‖B‖2‖∆‖2 + ‖C‖2‖∆‖2 + 2‖B‖‖C‖BKΩ ‖∆‖2

≤ 2
(
‖ÃL −BK(L)‖+ 1

)(
BKΩ ‖B‖‖∆‖+ ‖C‖‖∆‖

)
+
(
BKΩ
)2‖B‖2‖∆‖2 + ‖C‖2‖∆‖2 + 2‖B‖‖C‖BKΩ ‖∆‖2

≤ 4
(
‖ÃL −BK(L)‖+ 1

)(
BKΩ ‖B‖+ ‖C‖

)
· ‖∆‖,

where the first inequality uses Lemma C.2, and the second inequality is due to the third term in the
min of the upper bound on ‖∆‖. This completes the proof of Lemma B.8.
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Lemma C.6. For any disjoint sets A,B ⊆ Rm×n, if A is compact, and if B is closed, then there
exists some ω > 0, such that for any A ∈ A and B ∈ B, ‖A−B‖ ≥ ω.

Proof. Assume that the conclusion does not hold. Let An ∈ A and Bn ∈ B be chosen such that
‖An−Bn‖ → 0 as n→∞. SinceA is compact, there exists a convergent subsequence of {An}n≥0,
denoted by {Anm}m≥0, that converges to some A ∈ A. Hence, we have

‖A−Bnm‖ ≤ ‖A−Anm‖+ ‖Anm −Bnm‖ → 0,

as m → ∞. This implies that A is a limit point of B. Since B is closed, we have A ∈ B, which
leads to a contradiction and thus completes the proof.
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D Simulation Details

Alternating-Gradient (AG) Methods.

AG methods follows the idea in [28], which are based on our nested-gradient methods, but at each
outer-loop iteration, the inner-loop gradient-based updates only perform a finite number of iterations,
instead of converging to the exact solutionK(Lt) as nested-gradient methods. The updates are given
in Algorithm 4, whose performance is showcased in Figures 3 and 4, showing that AG methods
converge to the NE in both settings.

Algorithm 4 Alternating-Gradient (AG) Methods
1: Input: (K0, L0) that is stabilizing
2: for t = 0, · · · , T − 1 do
3: for τ = 0, · · · T − 1 do
4:

Policy Gradient: Kτ+1 = Kτ − η∇KC(Kτ , Lt)],

5: Or

Natural Policy Gradient: Kτ+1 = Kτ − η∇KC(Kτ , Lt)]Σ
−1
Kτ ,Lt

,

6: Or

Gauss-Newton: Kτ+1 = Kτ − η(Ru +B>PKτ ,LtB)−1∇KC(Kτ , Lt)]Σ
−1
Kτ ,Lt

,

7: end for
8:

Policy Gradient: Lt+1 = Lt + η∇LC(KT , Lt)],

9: Or

Natural Policy Gradient: Lt+1 = Lt + η∇LC(KT , Lt)]Σ−1
KT ,Lt

,

10: Or

Gauss-Newton: Lt+1 = Lt + η(−Rv + C>PKT ,LtC)−1∇LC(KT , Lt)]Σ−1
KT ,Lt

,

11: end for
12: Return the iterate (KT , LT ).

Gradient-Descent-Ascent (GDA) Methods.

Note that GDA and its variants with simultaneous updates have drawn increasing attention recently
for solving saddle-point problems [41, 43, 45, 46], mainly due to their popularity in training GANs.
The algorithms perform gradient descent for the minimizer and ascent for the maximizer, simulta-
neously. The updates are given in Algorithm 5, whose performance is showcased in Figures 5 and
6, showing that GDA methods converge to the NE in both settings.
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Algorithm 5 Gradient-Descent-Ascent (GDA) Methods
1: Input: (K0, L0) that is stabilizing
2: for t = 0, · · · , T − 1 do
3:

Policy Gradient: Kt+1 = Kt − η∇KC(Kt, Lt)]

Lt+1 = Lt + η∇LC(Kt, Lt)],

4: Or

Natural Policy Gradient: Kt+1 = Kt − η∇KC(Kt, Lt)]Σ
−1
Kt,Lt

Lt+1 = Lt + η∇LC(Kt, Lt)]Σ
−1
Kt,Lt

,

5: Or

Gauss-Newton: Kt+1 = Kt − η(Ru +B>PKt,LtB)−1∇KC(Kt, Lt)]Σ
−1
Kt,Lt

Lt+1 = Lt + η(−Rv + C>PKt,LtC)−1∇LC(Kt, Lt)]Σ
−1
Kt,Lt

,

6: end for
7: Return the iterate (KT , LT ).
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Figure 3: Performance of the three AG methods for Case 1 where Assumption 2.1 ii) is satisfied. (a)
shows the monotone convergence of the expected cost C(K(L), L) to the NE cost C(K∗, L∗); (b)
shows the convergence of the gradient mapping norm square; (c) shows the change of the smallest
eigenvalue of Q̃L = Q− L>RvL.
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Figure 4: Performance of the three AG methods for Case 2 where Assumption 2.1 ii) is not satisfied.
(a) shows the monotone convergence of the expected cost C(K(L), L) to the NE cost C(K∗, L∗); (b)
shows the convergence of the gradient mapping norm square; (c) shows the change of the smallest
eigenvalue of Q̃L = Q− L>RvL.
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Figure 5: Performance of the three GDA methods for Case 1 where Assumption 2.1 ii) is satisfied.
(a) shows the monotone convergence of the expected cost C(K(L), L) to the NE cost C(K∗, L∗); (b)
shows the convergence of the gradient mapping norm square; (c) shows the change of the smallest
eigenvalue of Q̃L = Q− L>RvL.
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Figure 6: Performance of the three GDA methods for Case 2 where Assumption 2.1 ii) is not
satisfied. (a) shows the monotone convergence of the expected cost C(K(L), L) to the NE cost
C(K∗, L∗); (b) shows the convergence of the gradient mapping norm square; (c) shows the change
of the smallest eigenvalue of Q̃L = Q− L>RvL.
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