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1 Derivations for one-dimensional conditional distributions

In the paper, we stated that one-dimensional conditional distributions are Gaussian Mixture Models
with the same means and variances as priors, but with different weights py, (% | 21.x—1). With Tensor

Ring decomposition, we can efficiently compute those weights (we denote H?: pi1 @5 88 Qr1:4):
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2 Calculation of marginal probabilities in Tensor Ring

In Algorithm [I] we show how to compute marginal probabilities for a distribution parameterized in
Tensor Ring format. Note that we compute a normalizing constant on-the-fly.

3 Model architecture

We manually tuned the hyperparameters: first we selected the best encoder-decoder architecture
for a Gaussian prior and then tuned TRIP parameters for a fixed architecture. For models from a
GAN family, we used a deconvolutional generator with kernel size 5 X 5 and ReLU activations.
The number of channels in layers was [512, 256, 128, 64, 3]. For the discriminator, we used the
symmetric convolutional architecture with a LeakyReLU. We trained a model using Adam [1]]
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Algorithm 1 Calculation of marginal probabilities in Tensor Ring
Input: A set M of variable indices, values of these variables r; for i € M
Output: Joint probability log p(ras), where rpy = {r; Vi € M}
Initialize Qbuff =1 € Rm>m Qnorm =] ¢ Rmixm
for j = 1toddo
if j is marginalized out (j ¢ M) then

Qbutr = Qbur - (Zi\;’;_(]l Qj [Sj])

else
Quvutt = Qouir - Q;[r;]
end if
N;—1
Qnorm = Qnorm . (25;:0 Qj [Sj])
end for

logp = log Tr (Qbuff) - log Tr (Qnorm)

optimizer with a learning rate of 0.0001 for 100000 iterations with a batch size 128. We used a
schedule of 4 discriminator updates per one generator update. A TRIP prior was 128-dimensional
with 10 Gaussians per dimension and core size my, = 40 (sizes of matrices Q[sx]). For a baseline
Gaussian Mixture Model (GMM) prior we used 128 - 10 = 1280 Gaussians. We conducted all the
experiments on Tesla K80.

For VAE models, we used a convolutional encoder and a deconvolutional decoder with a kernel
size 5 x 5, and the number of channels [3, 64,128, 256, 512] for the encoder, and a symmetrical
architecture for the decoder. We used LeakyReL U for the encoder and ReLLU for the decoder. We
trained the model for 80,000 weight updates with batch size 128. The latent dimension was 100 for
all VAE-based models. For TRIP we used 10 Gaussians per dimension and a Tensor Ring with core
size my, = 20. For a GMM prior we used 1000 Gaussians.

For conditional generation with TRIP, the architecture was the same as for unconditional generation.
For CVAE we parameterized a posterior model p,,(z | y) as a fully connected network with layer
sizes [2,128,100] and LeakyReLU activations. For the VAE TELBO baseline model [2], we used a
fully connected network for p, (y | z) with layer sizes [100, 64, 64, 2] and LeakyReLU activations.

4 Implementation details

Implementing the TRIP module is straight-forward and requires two functions. The first function
that we use during training computes log p,, (zas) for an arbitrary subset M of latent dimensions.
The second function is used for sampling, and samples from p,,(z) with a chain rule, for which
calculations are described in Eq/[]

During training we enforce values of cores () to be non-negative by replacing each element of tensors
@ with their absolute values before computation. To make computations more stable, we divide Qg
and Qnorm by the ||Quusr|| at each iteration when computing log p, (2).

Table 1: Impact of core size mj, (CIFAR-10 and CelebA)

- CIFAR-10 CelebA

ELBO Reconstruction KL ELBO  Reconstruction KL
1 -89.5 60.5 29.0 -243.40 177.63 65.76
5 -89.3 60.2 29.1 -231.57 166.89 64.67
10 -89.3 60.4 28.9 -223.59 156.99 66.60
20 -89.1 60.2 28.9 -215.62 158.95 56.67




5 Impact of core size

In Table [I| we compared the performance of VAE-TRIP model with different core sizes my on
CIFAR-10 and CelebA datasets. Note that for mj; = 1, TRIP is factorized over dimensions, where
each dimension is a 1D Gaussian Mixture Model. Notice that models with higher core sizes perform
better as the prior becomes more complex. In Table[2] we show computational complexity and memory
usage of TRIP model to illustrate a tradeof between quality and computational complexity of the
model.

Table 2: Time and memory consumption of operations with prior (per batch). my, is a core size, latent
space dimension d = 100, number of Gaussians per dimension N = 10, batch size b = 128. Other
parameters are the same as used in the paper. We performed the experiments on Tesla K80. MS
stands for milliseconds, MB stands for megabytes. Results averaged over 10 runs; Reported mean +
std.

mg LOG-LIKELIHOOD, MS SAMPLING, MS MEMORY, MB

(O-NOTATION O(b-d-(mj +miN + N)) O(d- (mj + N))
1 126 £7 201 £ 21 0.023
10 137+ 4 232+ 13 0.77
20 193 + 15 312 £ 18 3.1
50 200 £ 20 360 += 17 19.5
100 308 £ 12 882 £ 15 78.1

Table 3: Condition satisfaction (accuracy) for conditional generative models with different rates of
missing attributes in the training set.

MODEL % MISSING

0% 90% 99%
CVAE [3]] 86.69 85.31 84.61
VAE TELBO [2]] 82.80 74.87 73.92
JMVAE [4]] 81.87 80.65 73.68

VAE-TRIP (OURS) 88.7 87.08 84.89

5.1 Conditional Generation

For the conditional generation, we used images of size 64 x 64. We study the model performance
for different rates of missing attributes (0%, 90%, 99%). For each model, we generated 30,000
images for randomly sampled complete sets of attributes from the test set. We trained a predictive
convolutional neural network on a validation set to predict the attributes with 92.3% accuracy and
predicted the attributes of generated images. We report the condition matching accuracy—when
requested attributes matched the actual attributes. We trained all models except for CVAE [3] directly
on data with missing attributes. For CVAE, we imputed missing values with a predictive model. For
the missing rate of 90%, the predictive test accuracy was 90%, and for 99%—87%. In the results
shown in Table 3| we see that the VAE-TRIP model outperforms other baselines.

Table 4: Preliminary results on combining TRIP and normalizing flows to form a prior; Number of
parameters of model components

COMBINATION WITH FLOW
N(©0,I) GMM TRIP
PARAMETERS (MODEL) 11.4M 11.1M 10.7M 11.3M 10.7M 10.4M

N(0,1) GMM  TRIP

PARAMETERS (PRIOR) 0 0.2M 0.6M 0.3M 0.5M 0.7M
PARAMETERS (TOTAL) 11.4M 11.3M 11.1M 11.5M 11.2M  11.1M
ELBO -192.6  -190.05 -189.1 -185.3 -186.0 -184.7




5.2 Additional experiments for VAE

In Table ff] we compare VAE model with Gaussian, GMM and TRIP priors with a comparable number
of parameters. We also provide preliminary results on combining normalizing flows with a TRIP
prior.
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