
A Discussion of other solution concepts based on correlation

The classical notion of correlated equilibrium is the one introduced by Aumann [1] for normal-form
games. Its definition for EFGs is as follows, and it employs the equivalent normal form of the game.
Definition 3. A correlated equilibrium (CE) of an EFG is a probability distribution x∗ ∈ X such
that, for every i ∈ P , and for every σi, σ′i ∈ Σi, it holds:

∑

σ−i∈Σ−i

x∗(σi, σ−i) (ui(σi, σ−i)− ui(σ′i, σ−i)) ≥ 0.

A CE can be interpreted in terms of a mediator who, ex ante the play, draws the joint normal-form plan
σ∗ ∈ Σ according to a publicly known x∗ ∈ X , and privately communicates each recommendation
σ∗i to the corresponding player. After observing their recommended plan, each player decides whether
to follow it or not.

CCEs (Definition 1) differ from CEs in that a CCE only requires that following the suggested plan is
a best response in expectation, before the recommended plan is actually revealed. In both CE and
CCE, the entire vector of recommendations σ∗ = (σ∗i)i∈P , specifying a move for each infoset, is
computed before the playing phase of the game (as opposed to other solution concepts involving
communication [16, 29]).

von Stengel and Forges [40] introduced the notion of extensive-form correlated equilibrium (EFCE).
In this solution concept, each recommended action is assumed to be in a sealed envelope and is
revealed only when the player reaches the relevant infoset (i.e., the infoset where she can make
that move). Therefore, EFCEs require recommendations to be delivered during game execution,
which makes them more demanding in terms of communication requirements than CEs and CCEs.
The size of the signal that has to be sampled is the same in all the three solution concepts, and it
has polynomial size (one action for each infoset). The following relation holds between the sets of
equilibria described above: CE ⊆ EFCE ⊆ CCE, see [40] for further details.

B Omitted proofs for inapproximability results

Theorem 1. Given a two-player EFG with Nature, the problem of computing a social-welfare-
maximizing CCE is not in Poly-APX unless P = NP. 9

Proof. We provide a reduction from SAT. Given a SAT instance (C, V), we build a two-player EFG
with Nature Γε(C, V) with the following structure:

• The game starts in h∅ ∈ I∅, where player 1 chooses an action between aI and aO. In the
first case, the game goes on with h∅ · aI = hN. Otherwise, the game ends with u1(z) = 1
and u2(z) = −1 + ε.
• At state hN, Nature selects an action among {aφ | φ ∈ C} uniformly at random, with
hN · aφ = hφ.

• Each state hφ constitutes a player 1’s infoset Iφ. At Iφ, player 1 chooses an action in
{aφ,l | l ∈ φ}, where l denotes a literal in φ. Then, hφ · aφ,l = hφ,l.

• All states hφ,l such that l = v or l = v̄ for some v ∈ V belong to the same player 2’s infoset
Iv . At Iv , player 2 has two actions available, namely av and av̄ .

• Then, the game ends and players’ payoffs u1(z) = u2(z) are equal to 1 if and only if
z = hφ,l · al, while they are 0 otherwise.

Intuitively, each of the 2|V | player 2’s plans corresponds to a truth assignment τ where variable v ∈ V
is set to TRUE (resp., FALSE) if av (resp., av̄) is played at Iv . Moreover, a player 1’s plan determines
whether the game is played (aI) or not (aO) and, in the first case, it selects one literal for each clause
φ ∈ C (corresponding to the action played at infoset Iφ). If player 1 plays aI, Nature chooses a clause
φ ∈ C uniformly at random, and, then, the players’ payoffs are 1 if and only if player 1 selected a
literal of φ evaluating to TRUE under τ . Thus, in this case, players’ expected payoffs are equal to the
number of literals selected by player 1 evaluating to TRUE under τ , divided by the number of clauses

9Poly-APX is the class of optimization problems admitting a polynomial-time poly(η)-approximation
algorithm, where poly(η) is a polynomial function of the input size η [2].

12

|C|. As a result, if SAT is satisfiable, then there exists a joint plan where players’ expected payoffs
are equal to 1. It is sufficient that player 2 plays the plan associated to a satisfying truth assignment
τ , while player 1 selects a literal evaluating to TRUE under τ for each clause. This is also a CCE
with maximum social welfare equal to 2, as it provides the players with their maximum expected
payoffs. Instead, if SAT is not satisfiable, then any CCE must recommend player 1 to play aO at I∅,
otherwise her expected payoff would be strictly less than 1 and she would have an incentive to deviate
to action aO, reaching a payoff of 1. Hence, in this case, any CCE has social welfare ε. Now, let
ε = 1

2η , where η is the size of the SAT instance (ε can be encoded with a number of bits polynomial
in |C| and |V |). Assume there is a polynomial-time poly(η)-approximation algorithm A. If SAT is
satisfiable, A applied to Γε(C, V) would return a CCE with social welfare at least 2

poly(η) . Since, for
η sufficiently large, 2

poly(η) >
1
2η , A would allow us to decide in polynomial time whether SAT is

satisfiable, a contradiction unless P = NP.

Theorem 2. Given a three-player EFG without Nature, the problem of computing a social-welfare-
maximizing CCE is not in Poly-APX unless P = NP.

Proof. We use a reduction similar to that in Theorem 1. We build a three-player EFG Γ̂ε(C, V) such
that:

• The game starts in h∅ ∈ I∅, as Γ(C, V).
• At state hN, player 3 plays an action {aO,φ | φ ∈ C} ∪ {aI}, with hN · aI = hI, hN · aO,φ =
hO,φ.
• All states hO,φ and hI belong to a player 1’s infoset IN, where she selects an action among
{aN,φ | φ ∈ C}.

• Then, if player 3 played aI, hI · aN,φ = hφ and the games goes on as Γ(C, V) (with
player 3’s payoffs set to zero). Instead, if player 3 played an action aO,φ, the game ends
with 2u1(z) = 2u2(z) = −u3(z) = |C|

|C|−1 if z = hO,φ · aN,φ′ and φ 6= φ′, while
2u1(z) = 2u2(z) = −u3(z) = −|C| if φ = φ′.

Intuitively, the introduction of a third player allows us to simulate the random move of Nature in
Γ(C, V), since, in any CCE of Γ̂(C, V), player 1 is recommended to play a uniform distribution at
infoset IN and player 3 is always told to play action aI. First, if player 3 is recommended an action
aO,φ with positive probability, then player 2 would have an incentive to switch to action aO at I∅.
Moreover, assuming player 3 is told to play aI, if player 1 is recommended to play some action aN,φ

with probability p > 1
|C| , then player 3 would have an incentive to switch to action aO,φ, as she

would get p|C| − (1− p) |C||C|−1 > 0, while she gets 0 by playing aI. Finally, a reasoning similar to
that for Theorem 1 concludes the proof.

C CFR-S

C.1 Example

Table 4 reports the game employed in the experiments of Figure 2, where the outer product of the
average strategies x̄T1 ⊗ x̄T2 obtained by RM does not converge to a CCE as T →∞ (i.e., for x̄T1 ⊗ x̄T2 ,
ε of the ε-CCE has a cyclic behavior and does not converge to zero).

1,0 0,1 0,0

0,0 2,0 0,1

0,1 0,0 1,0

Figure 4: A simple variation of the Shapley game.

13

C.2 Omitted proofs

The theoretical guarantees of CFR-S can be derived via the framework of Farina et al. [15], as
discussed in the following.

At each iteration t, let σti ∈ Σi be the normal-form plan sampled by player i and σt−i ∈ Σ−i be
the plans drawn by the other players. The utility experienced by player i at stage t is denoted by
uti(σ

t
i) := ui(σ

t
i , σ

t
−i). Players’ observations in CFR-S call for a slight variation in the definition of

cumulative regret. After T iterations, we define the cumulative regret experienced by player i as

R̃Ti := max
σ̂i∈Σi

T∑

t=1

(
uti(σ̂i)− uti(σti)

)
. (2)

The connection between the cumulative regret and the set of CCEs remains unchanged when the
regret is defined as in Equation (2), as shown by the following result (whose proof is similar to that
of [22, Proposition in Section 3]).

Theorem 6. If lim supT→∞
1
T R̃

T
i ≤ 0 almost surely for each player i ∈ P , then the empirical

frequency of play x̄T converges almost surely as T →∞ to the set of CCEs.

Proof. By definition of cumulative regret, and by taking its average, we have

lim sup
T→∞

1

T
max
σ̂i∈Σi

T∑

t=1

(
uti(σ̂i)− uti(σti)

)
≤ 0,

which holds almost surely. Let σt := (σti , σ
t
−i). It follows that, for each normal-form plan σ̂i ∈ Σi

we have
1

T

T∑

t=1

(
ui(σ̂i, σ

t
−i)− ui(σt)

)
=
∑

σ∈Σ

x̄T (σ) (ui(σ̂i, σ−i)− ui(σ)) .

Where x̄T (σ) is the empirical frequency of σ after T iterations. On any subsequence where x̄T
converges, that is x̄T → x∗ ∈ X , it holds almost surely, for each σ̂i ∈ Σi that

∑

σ∈Σ

x̄T (σ) (ui(σ̂i, σ−i)− ui(σ))→
∑

σ∈Σ

x∗(σ) (ui(σ̂i, σ−i)− ui(σ)) .

The result immediately holds for Definition 1.

In the following, we follow the approach of Farina et al. [15] to show how to decompose R̃Ti into
regret terms which are computed locally at player i’s infosets. This allows us to avoid working with
the (exponential-sized) normal form of an EFG even if R̃Ti is defined over player i’s normal-form
plans. R̃Ti can be minimized via the minimization of other suitably defined regrets computed locally
at player i’s infosets. In order to do this, we use the idea of laminar regret decomposition [15], but
reasoning only on vertices of Xi.
Given σi ∈ Σi, we denote by σi(I) the action selected in σi at infoset I ∈ Ii. Moreover, σi↓I is the
(sub)vector containing the actions selected in σi at I ∈ Ii and all its descendant infosets.

First, we denote with uti,I : A(I)→ R the immediate utility observed by player i at infoset I ∈ Ii,
during iteration t. For every a ∈ A(I), uti,I(a) is the utility experienced by player i if the game ends
after playing a at I , without passing through another player i’s infoset.

Then, the following is player i’s utility attainable at infoset I ∈ Ii when a normal-form plan σ̂i ∈ Σi
is selected:

V̂ tI (σ̂i↓I) := uti,I(σ̂i↓I(I)) +
∑

I′∈CI,σ̂i↓I (I)
V̂ tI′(σ̂i↓I′), (3)

where CI,a ⊆ Ii is the set of possible next player i’s infosets, given that she played action a ∈ A(I)
at infoset I ∈ Ii. We introduce a parameterized utility function, which is used to define regrets
locally at each infoset, and reads as follows:

ûti,I : a ∈ A(I) 7→ uti,I(a) +
∑

I′∈CI,a
V̂ tI′(σ

t
i↓I′). (4)

14

The utility function ûti,I preserves convexity of uti. Finally, we modify the notion of laminar regret,
as

R̂tI := max
a∈A(I)

T∑

t=1

ûti,I(a)−
T∑

t=1

ûti,I(σ
t
i(I)). (5)

Let V tI := V̂ tI (σti,↓I). Then, we introduce the cumulative regret at infoset I ∈ Ii, defined as

RT↓I := max
σ̂i↓I

T∑

t=1

V̂ tI (σ̂i↓I)−
T∑

t=1

V tI . (6)

Lemma 7. The cumulative regret at each infoset I ∈ Ii can be decomposed as

RT↓I = max
a∈A(I)

(
T∑

t=1

ûti,I(a) +
∑

I′∈CI,a
RT↓I′

−

T∑

t=1

ûti,I(σ
t
i(I)).

Proof. By definition of cumulative regret at I ∈ Ii we have that:

RT↓I := max
σ̂i↓I

T∑

t=1

V̂ tI (σ̂i↓I)−
T∑

t=1

V tI =

= max
σ̂i↓I

T∑

t=1

uti,I(σ̂i↓I(I)) +

∑

I′∈CI,σ̂t
i↓I (I)

V̂ tI′(σ̂i↓I′)

−

T∑

t=1

V tI =

= max
a∈A(I)

T∑

t=1

uti,I(a) +
∑

I′∈CI,a
max
σ̂i↓I′

T∑

t=1

V̂ tI′(σ̂i↓I′)

−

T∑

t=1

V tI .

Then, by employing Equation (6), we get

RT↓I = max
a∈A(I)

(
T∑

t=1

uti,I(a) +
∑

I′∈CI,a

(
RT↓I′ +

T∑

t=1

V tI′

)
−

T∑

t=1

V tI .

Finally, we obtain the result by rewriting terms according to Equation (4).

The following theorem shows that, in order to minimize R̃Ti , it is enough to minimize the laminar
regret locally at each I ∈ Ii as defined in Equation (5).

Lemma 8. The cumulative regret R̃Ti satisfies the following:

R̃Ti ≤ max
σ̂i∈Σi

∑

I∈Ii
ρσ̂iI R̂

T
I .

Proof. Consider a generic infoset I ∈ Ii. By exploiting Lemma 7 and Definition 5, we can write:

RT↓I = max
a∈A(I)

T∑

t=1

ûti,I(a) +
∑

I′∈CI,a
RT↓I′

−

T∑

t=1

ûti,I(σ
t
i(I)) ≤

≤ max
a∈A(I)

T∑

t=1

ûti,I(a) + max
a∈A(I)

∑

I′∈CI,a
RT↓I′ −

T∑

t=1

ûti,I(σ
t
i(I)) =

= R̂TI + max
a∈A(I)

∑

I′∈CI,a
RT↓I′ .

By starting from the root of the game and applying the above equation inductively, we obtain our
result.

15

The last result provides an immediate proof of the following.

Theorem 3. The empirical frequency of play x̄T obtained with CFR-S converges to a CCE almost
surely, for T →∞.

Proof. CFR-S minimizes each laminar regret R̂TI , as defined in Equation (5), through standard RM,
which guarantees that lim supT→∞

1
T R̂

T
I ≤ 0 almost surely. Therefore, lim supT→∞

1
T R̃

T
i ≤ 0

almost surely (Lemma 8), which implies that the empirical frequency of play converges almost surely
to a CCE for T →∞ (Theorem 6).

Finally, we observe that, at each iteration t and infoset I ∈ Ii, σti(I) is selected according to the
strategy πti,I recommended by the regret minimizer at infoset I . Thus, σti is drawn with probability∏
I∈Ii π

t
i,I,σti(I)

, which is equal to xti(σ
t
i), where xti ∈ Xi is the normal-form strategy realization

equivalent to the behavioral strategy πti .

D CFR-Jr

D.1 Algorithm pseudocode

For the sake of completeness and clarity, in Algorithm 3 we provide the pseudocode of the CFR-Jr
algorithm, which uses a vanilla implementation of the CFR algorithm as a subroutine.

Algorithm 3 CFR-Jr
1: function CFR-JR(Γ)
2: Initialize the joint strategy x̄ to all zeros
3: t← 0
4: while t < T do
5: for all i ∈ P do
6: πti ← CFR(Γ, i)
7: xti ← NF-STRATEGY-RECONSTRUCTION(πti)

8: x̄← x̄+
⊗

i∈P x
t
i .

⊗
i∈P x

t
i is joint distribution xt defined as the product of the players’

normal-form strategies
9: t← t+ 1

10: return x̄T = x̄/T

CFR-Jr maintains a variable x̄ which stores the sum of the joint probability distributions xt (notice
that it may be compactly represented using a dictionary, as for xi in Algorithm 2). CFR-Jr executes,
at each t, an iteration of the CFR algorithm (Line 6). In particular, the CFR subroutine executes a
step of vanilla CFR, including the update of regrets and behavioral strategies. In addition, at each
iteration t, CFR-Jr constructs normal-form strategies xti (one per player i ∈ P) which are realization
equivalent to the behavioral strategies πti obtained via CFR (Line 7). Then the product xt of the
players’ normal-strategies is computed and added to x̄ (Line 8). Notice that x̄ is not used by the CFR
subroutine to update the players’ strategies and regrets. Finally, CFR-Jr returns the x̄ divided by T ,
which is the average x̄T .

D.2 Omitted proofs

In order to give the complete proof of Theorem 4, we first need to prove two lemmas concerning the
existence of a normal-form plan σ̄i such that ω̄ = minz∈Z(σ̄i) ωz > 0 whenever the vector ω has at
least one strictly positive component.

To simplify the presentation, we introduce some additional notation. Extending the definition of
Z(σi), let Z(I, a) be the set of terminal nodes potentially reachable from infoset I ∈ Ii when player i
selects a ∈ A(I). Moreover, we denote by Z(σi, I, a) the set of terminal nodes potentially reachable
from I after playing action a at I , and then following the actions prescribed by σi ∈ Σi. Z(I) and
Z(σi, I) are defined analogously.

16

Observe that, in Line 5 of Algorithm 2, the normal-form plan σ̄i ∈ arg maxσi∈Σi minz∈Z(σi) ωz can
be recursively built, while traversing the game tree. Let Σωi be a subset of Σi recursively defined as
follows:

Σωi :=

{
σ̄i ∈ Σi|∀I ∈ Ii, σ̄i(I) ∈ arg max

a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz

}
. (7)

Any σ̄i ∈ Σωi is a feasible result of Line 5 in Algorithm 2.
Lemma 9. Given σ̄i ∈ Σωi , it holds that

max
a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz = 0 ∀I ∈ Ii,

if and only if ω = 0. 10

Proof. The proof is by induction on the depth of the game tree. Let CI,a be the set of player i’s
infosets immediately reachable by playing action a ∈ A(I) at infoset I ∈ Ii.
As for the base case of the induction, let us consider I ∈ Ii such that CI,a = ∅ for all a ∈ A(I). By
the definition of ω we have: ωz = ωz′ = ρπiI πi,I,a, for each a ∈ A(I), and each pair z, z′ ∈ Z(I, a).
This implies

max
a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz = max
a∈A(I)

ρπiI πi,I,a = max
z∈Z(I)

ωz.

Clearly, the max of a non-negative function over a set is zero iff the function is zero for all the
elements of the set. Then,

max
a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz = max
z∈Z(I)

ωz = 0

iff ωz = 0 for all z ∈ Z(I).

As for the inductive step, let us consider a generic infoset I ∈ Ii. It holds that Z(σ̄i, I, ā) = Z(σ̄i, I)
if

ā ∈ arg max
a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz. (8)

By reasoning as above, we can conclude that max
a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz = 0 iff min
z∈Z(σ̄i,I,a)

ωz = 0 for all

a ∈ A(I). Now, take any pair (a′, I ′) ∈ A(I)× CI,a′ , by applying the above observation it follows
that

max
a∈A(I′)

min
z∈Z(σ̄i,I′,a)

ωz = min
z∈Z(σ̄i,I′,ā)

ωz = min
z∈Z(σ̄i,I′)

ωz,

where ā is computed as in (8). Being I ′ a descendant of I , we have that Z(I ′) ⊆ Z(I, a′) and, in
particular, Z(σ̄i, I

′) ⊆ Z(σ̄i, I, a
′). Thus, min

z∈Z(σ̄i,I,a′)
ωz = 0 implies that min

z∈Z(σ̄i,I′)
ωz = 0. By the

induction hypothesis, we have that for I ′ ∈ Ii following I ∈ Ii, it holds

max
a∈A(I′)

min
z∈Z(σ̄i,I′,a)

ωz = 0

iff ωz = 0 for every z ∈ Z(I ′). Then,

max
a∈A(I)

min
z∈Z(σ̄i,I,a)

ωz = 0 ⇔ min
z∈Z(σ̄i,I,a)

ωz = 0 ∀a ∈ A(I),

where the right term is true iff

max
a∈A(I′)

min
z∈Z(σ̄i,I′,a)

ωz = 0 ∀a′ ∈ A(I), I ′ ∈ CI,a′ .

This holds, by inductive hypothesis, iff

ωz = 0 ∀z ∈ Z(I ′), ∀a′ ∈ A(I), I ′ ∈ CI,a′ .
Given that Z(I) =

⋃
a′∈A(I),I′∈CI,a′ Z(I ′), the last condition holds iff ωz = 0 for all z ∈ Z(I),

which concludes the proof.

10We denote by 0 a column vector of suitable dimension with all its elements equal to 0.

17

Lemma 10. If ω > 0, then a normal-form plan σ̄i ∈ Σωi is such that minz∈Z(σ̄i) ωz > 0.

Proof. Let I∅ be the root infoset of player i. Observe that Z(σ̄i) = Z(σ̄i, I
∅, ā) if ā ∈

arg maxa∈A(I∅) minz∈Z(σ̄i,I∅,a) ωz . Applying Lemma 9 to infoset I∅, we have that

max
a∈A(I∅)

min
z∈Z(σ̄i,I∅,a)

ωz = min
z∈Z(σ̄i)

ωz = 0

iff ωz = 0 for every z ∈ Z(I∅) = Z. Since ωz ≥ 0 for all z ∈ Z, we have minz∈Z(σ̄i) ωz > 0 iff
ω > 0. Being this last condition always verified within the main loop of Algorithm 2, we have that a
normal-form plan σ̄i ∈ arg max

σi∈Σi

min
z∈Z(σi)

ωz is such that min
z∈Z(σ̄i)

ωz > 0.

Theorem 4. Algorithm 2 outputs a normal-form strategy xi ∈ Xi realization equivalent to a given
behavioral strategy πi, and it runs in time O(|Z|2). Moreover, xi has support size at most |Z|.

Proof. Time complexity. Given σ̄i, for each z ∈ Z(σ̄i) it holds ω̄ρσ̄iz = ω̄ = minz∈Z(σ̄i) ωz , and,
for each z /∈ Z(σ̄i), ω̄ρσ̄iz = 0. Then, after each iteration, we have ω ≥ 0. Moreover, it holds ωz̄ = 0
for each z̄ ∈ arg minz∈Z(σ̄i) ωz . Then, at each iteration, at least one component of ω goes from being
> 0, to 0. Given that ω is always non-negative, we have that the vector ω is zeroed in at most |Z|
iterations. Each iteration runs in O(max{|Ii|, |Z|}), as σ̄i can be recursively computed by iterating
on the infosets in a bottom-up fashion, while each ω update needs to consider each terminal node
at most once. Given that for each non-degenerate game tree (i.e., A(I) > 1 for all I ∈ Ii) we have
|Ii| ≤ |Z|, the overall complexity of the algorithm is O(|Z|2).

Support size. No normal-form plan can be selected more than once because: i) after σ̄i is selected,
at least one component of ω in Z(σ̄i) is zeroed; ii) σ̄i is selected so that minz∈Z(σ̄i) ωz > 0. Then,
the support of xi has size equal to the number of normal-form plans σ̄i selected at each iteration of
Algorithm 2, which is at most |Z|.
Realization equivalence. Let σ̄ki be the normal-form plan selected at the k-th iteration. By recur-
sively expanding

ωz ← ωz − ω̄ ρσ̄iz
we obtain the following (for clarity, we add apices indicating the iteration):

ωkz = ωk−1
z − ρσ̄

k
i
z min

z′∈Z(σ̄k−1
i)

ωk−1
z′ =

= ωk−2
z − ρσ̄

k−1
i
z min

z′∈Z(σ̄k−2
i)

ωk−2
z′ − ρ

σ̄ki
z min
z′∈Z(σ̄k−1

i)
ωk−1
z′ =

= . . . = ω0
z −

k∑

k′=1

ρ
σ̄k
′
i
z min

z′∈Z(σ̄k
′−1
i)

ωk
′−1
z′ .

Suppose that the algorithm alts at iteration k. Then ωk = 0, which gives:

ω0
z =

k∑

k′=1

ρ
σ̄k
′
i
z min

z′∈Z(σ̄k
′−1
i)

ωk
′−1
z′ .

Finally, we show that xi and πi are realization equivalent by checking that they force the same
distribution over Z. We have, for each z ∈ Z:

ρxiz =
∑

σi∈Σi

ρσiz xi(σi) =

=
∑

σi∈{σ̄k′i }kk′=1

ρσiz xi(σi) =

k∑

k′=1

ρ
σ̄k
′
i
z xi(σ̄

k′
i) =

=

k∑

k′=1

ρ
σ̄k
′
i
z min

z′∈Z(σ̄k
′−1
i)

ωk
′−1
z′ = ρπiz ,

where πi is the behavioral strategy given in input. This concludes the proof.

18

Theorem 5. If 1
TR

T
i ≤ ε for each player i ∈ P , then x̄T obtained with CFR-Jr is an ε-CCE.

Proof. First, let us recall that xt ∈ X is defined in such a way that xt(σ) =
∏
i∈P x

t
i(σi) for every

joint normal-form plan σ ∈ Σ, with σ = (σi)i∈P . By assumption, 1
TR

T
i ≤ ε implies the following:

max
σ̂i∈Σi

T∑

t=1

∑

σ−i∈Σ−i

ui(σ̂i, σ−i)
∏

j 6=i∈P
xtj(σj) +

−
T∑

t=1

∑

σi∈Σi

∑

σ−i∈Σ−i

ui(σi, σ−i)
∏

j∈P
xtj(σj)

 ≤ εT.

Moreover, since the condition holds for every i ∈ P , by re-writing the max operator we get,
∀i ∈ P, σ̂i ∈ Σi:

T∑

t=1

∑

σ−i∈Σ−i

ui(σ̂i, σ−i)
∏

j 6=i
xtj(σj) −

T∑

t=1

∑

σi∈Σi

∑

σ−i∈Σ−i

ui(σi, σ−i)
∏

j∈P
xtj(σj) ≤ εT.

Since
∑
σi∈Σi

xti(σi) = 1, it follows that
∑
σ−i∈Σ−i

ui(σ̂i, σ−i)
∏
j 6=i∈P x

t
j(σj) is equal to∑

σi∈Σi

∑
σ−i∈Σ−i

ui(σ̂i, σ−i)
∏
j∈P x

t
j(σj). Thus,

T∑

t=1

∑

σi∈Σi

∑

σ−i∈Σ−i

∏

j∈P
xtj(σj) (ui(σ̂i, σ−i)− ui(σi, σ−i)) ≤ εT ∀i ∈ P, σ̂i ∈ Σi.

Using the definition of x̄T , we obtain

T∑

t=1

∑

σi∈Σi

∑

σ−i∈Σ−i

x̄T (σi, σ−i) (ui(σ̂i, σ−i)− ui(σi, σ−i)) ≤ ε ∀i ∈ P, σ̂i ∈ Σi,

which proves that x̄T is an ε-CCE.

E Additional details on the experimental evaluation

In this section we provide further details on the experimental evaluation.

E.1 Experimental setup

The multi-player games instances that we employ are structured as follows.

Kuhn Poker. In Kuhn3-r (K3-r), each player initially pays one chip to the pot, and is dealt a single
private card. Then, players act in turns. The first player may check or bet (i.e., paying an additional
chip to the pot). The second player can either fold/call the bet, or check/bet after an initial check of
the first player. At this point, if no bets have been placed, the third player decides between checking
or betting. Otherwise, she can either fold or call. If the third player bets, then the others have to
choose between folding or calling. At the showdown, the player with the highest card who has not
folded wins all the chips in the pot.

Leduc Hold’em Poker. We employ three-player variants larger than the two-player version usually
employed [37]. In our enlarged variants, Leduc3-r (L3-r) contains three suits and r ≥ 3 card ranks
(i.e., it contains triples of cards A, 2, . . . , r for a total of 3 r cards). Each player initially pays one
chip to the pot, and is dealt a single private card. After a first round of betting (with betting parameter
k1), a community card is dealt face up. Then, a second round of betting is played (with betting
parameter k2). Finally, a showdown occurs and players that did not fold reveal their private cards. If
a player pairs her card with the community card, she wins the pot. Otherwise, the player with the
highest private card wins. In the event that all players have the same private card, they draw and split
the pot. Betting rounds follow the same rules of Kuhn Poker. We set k1 = 2 and k2 = 4. These

19

are the numbers of chips that a player has to pay to bet/call in the first and second round of betting,
respectively.

Goofspiel. In addition to Poker games, we consider the game of Goofspiel. In this game, cards rank
A (low), 2, . . ., 10, J, Q, K (high). When scoring points, the Ace is worth 1 point, cards 2-10 their
face value, Jack 11, Queen 12, and King 13. Goofspielp-r (p is the number of players) employs
p + 1 suits, each containing cards A, . . .,r. One suit is singled out as the prizes. The prizes are
shuffled and placed between the players, with the top card turned face up. Each of the remaining
suits becomes the hand of one of the players. The game proceeds in rounds. Each player selects a
card from her hand, keeping her choice secret from the opponent. Once all players have selected a
card, they are simultaneously revealed, and the player with the highest bid wins the prize card. We
employ the following tie breaking rules to obtain different kinds of instances. Some of them (e.g.,
Accumulate) are almost constant-sum games (i.e., constant sum for all but few outcomes), while
others (e.g., Discard always) present larger differences in the sum of payoffs attainable at different
terminal nodes:

• Accumulate (A): the prize card goes to the player that selected the highest unique card. If
all players selected the same card, the prize card is taken aside and the game continues
unveiling the next one: the winner (if any) of the new round will take both prize cards. The
process is repeated until the tie is broken or the game ends, in which case all prize cards that
have been taken aside are discarded.

• Discard-if-all (DA): the prize card goes to the player that selected the highest unique card;
if all players selected the same card, the prize card is discarded.

• Discard-if-high (DH): if the tie is on the highest-valued card, then the prize card is discarded;
otherwise, the prize card goes to the player that selected the highest unique card.

• Discard always (AL): the prize card is discarded and the game goes on with the next round.

The game ends when the players terminate their cards. Players calculate their final utility by summing
up the value of the prize cards they won.

E.2 Full experimental results

CFR, CFR-S and CFR-Jr algorithms have all been implemented in the Python 3 language, and CG
employs the GUROBI 8.0 MILP solver to solve the pricing problems. All the experiments are run
with a 24 hours time-limit on a UNIX machine with a total of 32 cores working at 2.3 GHz, equipped
with 128 GB of RAM.

Tables 2 and 3 provide the complete comparison between CFR-S, CFR-Jr, and CG. We remark that
the utility ratio swAPX/swOPT is computed only for general-sum instances, and that by >24h we mean
that the execution was killed by the time limit imposed on the system.

Game Tree size
∆

CFR-S CG#infosets α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001 α = 0.0005 swAPX/swOPT

K3-6 72 6 0.22s 1.41s 24m20s 9h15m > 24h > 24h - 3h47m
K3-7 84 6 0.62s 4.22s 1h3m 17h11m > 24h > 24h - 14h37m
K3-10 120 6 1.89s 22.69s 11h19m > 24h > 24h > 24h - > 24h

L3-4 1200 21 4.0s 10m33s > 24h > 24h > 24h > 24h - > 24h
L3-6 2664 21 21.54s 2h5m > 24h > 24h > 24h > 24h - > 24h
L3-8 4704 21 35.3s 13h55m > 24h > 24h > 24h > 24h - > 24h

G2-4-A? 4856 10 1m11s 10m31s 27h3m > 24h > 24h > 24h 0.979 > 24h
G2-4-DA? 4856 10 12.83s 2m1s 53m28s 3h28m 4h48m 4h17m 0.918 > 24h
G2-4-DH? 4856 10 11.56s 1m19s 42m18s 2h7m 3h19m 3h28m 0.918 > 24h
G2-4-AL? 4856 10 15.01s 2m3s 43m18s 1h33m 4h4m 4h20m 0.919 > 24h
G3-4-A? 98508 10 6m19s 1h33m > 24h > 24h > 24h > 24h 0.995 > 24h

G3-4-DA? 98508 10 9m17s 1h13m 17h12m > 24h > 24h > 24h 0.986 > 24h
G3-4-DH? 98508 10 5m24s 47m33s 11h51m 19h40m 22h11m > 24h 0.886 > 24h
G3-4-AL? 98508 10 2m23s 32m34s 10h25m 15h32m 14h36m 17h30m 0.692 > 24h

R3-12? 3071 1 45.0s 1m44s 13m10s 35m38s 10h8m 3h8m 0.906 > 24h
R3-15? 24542 1 10m5s 21m30s 2h5m 4h28m 3h25m 7h50m 0.924 > 24h

Table 2: Running times and social welfare obtained by the CFR-S algorithm (for various levels of
accuracy), and the CG algorithm. General-sum instances are marked with ?.

20

Game Tree size
∆

CFR-Jr CG#infosets α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001 α = 0.0005 swAPX/swOPT

K3-6 72 6 1.03s 1.03s 4.55s 13.41s 1m7s 11m21s - 3h47m
K3-7 84 6 2.35s 2.35s 7.92s 14.33s 10m49s 51m27s - 14h37m
K3-10 120 6 7.21s 7.21s 17.2s 72.78s 31m41s 4h11m - > 24h

L3-4 1200 21 1.72s 1m15s 1h1m 6h10m > 24h > 24h - > 24h
L3-6 2664 21 8.2s 2m40s 2h35m 1h19m > 24h > 24h - > 24h
L3-8 4704 21 7m44s 20m22s 17h32m > 24h > 24h > 24h - > 24h

G2-4-A? 4856 10 5m28s 20m23s 4h3m 11h4m > 24h > 24h 0.994 > 24h
G2-4-DA? 4856 10 1m3s 1m36s 14m31s 56m6s > 24h > 24h 0.976 > 24h
G2-4-DH? 4856 10 1m10s 1m51s 16m27s 1h5m > 24h > 24h 0.976 > 24h
G2-4-AL? 4856 10 1m10s 1m48s 15m2s 55m43s > 24h > 24h 0.976 > 24h
G3-4-A? 98508 10 1h21s 1h3m 3h3m 4h13m 5h4m > 24h 0.999 > 24h

G3-4-DA? 98508 10 9m25s 12m18s 1h1m 1h50m > 24h > 24h 1.000 > 24h
G3-4-DH? 98508 10 13m59s 16m38s 2h21m 4h8m 8h50m 15h27m 1.000 > 24h
G3-4-AL? 98508 10 13m55s 1h21m 1h38m 5m2s > 24h > 24h 0.730 > 24h

R3-12? 3052 1 7.67s 16.94s 1m37s 3m19s 17m1s 24m6s 0.897 > 24h
R3-15? 24588 1 3m10s 3m34s 9m1s 14m53s 1h19m 3h3m 0.931 > 24h

Table 3: Running times and social welfare obtained by the CFR-Jr algorithm (for various levels of
accuracy), and the CG algorithm. General-sum instances are marked with ?.

We tested CFR-Jr also on some extensive-form variants of the Shapley game [35], a normal-form
general-sum 3x3 game that has been shown to induce cyclic, non-convergent behaviors in iterative
algorithms such as Fictitious Play [25]. The results in Figures 5–6 clearly show that also CFR can
get stuck in non-convergent cycles, confirming what we observed in Figure 3. This is well known in
theory (there is no guarantee of convergence for CFR in general-sum two-player games, even with
no chance) but, to the best of out knowledge, was never observed in practice. Note that also CFR-S
has some difficulties in reaching low values of ε, while CFR-Jr reaches a good approximation of an
equilibrium point in few iterations.

Our extensive-form asymmetric variation of the Shapley game reads as follows:

• At each stage of the game, a player has to select a number in the set {0, 1, 2}.

• Player 1 selects a number and publicly discloses it. Then, player 2 chooses a number and
writes it down, without disclosing it to the other player. Finally, player 1 selects another
number, without knowing the previous choice of player 2.

• Let s be the sum of the three numbers that have been selected. The players’ utilities are
computed as follows:

– if s mod 3 = 0, then the utility is (0, 0);

– if s mod 3 = 1, then the utility is (1, 0);

– if s mod 3 = 2, then the utility is (0, 1);

– if the first number selected by player 1, and the number selected by player 2 are equal
in value, then the utility gained by each player is doubled.

The last step is fundamental to introduce some asymmetries in the game and ensure that a uniform
joint strategy (i.e., x(σ) = 1/|Σ|, for each σ) is not a CCE. This is a problem in the standard Shapley
game as many regret minimizers employ a uniform strategy as initialization, and therefore would
converge instantly to a CCE.

21

0 0.5 1 1.5

·105

0

0.1

0.2

0.3

Iterations

ε ∆
CFR-Jr
CFR
CFR-S

Figure 5: Convergence in number of iterations
for the Shapley game

0 0.5 1 1.5

·105

0.5

0.6

0.7

0.8

0.9

1

Iterations

sw
A
p
x
/
sw

O
p
t

CFR-Jr
CFR
CFR-S

Figure 6: Social welfare attained with respect
to the optimal one for the Shapley game

E.3 CFR-Jr with different joint distribution reconstruction rates

From a theoretical standpoint, CFR-Jr requires a joint distribution reconstruction step to be carried
out at every iteration t, to ensure that the resulting normal-form joint strategy approaches the set of
CCEs (see Theorem 5). We investigate whether it is possible to trade some accuracy for a reduction
in computational time of the algorithm, by performing the joint distribution reconstruction at a subset
of the iterations. This could also allow the algorithm to store smaller normal-form strategies, by
skipping the reconstruction during the first iterations. Indeed, during the first iterations, CFR (and,
therefore, CFR-Jr) returns behavioral strategies that tend to be fairly uniformly distributed over all
the possible actions, leading to ω with a considerable number of strictly positive entries. This implies
that the resulting normal-form strategies, in the first few iterations, have considerably large supports.

Algorithm 4 CFR-Jr-k
1: function CFR-JR(Γ)
2: Initialize the joint strategy x̄ to all zeros
3: t← 0
4: while t < T do
5: for all i ∈ P do
6: πti ← CFR(Γ, i)
7: if t mod k = 0 then
8: xti ← NF-STRATEGY-RECONSTRUCTION(πti)

9: if t mod k = 0 then
10: x̄← x̄+

⊗
i∈P x

t
i .

⊗
i∈P x

t
i is joint distribution xt defined as the product of the players’

normal-form strategies
11: t← t+ 1

return x̄T = x̄

bTk c

These considerations suggest that a slight modification of the CFR-Jr algorithm, that we call CFR-Jr-k
(see Algorithm 4), may perform better in some settings. The simple idea behind CFR-Jr-k is that
the reconstruction procedure is carried out only every k iterations. We have evaluated CFR-Jr-k
for different values of k. In all the tests we performed, the CFR-Jr algorithm always showed good
convergence. In Figures 7–9, we report the experimental results related to instances of Kuhn3-6. The
plots show both the convergence speed in terms of number of iterations and in terms of run time, as
well as the size of the support of the average joint strategy that was stored by the algorithm (which
is always monotonically increasing by construction). In Figures 10–12, we report the experimental
results related to instances of Kuhn3-10.

Larger reconstruction rates let the algorithm complete the same amount of iterations in a shorter time.
On the other hand, smaller reconstruction rates can lead earlier to a good joint strategy, and hence to
reach lower values of ε. There is a trade-off between iteration speed and reconstruction accuracy,
which can be exploited to tackle different problems with the most suited level of precision.

22

For what regards the size of the support of the joint average strategy, we can clearly see that lower
reconstruction rates, running more times the reconstruction algorithm in the same amount of time,
and being more susceptible to high-frequency variations in the behavioral strategies built by CFR,
require up to ten time more space to store their joint strategies.

0 0.5 1 1.5 2

·104

0

1

2

3

4
·10−3

Iterations

ε ∆

k = 1
k = 2
k = 5
k = 10
k = 20
k = 50
k = 100

Figure 7: K3-6. Convergence
in number of iterations for
CFR-Jr with different recon-
struction rates

0 1,000 2,000 3,000 4,000

0

1

2

3

4
·10−3

Time [s]

ε ∆

k = 1
k = 2
k = 5
k = 10
k = 20
k = 50
k = 100

Figure 8: K3-6. Convergence
in run time (seconds) for CFR-
Jr with different reconstruc-
tion rates

0 0.5 1 1.5 2

·104

0

0.5

1

·104

Iterations

J
oi
n
t
su
p
p
o
rt

si
ze

k = 1
k = 2
k = 5
k = 10
k = 20
k = 50
k = 100

Figure 9: K3-6. Size of the
support of the joint strategy
obtained from CFR-Jr with dif-
ferent reconstruction rates

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

1

2

3

4
·10−3

Iterations

ε ∆

k = 1
k = 2
k = 5
k = 10
k = 20
k = 50
k = 100

Figure 10: K3-10. Conver-
gence in number of iterations
for CFR-Jr with different re-
construction rates

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

1

2

3

4
·10−3

Time [s]

ε ∆

k = 1
k = 2
k = 5
k = 10
k = 20
k = 50
k = 100

Figure 11: K3-10. Conver-
gence in run time (seconds)
for CFR-Jr with different re-
construction rates

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

0.5

1

1.5

2

·104

Iterations

J
oi
n
t
su
p
p
o
rt

si
ze

k = 1
k = 2
k = 5
k = 10
k = 20
k = 50
k = 100

Figure 12: K3-10. Size of the
support of the joint strategy
obtained from CFR-Jr with dif-
ferent reconstruction rates

23

