
Parameter elimination in particle Gibbs sampling

Anna Wigren
Department of Information Technology

Uppsala University, Sweden
anna.wigren@it.uu.se

Riccardo Sven Risuleo
Department of Information Technology

Uppsala University, Sweden
riccardo.risuleo@it.uu.se

Lawrence Murray
Uber AI

San Francisco, CA, USA
lawrence.murray@uber.com

Fredrik Lindsten
Division of Statistics and Machine Learning

Linköping University, Sweden
fredrik.lindsten@liu.se

Abstract

Bayesian inference in state-space models is challenging due to high-dimensional
state trajectories. A viable approach is particle Markov chain Monte Carlo, com-
bining MCMC and sequential Monte Carlo to form “exact approximations” to
otherwise intractable MCMC methods. The performance of the approximation is
limited to that of the exact method. We focus on particle Gibbs and particle Gibbs
with ancestor sampling, improving their performance beyond that of the underly-
ing Gibbs sampler (which they approximate) by marginalizing out one or more
parameters. This is possible when the parameter prior is conjugate to the complete
data likelihood. Marginalization yields a non-Markovian model for inference, but
we show that, in contrast to the general case, this method still scales linearly in
time. While marginalization can be cumbersome to implement, recent advances in
probabilistic programming have enabled its automation. We demonstrate how the
marginalized methods are viable as efficient inference backends in probabilistic
programming, and demonstrate with examples in ecology and epidemiology.

1 Introduction
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Figure 1: The autocorrelation function (ACF)
for standard PGAS converges to that of the
hypothetical Gibbs sampler as N → ∞,
whereas mPGAS will produce iid draws in
the limit, i.e., the ACF will drop to zero at lag
one for large N . Similar results hold for PG
and mPG, see Supplementary E.

State-space models (SSMs) are a well-studied topic
with applications in climatology [3], robotics [8],
ecology [29], and epidemiology [31], to mention just
a few. In this paper we propose a new method for per-
forming Bayesian inference in such models. In SSMs,
a latent (hidden) state process xt is observed through
a second process yt. The state process is assigned an
initial density x0∼ p(x0), and evolves in time accord-
ing to a transition density xt∼ p(xt|xt−1, θ), where
θ are parameters with prior density p(θ). Given
the latent states xt, the observations are assumed
independent with density p(yt|xt, θ). We wish to in-
fer the joint posterior, p(x0:T , θ|y1:T ), for the states
x0:T and the parameters θ, given a set of observa-
tions y1:T = {y1, . . . , yT}. Unfortunately, computing
this posterior distribution exactly is not analytically
tractable for general non-linear, non-Gaussian mod-
els, so we must resort to approximations.
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Markov chain Monte Carlo (MCMC) [e.g. 32] is a popular choice for Bayesian inference. The moti-
vation behind our new method is based on one such MCMC method: the Gibbs sampler. In the Gibbs
sampler, samples from the posterior p(x0:T , θ|y1:T ) are generated by alternating between sampling
the states from x′0:T ∼ p(x0:T |y1:T , θ

′), and the parameters from θ′∼ p(θ|x′0:T , y1:T ). Sampling the
parameters is often manageable, but sampling the states is challenging, owing to the distribution
being high-dimensional. A possible remedy is to use particle Markov chain Monte Carlo (PMCMC)
methods [2], in which sequential Monte Carlo (SMC) is used to approximate sampling from the
high-dimensional distribution. Particle Gibbs (PG) [2] is a PMCMC algorithm that mimics the Gibbs
sampler. Efficient extensions, such as particle Gibbs with ancestor sampling (PGAS), have also been
proposed, reducing the computational cost from quadratic to linear in the number of timesteps, T , in
favorable conditions [18, 20].

PG and PGAS have proven to be efficient in many challenging situations [e.g. 19, 22, 39, 40].
Nevertheless, being “exact approximations” [1] of the (possibly intractable) Gibbs sampler, they can
never outperform it. In essence, this means that when the number of particles used in their SMC
component approaches infinity, PG and PGAS will approach the hypothetical Gibbs sampler in terms
of autocorrelation, but can never surpass it. This is illustrated in Figure 1, orange curve (for details on
the model, see Section 3.2). Ideally, independent samples from the target distribution are desired, but
the often strong dependence between the parameters θ and the states x0:T in the hypothetical Gibbs
sampler leads to correlated samples also for PG and PGAS.

In marginalized Gibbs sampling we propose to marginalize out the parameters in the state update,
ideally alternating between sampling the states x′0:T ∼ p(x0:T |y1:T ) and sampling the parameters
θ′∼ p(θ|x′0:T , y1:T ) (note that an alternative is to sample only the state trajectories {xi0:T}Mi=1, where
M is the number of MCMC steps, and then estimate the posterior of θ as a mixture of densities,
where each component is p(θ|xi0:T , y0:T )). The state update is thus independent of the parameters
and this hypothetical marginalized Gibbs sampler will effectively generate independent samples
from the target distribution. However, like for the unmarginalized hypothetical Gibbs sampler, the
distribution for sampling the states is not available in closed form. To address this issue, we derive
marginalized versions of PG and PGAS (hereon referred to as mPG/mPGAS). Analogous to the
unmarginalized case, with an increasing number of particles, mPG and mPGAS will approach the
hypothetical marginalized Gibbs sampler – that is, a sampler generating independent samples from
the target. This behavior is illustrated in Figure 1, blue curve.

Marginalization is possible if the SSM has a conjugacy relation between the parameter prior and
the complete data likelihood, that is, the conditional p(θ|x0:T , y1:T ) has the same functional form
as the prior p(θ). However, even for such models there is a price to pay for marginalization: it
turns the Markovian dependencies, central to the SSM when conditioned on the parameters, into
non-Markovian dependencies for both states and observations. This will make it harder to apply
conventional MCMC methods, whereas PMCMC methods have proven to be better suited for models
of this type [20]. In Section 3 we derive the algorithmic expressions for mPG and mPGAS for this
family of models. The necessary updates in each step in the marginalized SMC algorithm can be
done using sufficient statistics, which enables the computation time of mPG and mPGAS to scale
linearly with the number of observations, despite the non-Markovian dependencies. The class of
conjugate SSMs includes many common models, but is still somewhat restrictive. In Section 4, we
discuss some extensions to make the framework more generally applicable and provide numerical
illustrations.

Marginalization of static parameters in the context of SMC has been studied by [5, 36] for the purpose
of online Bayesian parameter learning. To what extent these methods suffer from the well-known
path degeneracy issue of SMC has been a topic of debate, see e.g. [7]. Since our proposed method
is based on PMCMC, and in particular PGAS, it is more robust to path degeneracy, see [20]. The
Rao-Blackwellized particle filter [6, 9] also makes use of marginalization, but for marginalizing part
of the state vector using conditional Kalman filters.

In practice, deriving the conjugacy relations can be quite involved. However, recent developments
in probabilistic programming have enabled automatic marginalization [see e.g. 16, 26, 28], which
significantly improves the usability of our proposed method. Probabilistic programming considers
the way in which probabilistic models and inference algorithms may be expressed in universal
programming languages, formally extending the expressive power of graphical models. There are by
now quite a number of probabilistic programming languages. Examples that can support SMC-based
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methods, such as those considered here, include LibBi [23], BiiPS [37], Venture [21], Anglican [38],
WebPPL [14], Figaro [30], Turing [13], and Birch [24]. A language can implement PG/PGAS
combined with automatic marginalization to realize our proposed method. We have implemented PG,
mPG, PGAS and mPGAS in Birch [24] and provide examples to illustrate their efficiency in Section
4.2 and 4.3.

2 Background on SMC

In PG and PGAS, the state update is approximated using SMC, therefore we provide a brief summary
of the SMC algorithm before introducing the proposed method. For a more extensive introduction,
see e.g. [4, 15]. Consider a sequence of probability densities γ̄θ,t(x0:t) expressed as

γ̄θ,t(x0:t) =
γθ,t(x0:t)

Zθ,t
, t = 1, 2, . . . (1)

where γθ,t are the corresponding unnormalized densities, which we assume can be evaluated pointwise,
and Zθ,t is a normalizing constant. For a SSM, the target density of interest is often p(x0:t|y1:t, θ),
which implies γθ,t = p(x0:t, y1:t|θ) and Zθ,t = p(y1:t|θ). SMC methods approximate the target
density (1) using a set of N weighted samples (or particles) {xi0:t, w̄it}Ni=1, generated according to
Algorithm 1. When moving to the next distribution in the sequence, all particles are resampled by
choosing an ancestor trajectory xa

i
t

0:t−1 from the previous step in time according to the respective
weights w̄it−1 of the possible ancestors. SMC is based on importance sampling and the resampled
particles are therefore propagated to the next time step using a proposal distribution, qθ,t(xt|x0:t−1),
chosen by the user. A common choice for SSMs is to use the bootstrap proposal, which equates to
propagating according to the transition density p(xt|xt−1, θ), but other more refined choices, such
as the optimal proposal (see e.g. [10]), are also possible. Finally, the (unnormalized) importance
weights for the propagated particles are computed using the weight function

ωθ,t(x0:t) =
γθ,t(x0:t)

γθ,t−1(x0:t−1)qθ,t(xt|x0:t−1)
. (2)

Algorithm 1 SMC (all steps for i = 1, . . . , N )

1: Initialize: Draw xi0∼ q0(x0), set wi0 = γθ,0(x
i
0)/q0(x

i
0), normalize w̄i0 = wi0/

∑N
j=1 w

j
0

2: for t = 1 . . . T do
3: Resample: Draw ait∼C({w̄it−1}Ni=1), where C is the categorical distribution.

4: Propagate: Simulate xit∼ qθ,t(xt|x
ait
0:t−1).

5: Update: Set wit = ωθ,t(x
i
0:t) according to (2) and normalize w̄it = wit/

∑N
j=1 w

j
t

6: end for

3 Method

In this section, we first specify the class of models we consider, and then we show how to marginalize
the SMC algorithm and derive mPG and mPGAS for this class of models.

3.1 Conjugate models and marginalized SMC

The SMC framework presented in Section 2 is in a general form and can be directly applied to the
marginalized state update by defining the unnormalized target distribution as γt(x0:t) = p(x0:t, y1:t)
in (1) and then applying Algorithm 1. The computation of the importance weights (step 5 in
Algorithm 1), however, turns out to be problematic in marginalized SSMs. To see why, note that the
unnormalized target density can be factorized into p(x0:t, y1:t) = p(x0)

∏t
k=1 p(xk, yk|x0:k−1, y1:k−1).

The weights (2) become

ωt(x0:t) =
p(xt, yt|x0:t−1, y1:t−1)

qt(xt|x0:t−1)
(3)
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where the numerator (and possibly also the denominator depending on the choice of proposal) is
non-Markovian. The marginal joint density of states and observations can be written

p(xt, yt|x0:t−1, y1:t−1) =

∫
p(xt, yt|xt−1, θ)p(θ|x0:t−1, y1:t−1)dθ (4)

where p(θ|x0:t−1, y1:t−1) is the posterior distribution of the parameters. For a general SSM, the
integral (4) is intractable, and the posterior may be difficult to compute. However, if there is
a conjugacy relationship between the prior distribution p(θ) and the complete data likelihoods
p(x0:t, y1:t|θ), t = 1, . . . , T , the integral can be solved analytically and the posterior will be of the
same form as the prior. One such case is when both the complete data likelihood and the parameter
prior are in the exponential family, see Supplementary A for details. However, if we consider joint
state and observation likelihoods, p(xt, yt|xt−1, θ), in the exponential family, we can end up with
a log-partition function that depends on the previous state xt−1. This can create problems when
formulating a conjugate prior for the complete data likelihoods since the prior will be different for
each state update, see Supplementary B for details. To avoid this problem for the models we consider,
we introduce the restricted exponential family where the joint state and observation likelihood is
given by

p(xt, yt|xt−1, θ) = ht exp
(
θTst −AT(θ)rt

)
(5)

where ht = h(xt, xt−1, yt) is the data dependent base measure, st = s(xt, xt−1, yt) is a sufficient
statistic and where the log-partition function can be separated into two factors: A(θ), which is
independent of the data, and rt = r(xt−1), which is independent of the parameters. A conjugate prior
for (5) is given by

π(θ|χ0, ν0) = g(χ0, ν0) exp
(
θTχ0 −AT(θ)ν0

)
(6)

where χ0, ν0 are hyperparameters. The parameter posterior is given by p(θ|x0:t−1, y1:t−1) =
π(θ|χt−1, νt−1), with the hyperparameters iteratively updated according to

χt = χ0 +

t∑
k=1

sk = χt−1 + st, νt = ν0 +

t∑
k=1

rk = νt−1 + rt. (7)

With the joint likelihood (5) and its conjugate prior (6) in place, we can derive an analytic expression
for the marginal of the joint distribution of states and observations, (4), at time t

p(xt, yt|x0:t−1, y1:t−1) =

∫
p(xt, yt|xt−1θ)π(θ|χt−1, νt−1)dθ =

g(χt−1, νt−1)

g(χt, νt)
ht. (8)

Hence, to compute the weights (3) for marginalized SMC in the restricted exponential family, we
only need to keep track of and update the hyperparameters according to (7).

3.2 Marginalized particle Gibbs

In PG we alternate between sampling the parameters and the states like in the hypothetical Gibbs
sampler, but the state trajectory is sampled using conditional SMC (cSMC). In cSMC one particle
trajectory, the reference trajectory x′0:T , will always survive the resampling step. This version of SMC
follows the steps in Algorithm 1, with the constraints that aNt = N and xNt =x′t (for details, see [2]).
When marginalizing out the parameters, the resulting mPG sampler updates the state trajectory using
marginalized cSMC (mcSMC), according to what is presented in Algorithm 1 and Section 3.1, with
the addition of conditioning on the reference trajectory surviving the resampling step (like in standard
PG).

The conditioning used in cSMC yields a Markov kernel that leaves the correct conditional distribution
invariant for any choice of N [2]. PG is therefore a valid MCMC procedure. However, it has been
shown that N must increase (at least) linearly with T for the kernel to mix properly for large T ,
resulting in an overall computational complexity which grows quadratically with T . This holds also
for other popular PMCMC methods, such as particle marginal Metropolis-Hastings [2]. To mitigate
this issue, [20] proposed a modification of PG in which the ancestor for the reference trajectory in
each time step is sampled, according to ancestor weights w̃it−1|T , instead of set deterministically,
which significantly improves the mixing of the kernel for small N , even when T is large. The
resulting method, referred to as PGAS, is equivalent to PG apart from the resampling step.
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The difference between mPG and mPGAS lies, analogous to the non-marginalized case, only in the
resampling step. Deriving the expression for the ancestor weights in the marginalized case is quite
involved, below we simply state the necessary expressions and updates, a complete derivation is
provided in Supplementary C. Each ancestor trajectory in mPGAS is assigned a weight, based on the
general expression in [20], given by

w̃it−1|T = w̄it−1

γT ([xi0:t−1, x
′
t:T ])

γt−1(xi0:t−1)
= w̄it−1

p([xi0:t−1, x
′
t:T ], y1:T )

p(xi0:t−1, y1:t−1)
, (9)

where w̄it−1 is the weight of the ancestor trajectory xi0:t−1 and [xi0:t−1, x
′
t:T ] is the concatenated

trajectory resulting from combining the reference trajectory x′t:T with the possible ancestral path
xi0:t−1. For members of the restricted exponential family we use (8) in (9) to get the weights

w̃it−1|T ∝ w̄it−1h
i

t

g(χit−1, ν
i
t−1)

g(χit, ν
i
t)

T∏
k=t+1

h′k
g(χik−1, ν

i
k−1)

g(χik, ν
i
k)

∝ w̄it−1

g(χit−1, ν
i
t−1)

g(χiT , ν
i
T )

hit, (10)

where χit−1, νit−1 are given, for each particle, by (7) and where

χiT = χit−1 + st(x
′
t, x

i

t−1, yt) + s′t+1:T , νiT = νit−1 + rt(x
i

t−1) + r′t+1:T , (11)

with s′t+1:T =
∑T
k=t+1 sk(x

′
k, x
′
k−1, yk) and similarly for rt. Hence, χiT is a combination of the

statistic for the ancestor trajectory, a cross-over term and the statistic for the reference trajectory,
which in each timestep is updated according to s′t+1:T = s′t:T − st(x′t, x′t−1, yt), and analogously
for νiT and r′t+1:T . By storing and updating these parameters and sum of statistics in each iteration,
computing the ancestor sampling weights only amounts to evaluating (10), implying that we can run
mPGAS in linear time despite having a non-Markovian target, which would normally yield quadratic
complexity (see [20] for a discussion). We outline mPGAS in Algorithm 2 (for mPG, skip step 3,
updates of χT , νT and set aNt deterministically).

Algorithm 2 Marginalized PGAS for the restricted exponential family (all steps for i = 1, . . . , N )

Input: x′0:T , s′1:T , r′1:T
1: Initialize: Draw x1:N−1

0 ∼ q0(x0), set xN0 = x′0, set wi0 =
γ0(x

i
0)

q0(xi0)
and w̄i0 =

wi0∑N
j=1 w

j
0

2: for t = 1 . . . T do
3: Update statistics: s′t+1:T = s′t:T − st(x′t, x′t−1, yt), r′t+1:T = r′t:T − rt(x′t−1)
4: Update hyperparameters: χit, ν

i
t , χ

i
T , νiT according to (7) and (11)

5: Resample: Draw a1:N−1
t ∼C({w̄it−1}Ni=1) and aNt ∼C({w̃it−1|T}Ni=1), w̃it−1|T from (10)

6: Propagate: Simulate x1:N−1
t ∼ qt(xt|x

a
1:N−1
t

0:t−1 ) and set xNt = x′t
7: Update weights: Set wit = ωt(x

i
0:t) according to (3) and normalize w̄it = wit/

∑N
j=1 w

j
t

8: end for
Output: Sample new x′0:T , s′1:T , r′1:T according to w̄T

To illustrate the improved performance offered by marginalization we consider the non-linear SSM
[15]

xt =
xt−1

2
+ 25

xt−1

1 + x2t−1

+ 8 cos(1.2t) + vt, yt =
x2t
20

+ wt, (12)

where vt and wt are Gaussian noise processes with zero mean and unknown variances σ2
v and

σ2
w respectively. The observations are a quadratic function of the state, which makes the posterior

multimodal. We will assume conjugate, inverse gamma priors σ2
v ∼IG(αv, βv) and σ2

w∼IG(αw, βw)
for the unknown variances, with hyperparameters αv = βv = αw = βw = 1. We generated T = 150
observations from (12) with σ2

v = 10 and σ2
w = 1. PGAS and mPGAS were run for M = 10000

iterations, discarding the first 1500 samples as burn-in. We initialized with σ2
v = σ2

w = 100 and used
a bootstrap proposal for PGAS and a marginalized bootstrap proposal for mPGAS.

Figure 1 shows the autocorrelation for PGAS and mPGAS for different number of particlesN . Ideally
we would like iid samples from the posterior distribution, in terms of the ACF of the samples it
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should be zero everywhere except for lag 0. It is clear that, for PGAS, increasing N can reduce the
autocorrelation only to a certain limit (given by the hypothetical Gibbs sampler). For mPGAS on the
other hand, we obtain a lower autocorrelation using only 50 particles as compared to 5000 for PGAS,
and by increasing N we move towards generating iid samples. In Supplementary E we provide
corresponding results for PG/mPG. The results in Figure 1 were obtained from our implementation in
Matlab, in Supplementary E we also show the corresponding results for our implementation in Birch.

The marginalized versions of PG/PGAS requires some extra computations compared to their non-
marginalized counterparts, however, this overhead is quite small. For the model (12), with N=500,
using the tic-toc timer in MATLAB we get: PG – 1231.5s, mPG – 1430.7s, PGAS – 1260.7s, mPGAS
– 1566.1s. Note that the code has not been optimized.

4 Extensions and numerical simulations

In this section we describe three extensions of the marginalized method presented in Section 3 and
illustrate their efficiency in numerical examples.

4.1 Diffuse priors and blocking

When we do not know much about the parameters of a model, we may use a diffuse prior to reflect
our uncertainty. However, a diffuse prior on the parameters can lead to a diffuse prior also for the
states. We can then encounter problems during the first few timesteps of the marginalized state
trajectory update; in particular, if we use a bootstrap-style proposal in the mcSMC algorithm it
may spread out the particles too much. This can result in poor mixing during the initial timesteps,
as well as numerical difficulties in the computation of the ancestor sampling weights, due to very
large values sampled for the states. As an illustration, consider again the model (12), but now
with hyperparameters αv, βv = 0.001 for the process noise σ2

v . The marginalized proposal for the
first timestep, q1(x1|x0) = p(x1 | x0), will then be a Student t-distribution with undefined mean
and variance. Figure 2 (left) shows the log-pdf of both this proposal and the target distribution,
γ̄1(x0:1) = p(x0:1 | y1), at time t = 1. It is clear that for mcSMC (blue) the prior q1 is much more
diffuse than the posterior γ̄1, whereas for cSMC (orange) there is less of a difference.

When working with diffuse priors we suggest to divide the state trajectory into two overlapping blocks
(similarly to the blocking method proposed by [34]) and do Gibbs updates of each block in turn.
Figure 3 illustrates the two overlapping blocks x0:B+L (upper) and xB+1:T (lower). To update the first
block, where problems due to marginalization are more probable, we use a (non-marginalized) cSMC
sampler targeting the posterior distribution of x0:B+L conditioned on the reference trajectory x′0:B+L,
the observations y1:T , the non-overalapping part of the second block x′B+L+1:T and the parameters θ.
Note that, because of the Markov property when conditioning on θ, the dependence on x0:B+L reduces
to only the boundary state x′B+L+1 and the dependence on the observations reduces to y1:B+L. To
update the second block, we use mcSMC targeting the posterior distribution of xB+1:T conditioned on
the (updated) reference trajectory [xB+1:B+L, x

′
B+L+1:T ], the observations y1:T and the (updated) first

block x0:B. Finally, the parameters θ are sampled from their full conditional given the new reference
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Figure 2: Left: log-density for the proposal and the posterior at t = 1 for mcSMC (qm, γm) and
cSMC (qu, γu), showing how marginalization can potentially produce a poor proposal distribution in
the first timestep. Right: update frequency for the state trajectory for the first few timesteps.
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trajectory x0:T . Algorithm 3 outlines one iteration of mPG/mPGAS with this choice of blocking and
samplers. In Supplementary D we provide a proof of validity for this blocked Gibbs sampler.

The purpose of the first block is only to update the first few timesteps, in order to get a sufficient
concentration of the proposals when conditioning on x0:B for mcSMC. Therefore, it is typically
sufficient to use a small value of B; in the example outlined above B > 2 is sufficient to get finite
variance in the Student t-distribution. The overlap parameter L on the other hand is used to push
the boundary state xB+L+1 into the interior of the second block, which due to the forgetting of the
dynamical system reduces the effect of conditioning on this state in the first Gibbs step [34]. Hence,
the larger L the better, but at the price of increased computational cost. Since most SSMs have
exponential forgetting, using a small value of L is likely to be sufficient in most cases.

In Figure 2 (right), we illustrate the benefit of using blocking to avoid poor mixing during the first
timestep when marginalizing with a diffuse prior for the model (12). We used B = 5 and L = 20,
all other settings were the same as before. We consider the update frequency of the state variables,
defined as the average number of iterations in which the state changes its value, as a measure of the
mixing. It is clear that for the mPGAS we get a very low update frequency at t = 1, whereas when
we use mPGAS with blocking we obtain the same update frequency as for PGAS.

Algorithm 3 Blocking for mPG/mPGAS

1: x0:B+L∼ cSMC(x0:B+L|x′0:B+L; y1:B+L, x
′
B+L+1, θ)

2: xB+1:T ∼mcSMC(xB+1:T |xB+1:B+L, x
′
B+L+1:T ;x0:B, y1:T )

3: θ∼ p(θ|x0:T , y1:T ) = π(θ|χT , νT )

0 B B + L T

x0:B
x0:B+L

xB+L+1:T
xB+1:T

Figure 3: Division into 2 blocks.

4.2 Marginalized particle Gibbs in a PPL

We have implemented PG, PGAS, mPG and mPGAS in Birch [24], which employs delayed sam-
pling [26] to recognize and utilize conjugacy relationships, and so automatically marginalizes out
the parameters of a model, where possible. This saves the user the trouble of deriving the relevant
conjugacy relationships for their particular model, or providing a bespoke implementation of them.
We first demonstrate this on a vector-borne disease model of a dengue outbreak.

Dengue is a mosquito-borne disease which affects an estimated 50-100 million people worldwide
each year, causing 10000 deaths [35]. We use a data set from an outbreak on the island of Yap in
Micronesia in 2011. It contains 197 observations, mostly daily, of the number of newly reported cases.
The model used is that described in [26], in turn based on that of the original study [12]. It consists
of two coupled susceptible-exposed-infectious-recovered (SEIR) compartmental models, describing
the transmission between human and mosquito populations, respectively. Transition counts between
compartments are assumed to be binomially distributed, with beta priors used for all parameters.
Observations are also assumed binomial with an unknown parameter for the reporting rate, which is
assigned a beta prior. The beta priors establish conjugate relations with the complete data likelihood,
so that the problem is well-suited for inference using mPG/mPGAS.
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Figure 4: Results of the simulation of the vector-borne disease model. Left: estimated density of the
reporting rate parameter, mean of four chains. Marginalized importance sampling (mIS) is included
for comparison. Right: estimated autocorrelation function of the reporting rate parameter, mean of
four chains.

7



The model was previously implemented in Birch for [26]. We have added generic implementations
of PG, PGAS, mPG and mPGAS to Birch that can be applied to this, and other, models. Figure 4
shows the results of a simulation of four different chains; for each of these 10000 samples were drawn
using PG and mPG. The samplers used N = 1024 particles each. For comparison we also include
the results from using marginalized importance sampling (mIS). The autocorrelation of the samples
is noticeably improved by marginalizing out the parameters. Corresponding results for PGAS and
mPGAS can be found in Supplementary E.

4.3 Models lacking full conjugacy

It may seem that the method we propose is limited to models where the transition and observation
probabilities have the conjugacy structure in (5). However, we can use the results in Section 3 to
treat models where only some of the parameters exhibit conjugacy with the complete data likelihood.
To this end, we denote by θm the parameters that have a prior distribution that is conjugate with the
complete-data likelihood, and by θu the remaining parameters. Then, we can marginalize out θm
from the complete-data likelihood as shown in Section 3. The remaining parameters can be sampled
using any conventional MCMC method, for instance Metropolis–Hastings. This is possible since
PMCMC samplers are nothing but (special purpose) MCMC kernels, hence they can be combined
with normal MCMC in a systematic way. One possibility is to use, say, Metropolis–Hastings within
mPG/mPGAS. Another possibility, which we describe below, is to use a marginalized version of the
particle marginal Metropolis–Hastings algorithm [2], which we refer to as mPMMH.

Let p̂(y1:T |θu) =
∏T
t=1

1
N

∑N
i=1 w

i
t be the unbiased estimate of the marginal likelihood given by

Algorithm 1, for a fixed value of the parameters θu, and let q(θu|θ′u) be a proposal distribution; then,
we can generate samples from the posterior distribution of θu using Algorithm 4.

Algorithm 4 Marginalized particle marginal Metropolis–Hastings

1: Propose θ∗u∼ q( · |θ′u)
2: Run Algorithm 1 and compute p̂(y1:T |θ∗u)

3: Return θu = θ∗u with probability 1 ∧ p̂(y1:T |θ∗u)p(θ
∗
u)q(θ

′
u|θ
∗
u)

p̂(y1:T |θ′u)p(θ′u)q(θ∗u|θ′u)
, else θu = θ′u,

To illustrate this method with partial marginalization, we consider the following model describing the
evolution of the size of animal populations (see, for instance, [17]):

log nt+1 = log nt +
[
1 (nt)

c]
b+ σvvt, yt = nt + σwwt,

where nt is the population size at time t, and b, c, σv, and σw are the unknown parameters. Note that,
except for c (= θu), the parameters can be marginalized out by using normal-inverse gamma and
inverse gamma conjugate priors b, σ2

v ∼NIG(µ,Λ, αv, βv) and σ2
w∼IG(αw, βw). For the remaining

parameter, we use a N (0, σ2
c ) prior and a random-walk proposal c∗∼N (c′, τ).

We have implemented mPMMH in Birch and evaluate it on a dataset of observations of the number of
song sparrows on Mandarte Island, British Columbia, Canada [33]. The dataset contains the number
of birds, counted yearly, between 1978 and 1998. In Figure 5 (left), we report the histogram of
the distribution of the density regulation parameter c estimated using 10000 samples drawn using
Algorithm 4 after a burn-in of 5000 samples, using N = 512 particles. The distribution of c, as found
by our method, is consistent with values reported in the literature (see, for instance, [27] and [33]). In
Figure 5 (right), we show the actual counts in the dataset compared with the average n̂1:T and three
standard deviations, as sampled by Algorithm 4.
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Figure 5: Results of the simulation with parameter values µ = [1, 1], Λ = I , αv = βv = αw = βw =
2.5, σ2

c = 4, τ = 0.05. Left: estimated distribution of the density regulation parameter c. Right:
observed (marks) and mean filtered population sizes (solid) with 3σ credible interval.

5 Discussion

PG and PGAS can be highly efficient samplers for general SSMs, but are limited by the performance
of the hypothetical (but intractable) Gibbs sampler that they approximate. We have proposed to
improve on PG/PGAS by marginalizing out the parameters from the state update, to reduce the
auto-correlation beyond the limit posed by the hypothetical Gibbs sampler.

Marginalization often improves performance, but this will not always be the case. One example
is when there is a diffuse prior on the parameters, in which case marginalization can result in an
inefficient SMC sampler. One way to mitigate this is blocking; we propose using two blocks, the first
updated using cSMC and the second using mcSMC. One can think of other ways to update the first
block, such as a Metropolis–Hastings update with an appropriate proposal, see [11, 25] for related
techniques. It is also possible to use a mcSMC update for the first block, as conditioning on the
future states will help to avoid the problems related to diffuse priors. The details are quite involved,
however, so we prefer the simpler method described in Section 4.1.

Marginalization is possible when there is a conjugacy relationship between the parameters and the
complete data likelihood. This may seem a restrictive model class, but in practice there are benefits
even if only some of the parameters can be marginalized out, by combining marginalized PMCMC
kernels with conventional MCMC kernels. Many models have at least some parameters that enter in
a nice way, such as regression coefficients and error variances, where marginalization can provide a
performance gain.

Performing the marginalization by hand for every new model can be time consuming. Consequently,
an important aspect of the method is the possibility of implementing it in a probabilistic programming
language. Recent advances in probabilistic programming enable automatic marginalization, making
the process easier. We have implemented mPG, mPGAS and mPMMH in Birch, and demonstrated
that implementation on two examples. Some further work is required to extend the implementation in
Birch to blocking.

Code

Code for all numerical simulations is available at https://github.com/uu-sml/
neurips2019-parameter-elimination.
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