
A Useful Results and Definitions

In this section, we present auxiliary results and definitions.

Definition 7 (Proximal operator). Given a convex lower-semicontinuous function ψ defined on R
p,

the proximal operator of ψ is defined as the unique solution of the strongly-convex problem

Proxψ[y] = argmin
x∈Rp

{
1

2
‖y − x‖2 + ψ(x)

}

.

Lemma 8 (Convergence rate of the sequences (αk)k≥0 and (Ak)k≥0). Consider the sequence in
(0, 1) defined by the recursion

α2
k = (1− αk)α2

k–1 + qαk with 0 ≤ q < 1,

and define Ak =
∏k
t=1(1− αt). Then,

• if q = 0 and α0 = 1, then, for all k ≥ 1,

2

(k + 2)2
≤ Ak = α2

k ≤
4

(k + 2)2
.

• if α0 =
√
q, then for all k ≥ 1,

Ak = (1−√q)k and αk =
√
q.

• if α0 = 1, then for all k ≥ 1,

Ak ≤ min

(

(1−√q)k, 4

(k + 2)2

)

and αk ≥ max

(

√
q,

√
2

k + 2

)

.

Proof. We prove the three points, one by one.

First point. Let us prove the first point when q = 0 and α0 = 1. The relation Ak = α2
k is obvious

for all k ≥ 1 and the relation α2
k ≤ 4

(k+2)2 holds for k = 0. By induction, let us assume that we have

the relation α2
k–1 ≤ 4

(k+1)2 and let us show that it propagates for α2
k. Assume, by contradiction, that

α2
k >

4
(k+2)2 , meaning that αk >

2
(k+2) . Then,

α2
k = (1− αk)α2

k–1 ≤ (1− αk)
4

(k + 1)2
<

4k

(k + 2)(k + 1)2
=

4

(k + 2)(k + 2 + 1
k )

<
4

(k + 2)2
,

and we obtain a contradiction. Therefore, α2
k ≤ 4

(k+2)2 and the induction hypothesis allows us to

conclude for all k ≥ 1. Then, note [44] that we also have for all k ≥ 1,

Ak =

k∏

t=1

(1− αt) ≥
k∏

t=1

(

1− 2

t+ 2

)

=
2

(k + 1)(k + 2)
≥ 2

(k + 2)2
.

Second point. The second point is obvious by induction.

Third point. For the third point, we simply assume α0 = 1 such that α0 ≥
√
q. Then, the

relation αk ≥
√
q and therefore Ak ≤ (1−√q)k are easy to show by induction. Then, consider the

sequence defined recursively by u2k = (1− uk)u2k–1 with u0 = 1. From the first point, we have that√
2

k+2 ≤ uk ≤ 2
k+2 . We will show that αk ≥ uk for all k ≥ 0, which will be sufficient to conclude

since then we would have Ak ≤
∏k
t=1(1− ut) ≤ 4

(k+2)2 . First, we note that α0 = u0; then, assume

that αk–1 ≥ uk–1 and also assume by contradiction that αk > uk. This implies that

u2k = (1− uk)u2k–1 ≤ (1− uk)α2
k–1 < (1− αk)α2

k–1 ≤ α2
k,

which contradicts the assumption αk > uk. This allows us to conclude by induction.
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Lemma 9 (Convergence rate of sequences Θk =
∏k
i=1(1 − θi)). Consider the sequence θj =

γ
(1+j)1+γ with γ in (0, 1]. Then,

e−(1+γ) ≤ Θk ≤ 1. (15)

Proof. We use the classical inequality log(1 + u) ≥ u
1+u for all u > −1:

− log(Θk) = −
k∑

j=1

log

(

1− γ

(1 + j)1+γ

)

≤
k∑

j=1

γ

(1 + j)1+γ − γ ≤
k∑

j=1

γ

j1+γ
,

when noting that the function g(x) = (1 + x)1+γ − x1+γ is greater than γ for all x ≥ 1, since
g(1) ≥ 1 ≥ γ and g is non-decreasing. Then,

− log(Θk) ≤
k∑

j=1

γ

j1+γ
≤ γ + γ

∫ k

x=1

1

x1+γ
dx = γ + 1− 1

kγ
≤ γ + 1.

Then, we immediately obtain (15).

B Details about Complexity Results

B.1 Details about (5)

Consider the complexity (2) with h = F . To achieve the accuracy 2Bσ2, it is sufficient to run the
methodM for t0 iterations, such that

C(1− τ)t0(F (x0)− F ⋆) ≤ Bσ2.

It is then easy to see that this inequality is satisfied as soon as t0 is greater than 1
τ log(C(F (x0)−

F ⋆)/Bσ2). Since ε ≤ Bσ2 and using the concavity of the logarithm function, it is also sufficient to
choose t0 = 1

τ log(C(F (x0)− F ⋆)/ε).
Then, we perform K restart stages such that εK ≤ ε. Each stage is initialized with a point xk
satisfying E[F (xk)− F ⋆] ≤ εk–1, and the goal of each stage is to reduce the error by a factor 1/2.
Given that ηk increases the computational cost, the complexity of the k-th stage is then upper-bounded

by 2k

τ log(2C), leading to the global complexity

O

(

1

τ
log

(
C(F (x0)− F ⋆)

ε

)

+

K∑

k=1

2k

τ
log (2C)

)

with K =

⌈

log2

(
2Bσ2

ε

)⌉

,

and (5) follows by elementary calculations.

B.2 Obtaining (5) from (6)

Since h is µ-strongly convex, we notice that (6) implies the rate

E[h(zt)− h⋆] ≤
D(h(z0)− h⋆)

µtd
+
Bσ2

2
,

by using the strong convexity inequality h(z0) ≥ h⋆ + µ
2 ‖z0 − z⋆‖2. After running the algorithm for

t′ = ⌈(2D/µ)1/d⌉ iterations, we can show that

E[h(zt′)− h⋆] ≤
h(z0)− h⋆

2
+
Bσ2

2
.

Then, when restarting the procedure s times (using the solution of the previous iteration as initializa-
tion), and denoting by hst′ the last iterate, it is easy to show that

E[h(xst′)− h⋆] ≤
h(x0)− h⋆

2s
+
Bσ2

2

(
s−1∑

i=0

1

2i

)

≤ h(z0)− h⋆
2s

+Bσ2.
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Then, calling t = st′, we can use the inequality 2−u ≤ 1− u
2 for u in [0, 1], due to convexity, and

E[h(zt)− h⋆] ≤ (h(z0)− h⋆)
(

2−1/t′
)t

+Bσ2 = (h(z0)− h⋆)
(

1− 1

2t′

)k

+Bσ2,

which gives us (2) with C = 1 and τ = 1
2t′ . It is then easy to obtain (5) by following similar steps as

in Section B.1, by noticing that the restart frequency is of the same order O(1/τ).

B.3 Details about (13)

Inner-loop complexity. Since ηk is chosen such that the bias ηkBσ
2 is smaller than εk, the number

of iterations ofM to solve the sub-problem is Õ(τ) = O(log(1/q)τ), as in the deterministic case,

and the complexity is thus Õ(τ/ηk).

Outer-loop complexity. Since E[F (xk)− F ⋆] ≤ O((1−√q/3)k(F (x0)− F ⋆))/q according to
Proposition 4, it suffices to choose

K = O

(
1√
q
log

(
F (x0)− F ⋆

qε

))

iterations to guarantee E[F (xK)− F ⋆] ≤ ε = O(εK/q) = O((1−√q/3)K(F (x0)− F ⋆)/q).

Global complexity. The total complexity to guarantee E[F (xk)− F ⋆] ≤ ε is then

C =

K∑

k=1

Õ

(
τ

ηk

)

≤ Õ
(

K∑

k=1

τ +

K∑

k=1

Bσ2τ

εk

)

= Õ






K∑

k=1

τ +
K∑

k=1

Bσ2τ
(

1−
√
q

3

)k

(F (x0)− F ⋆)






= Õ






τ√
q
log

(
F (x0)− F ⋆

ε

)

+
Bσ2τ

√
q
(

1−
√
q

3

)K+1

(F (x0)− F ⋆)






= Õ

(
τ√
q
log

(
F (x0)− F ⋆

ε

)

+
Bσ2τ

q3/2ε

)

,

where the last relation uses the fact that ε = O(εK/q) = O((1−√q/3)K(F (x0)− F ⋆)/q).

B.4 Complexity of accelerated stochastic proximal gradient descent with inexact prox

Assume that hk(xk)− h⋆k ≤ εk. Then, following similar steps as in (11),

E[F (xk)] ≤ E[hk(xk)] + E[(gk −∇f(yk–1))
⊤(xk − yk–1)]

= E[hk(xk)] + E[(gk −∇f(yk–1))
⊤(xk − uk–1)]

= E[hk(xk)] + E[(gk −∇f(yk–1))
⊤(xk − x⋆k)] + E[(gk −∇f(yk–1))

⊤(x⋆k − uk–1)]

≤ E[hk(xk)] + E[(gk −∇f(yk–1))
⊤(xk − x⋆k)] +

σ2

κ+ µ

≤ E[hk(xk)] +
E[‖gk −∇f(yk–1)‖2]

2(κ+ µ)
+

(κ+ µ)E[‖xk − x⋆k‖2]
2

+
σ2

κ+ µ

≤ E[hk(xk)] + E[hk(xk)− h⋆k] +
3σ2

2(κ+ µ)

≤ E[h⋆k] + 2εk +
3σ2

2(κ+ µ)
.
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And thus, δk = 2εk +
3σ2

2(κ+µ) .

C Proofs of Main Results

C.1 Proof of Propositions 1 and 4

Proof. In order to treat both propositions jointly, we introduce the quantity

wk =

{
x⋆k for Algorithm 1
xk for Algorithm 2

,

and, for all k ≥ 1,

vk = wk +
1− αk–1

αk–1
(wk − xk–1), (16)

with v0 = x0, as well as ηk = αk−q
1−q for all k ≥ 0.

Note that the following relations hold for all k ≥ 1, keeping in mind that α2
k = (1− αk)α2

k–1 + qαk:

1− ηk =
1− αk
1− q =

(κ+ µ)(1− αk)
κ

ηk =
αk − q
1− q =

α2
k − qαk
αk − qαk

=
α2
k–1(1− αk)

αk − α2
k + (1− αk)α2

k–1

=
α2
k–1

α2
k–1 + αk

.

Then, based on the previous relations, we have

yk = wk + βk(wk − xk–1) +
(κ+ µ)(1− αk)

κ
(xk − wk)

= wk +
αk–1(1− αk–1)

α2
k–1 + αk

(wk − xk–1) + (1− ηk)(xk − wk)

= wk +
ηk(1− αk–1)

αk–1
(wk − xk–1) + (1− ηk)(xk − wk)

= ηkvk + (1− ηk)xk,

which is similar to the relation used in [33] when wk = xk. Then, the proof differs from [33] since
we introduce the surrogate function hk. For all x in R

p,

hk(x) ≥ h⋆k +
κ+ µ

2
‖x− x⋆k‖2 (by strong convexity, seeH1)

= h⋆k +
κ+ µ

2
‖x− wk‖2 +

κ+ µ

2
‖wk − x⋆k‖2 + (κ+ µ)〈x− wk, wk − x⋆k〉

︸ ︷︷ ︸

−∆k(x)

. (17)

Introduce now the following quantity for the convergence analysis:

zk–1 = αk–1x
⋆ + (1− αk–1)xk–1,

and consider x = zk–1 in (17) while taking expectations, noting that all random variables indexed by
k–1 are deterministic given Fk–1,

E[F (xk)] ≤ E[h⋆k] + δk (byH3)

≤ E[hk(zk–1)]− E

[
κ+ µ

2
‖zk–1 − wk‖2

]

+ E[∆k(zk–1)] + δk

≤ E[F (zk–1)] + E

[κ

2
‖zk–1 − yk–1‖2

]

− E

[
κ+ µ

2
‖zk–1 − wk‖2

]

+ E[∆k(zk–1)] + δk,

(18)

where the last inequality is due to (H2).
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Let us now open a parenthesis and derive a few relations that will be useful to find a Lyapunov
function. To use more compact notation, define Xk = E[‖x⋆ − xk‖2], Vk = E[‖x⋆ − vk‖2] and
Fk = E[F (xk)− F ⋆], and note that

E[F (zk–1)] ≤ αk–1f
⋆ + (1− αk–1)E[F (xk–1)]−

µαk–1(1− αk–1)

2
Xk–1

E[‖zk–1 − wk‖2] = α2
k–1Vk

E[‖zk–1 − yk–1‖2] ≤ αk–1(αk–1 − ηk–1)Xk–1 + αk–1ηk–1Vk–1.

(19)

The first relation is due to the convexity of f ; the second one can be obtained from the definition
of vk in (16) after simple calculations; the last one can be obtained as in the proof of Theorem 3
in [33] (end of page 16).

We may now come back to (18) and we use the relations (19):

Fk +
(κ+ µ)α2

k–1

2
Vk ≤ (1− αk–1)Fk−1 −

µαk–1(1− αk–1)

2
Xk–1+

κ

2
αk–1(αk–1 − ηk–1)Xk–1 +

κ

2
αk–1ηk–1Vk–1 + δk + E[∆k(zk–1)].

It is then easy to see that the terms involvingXk–1 cancel each other since ηk–1 = αk–1− µ
κ (1−αk–1).

Lyapunov function. We may finally define the Lyapunov function

Sk = (1− αk)Fk +
καkηk

2
Vk. (20)

and we obtain
Sk

1− αk
≤ Sk−1 + δk + E[∆k(zk–1)], (21)

For variant Algorithm 1, we have ∆k(zk–1) = 0 since wk = x⋆k, and we obtain the following relation
by unrolling the recursion:

Sk ≤ Ak



S0 +

k∑

j=1

δj
Aj−1



 with Aj =

j
∏

i=1

(1− αi). (22)

Specialization to µ > 0. When µ > 0, we have α0 =
√
q and

S0 = (1−√q)(F (x0)− F ⋆) +
κ
√
q(
√
q − q)

2(1− q) ‖x0 − x⋆‖2

= (1−√q)(F (x0)− F ⋆) +
(κ+ µ)

√
q(
√
q − q)

2
‖x0 − x⋆‖2

= (1−√q)(F (x0)− F ⋆) +
µ(1−√q)

2
‖x0 − x⋆‖2

≤ 2(1−√q)(F (x0)− F ⋆),

(23)

by using the strong convexity inequality F (x0) ≥ F ⋆ + µ
2 ‖x0 − x⋆‖2. Then, noting that E[F (xk)−

F ⋆] ≤ Sk

1−√
q and Ak = (1−√q)k (Lemma 8), we immediately obtain the first part of (8) from (22).

Specialization to µ = 0. When µ = 0, we have α0 = 1 and S0 = κ
2 ‖x0 − x⋆‖2. Then, according

to Lemma 8 and (22), for k ≥ 1,

E[F (xk)− F ⋆] ≤
Sk

1− αk
≤ κ‖x0 − x⋆‖2

2
Ak–1 +

k∑

j=1

δjAk–1

Aj−1
, (24)

and we obtain the second part of (8) noting that Ak–1 ≤ 4
(k+1)2 and that Aj–1 ≥ 2

(j+1)2 . Then,

Proposition 1 is proven.
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Proof of Proposition 4. When wk = xk, we need to control the quantity ∆k(zk–1). Consider any
scalar θk in (0, 1). Then,

∆k(zk–1) = −
κ+ µ

2
‖xk − x⋆k‖2 − (κ+ µ)〈zk–1 − xk, xk − x⋆k〉

= −κ+ µ

2
‖xk − x⋆k‖2 − (κ+ µ)αk–1〈x⋆ − vk, xk − x⋆k〉

≤ −κ+ µ

2
‖xk − x⋆k‖2 + (κ+ µ)αk–1‖x⋆ − vk‖‖xk − x⋆k‖

≤
(

1

θk
− 1

)
κ+ µ

2
‖xk − x⋆k‖2 +

θk(κ+ µ)α2
k–1

2
‖x⋆ − vk‖2 (Young’s inequality)

≤
(

1

θk
− 1

)

(hk(xk)− h⋆k) +
θk(κ+ µ)α2

k–1

2
‖x⋆ − vk‖2 (since θk ≤ 1)

≤
(

1

θk
− 1

)

(hk(xk)− h⋆k) +
θk(κ+ µ)(α2

k − αkq)
2(1− αk)

‖x⋆ − vk‖2

=

(
1

θk
− 1

)

(hk(xk)− h⋆k) +
θkκαkηk
2(1− αk)

‖x⋆ − vk‖2.

Then, we take expectations and, noticing that the quadratic term involving ‖x⋆ − vk‖2 is smaller than
θkSk/(1− αk) in expectation (from the definition of Sk in (20)), we obtain

E[∆k(zk–1)] ≤
(

1

θk
− 1

)

εk +
θkSk
1− αk

,

and from (21),

Sk ≤
(1− αk)
(1− θk)

(

Sk–1 + δk +

(
1

θk
− 1

)

εk

)

.

By unrolling the recursion, we obtain

Sk ≤
Ak
Θk



S0 +
k∑

j=1

Θj−1

Aj−1

(

δj − εj +
εj
θj

)


 with Aj =

j
∏

i=1

(1−αi) and Θj =

j
∏

i=1

(1− θi).

(25)

Specialization to µ > 0. When µ > 0, we have αk =
√
q for all k ≥ 0. Then, we may choose

θk =
√
q

2 ; then, 1−√q ≤
(

1−
√
q

2

)2

and Ak

Θk
≤
(
1−

√
q

2

)k
for all k ≥ 0. By using the relation (23),

we obtain

Sk ≤ 2

(

1−
√
q

2

)k

(1−√q)(F (x0)− F ⋆) + 2

k∑

j=1

(

1−√q
1−

√
q

2

)k−j+1(

δj − εj +
εj√
q

)

≤ (1−√q)



2

(

1−
√
q

2

)k

(F (x0)− F ⋆) + 4

k∑

j=1

(

1−√q
1−

√
q

2

)k−j (

δj − εj +
εj√
q

)




≤ (1−√q)



2

(

1−
√
q

2

)k

(F (x0)− F ⋆) + 4

k∑

j=1

(

1−
√
q

2

)k−j (

δj − εj +
εj√
q

)


 ,

where the second inequality uses 1

1−
√

q

2

≤ 2. Since (1−√q)E[F (xk)− F ⋆] ≤ Sk, we obtain the

first part of Proposition (4).

Specialization to µ = 0. When µ = 0, we have α0 = 1 and S0 = κ
2 ‖x0 − x⋆‖2. We may then

choose θk = γ
(k+1)1+γ for any γ in (0, 1], leading to e−(1+γ) ≤ Θk ≤ 1 for all k ≥ 0 according to

Lemma 9. Besides, according to the proof of Lemma 8, 2
(k+2)2 ≤ Ak ≤ 4

(k+2)2 for all k ≥ 1.
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Then, from (25),

E[F (xk)− F ⋆] ≤
Ak–1

Θk

κ‖x0 − x⋆‖2
2

+

k∑

j=1

Ak–1Θj–1

ΘkAj–1

(

δj − εj +
εj
γ
(1 + j)1+γ

)

≤ 2e1+γ

(k + 1)2



κ‖x0 − x⋆‖2 +
k∑

j=1

(j + 1)2(δj − εj) +
(j + 1)3+γεj

γ



 ,

which yields the second part of Proposition (4).

C.2 Proof of Proposition 5

Assume that for k ≥ 2, we have the relation

E[hk–1(xk–1)− h⋆k–1] ≤ εk–1. (26)

Then, we want to evaluate the quality of the initial point xk–1 to minimize hk.

hk(xk–1)−h⋆k= hk–1(xk–1) +
κ

2
‖xk–1 − yk–1‖2 −

κ

2
‖xk–1 − yk–2‖2 − h⋆k

= hk–1(xk–1)− h⋆k–1 + h⋆k–1 − h⋆k +
κ

2
‖xk–1 − yk–1‖2 −

κ

2
‖xk–1 − yk–2‖2

= hk–1(xk–1)− h⋆k–1 + h⋆k–1 − h⋆k−κ(xk–1−yk–1)
⊤(yk–1−yk–2)−

κ

2
‖yk–1−yk–2‖2.

(27)

Then, we may use the fact that h⋆k can be interpreted as the Moreau-Yosida smoothing of the

objective f , defined as G(y) = minx∈Rp F (x) + κ
2 ‖x − y‖2, which gives us immediately a few

useful results, as noted in [34]. Indeed, we know that G is κ-smooth with∇G(yk–1) = κ(yk–1 − x⋆k)
for all k ≥ 1 and

h⋆k–1 = G(yk–2) ≤ G(yk–1) +∇G(yk–1)
⊤(yk–2 − yk–1) +

κ

2
‖yk–1 − yk–2‖2

= h⋆k + κ(yk–1 − x⋆k)⊤(yk–2 − yk–1) +
κ

2
‖yk–1 − yk–2‖2.

(28)

Then, combining (27) and (28),

hk(xk–1)− h⋆k ≤ hk–1(xk–1)− h⋆k–1 + κ(xk–1 − x⋆k)⊤(yk–2 − yk–1).

≤ hk–1(xk–1)− h⋆k–1 + κ(xk–1 − x⋆k–1)
⊤(yk–2 − yk–1)+κ(x

⋆
k–1−x⋆k)⊤(yk–2 − yk–1)

≤ hk–1(xk–1)− h⋆k–1 + κ(xk–1 − x⋆k–1)
⊤(yk–2 − yk–1) + κ‖yk–1 − yk–2‖2

≤ hk–1(xk–1)− h⋆k–1 +
κ

2
‖xk–1 − x⋆k–1‖2 +

3κ

2
‖yk–1 − yk–2‖2

≤ 3

2
(hk–1(xk–1)− h⋆k–1) +

3κ

2
‖yk–1 − yk–2‖2,

where the third inequality uses the non-expansiveness of the proximal operator; the fourth inequality

uses the inequality a⊤b ≤ ‖a‖2

2 + ‖b‖2

2 for vectors a, b, and the last inequality uses the strong
convexity of hk–1. Then, we may use the same upper-bound on ‖yk–1 − yk–2‖ as [33, Proposition
12], namely

‖yk–1 − yk–2‖2 ≤ 36max
(
‖xk–1 − x⋆‖2, ‖xk–2 − x⋆‖2, ‖xk–3 − x⋆‖2

)
,

where we define x−1 = x0 if k = 2.

C.3 Proof of Proposition 6

The proof is similar to the derivation described in Section B.3.

Inner-loop complexity. With the choice of δk, we have that ξk–1 = O(δk–1/
√
q). Besides, since

we enforce E[Hk(xk)−H⋆
k ] ≤ δk for all k ≥ 0, the result of Proposition 5 can be applied and the

discussion following the proposition still applies, such that the complexity for computing xk is indeed

Õ(τ/ηk).
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Outer-loop complexity. Then, according to Proposition 1, it is easy to show that E[F (xk)−F ⋆] ≤
O((1−√q/2)k(F (x0)− F ⋆))/

√
q and thus it suffices to choose

K = O

(
1√
q
log

(
F (x0)− F ⋆√

qε

))

iterations to guarantee E[F (xK)− F ⋆] ≤ ε.

Global complexity. We use the exact same derivations as in Section B.3 except that we use the fact
that ε = O(εK/

√
q) = O((1−√q/3)K(F (x0)− F ⋆)/

√
q) instead of ε = O(εK/q), which gives

us the desired complexity.

D MethodsM with Duality Gaps Based on Strongly-Convex Lower Bounds

In this section, we summarize a few results from [28] and introduce minor modifications to guarantee
the condition (14). For solving a stochastic composite objectives such as (1), where F is µ-strongly
convex, consider an algorithmM performing the following classical updates

zt ← Proxηψ [zt−1 − ηgt] with E[gt|Fk–1] = ∇f(zt−1),

where η ≤ 1/L, and the variance of gt is upper-bounded by σ2
t . Inspired by estimate sequences

from [40], the authors of [28] build recursively a µ-strongly convex quadratic function dt of the form

dt(z) = d⋆t +
µ

2
‖zt − z‖2.

From the proof of Proposition 1 in [28], we then have

E[d⋆t ] ≥ (1− ηµ)E[d⋆k–1] + ηµE[F (zt)]− η2µσ2
t ,

which leads to

F ⋆ − E[d⋆t ] + ηµ(E[F (zt)]− F ⋆) ≤ (1− ηµ)E[F ⋆ − d⋆k–1] + η2µσ2
t ,

which is a minor modification of Proposition 1 in [28] that is better suited to our purpose.

With constant variance. Assume now that σt = σ for all k ≥ 1. Following the iterate averaging
procedure used in Theorem 1 of [28], which produces an iterate ẑt, we obtain

E[F (ẑt)− d⋆t ] ≤ (1− ηµ)t (F (z0)− d⋆0) + ησ2, (29)

where d⋆0 can be freely specified for the analysis: it is not used by the algorithm, but it influences d⋆t
through the relation E[dt(z)] ≤ Γtd0(z) + (1 − Γt)E[F (z)] with Γt = (1 − µη)k, see Eq. (11)
in [28]. In contrast, Theorem 1 in [28] would give here

E[F (ẑt)− F ⋆ + dt(z
⋆)− d⋆t ] ≤ (1− ηµ)t (2(F (z0)− F ⋆)) + ησ2, (30)

where z⋆ is a minimizer of F , which is sufficient to guarantee (2) given that dt(z
⋆) ≥ d⋆t .

Application to the minimization of Hk. Let us now consider applying the method to an auxiliary
function Hk from (14) instead of F , with initialization xk–1. After running T iterations, define hk to
be the corresponding function dT defined above and xk = ẑT . Hk is (κ+µ)-strongly convex and thus
hk is also (κ+µ)-strongly convex such that (H1) is satisfied. Let us now check possible choices for d⋆0
to ensure (H2). For zk–1 = αk–1x

⋆+(1−αk–1)xk–1, E[dT (zk–1)] ≤ ΓT d0(zk–1)+(1−ΓT )Hk(zk–1)
such that we simply need to choose d⋆0 such that E[d0(zk–1)] ≤ E[Hk(zk–1)]. Then, choose

d⋆0 = H⋆
k − F (xk–1) + F ⋆, (31)

and

d0(zk–1) = d⋆0 +
κ+ µ

2
‖xk–1 − zk–1‖2

= d⋆0 +
(κ+ µ)α2

k–1

2
‖xk–1 − x⋆‖2

= d⋆0 +
µ

2
‖xk–1 − x⋆‖2

≤ d⋆0 + F (xk–1)− F ⋆ = H⋆
k ≤ Hk(zk–1),

such that (H2) is satisfied, and finally (29) becomes

E[Hk(xk)− h⋆k] ≤ (1− η(µ+ κ))
T
(Hk(xk–1)−H⋆

k + F (xk–1)− F ⋆) + ησ2,

which matches (14).
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Variance-reduction methods. In [28], gradient estimators gt with variance reduction are studied,
leading to variants of SAGA [13], MISO [35], and SVRG [53], which can deal with the stochastic
finite-sum problem presented in Section 1. Then, the variance of σ2

t decreases (Proposition 2 in [28]).

Let us then consider again the guarantees of the method obtained when minimizing F with µ
L ≤ 1

5n .
From Corollary 5 of [28], we have

E[F (ẑt)− F ⋆ + dt(z
⋆)− d⋆t ] ≤ 8 (1− µη)t (F (x0)− F ⋆) + 18ησ2,

and (2) is satisfied. Consider now two cases at iteration T :

• if E[dT (z
⋆)] ≥ F ⋆, then we have E[F (ẑT )− d⋆T ] ≤ 8 (1− µη)T (F (x0)− F ⋆) + 18ησ2.

• otherwise, it is easy to modify Theorem 2 and Corollary 5 of [28] to obtain

E[F (ẑT )− d⋆T ] ≤ (1− µη)T (2(F (x0)− F ⋆) + 6(F ⋆ − d⋆0)) + 18ησ2, (32)

Application to the minimization of Hk. Consider now applying the method for minimizing Hk,
with the same choice of d⋆0 as (31), which ensures (H2), and same definitions as above for xk and hk.

Note that the conditions on µ and L above are satisfied when κ = L
5n −µ under the condition L

5n ≥ µ.
Then, we have from the previous results, after replacing F by Hk making the right subsitutions

E[Hk(xk)− h⋆k] ≤ (1− (µ+ κ)η)
T
(8(Hk(xk–1)−H⋆

k) + 6(F (xk–1)− F ⋆)) + 18ησ2,

and (14) is satisfied.

Other schemes. Whereas we have presented approaches were dt is quadratic, [28] also studies
another class of algorithms where dt is composite (see Section 2.2 in [28]). The results we present in
this paper can be extended to such cases, but for simplicity, we have focused on quadratic surrogates.

E Additional Experimental Material

Computing resources. The numerical evaluation was performed by using four nodes of a CPU
cluster with 56 cores of Intel CPUs each. The full set of experiments presented in this paper (with 5
runs for each setup) takes approximately half a day.

Making plots. We run each experiment five times and average the outputs. We display plots on a
logarithmic scale for the primal gap F (xk)− F ⋆ (with F ⋆ estimated as the minimum value observed
from all runs). Note that for SVRG, one iteration is considered to perform two epochs since it requires
accessing the full dataset every n iterations on average.

E.1 Additional experiments.

Acceleration with no noise, δ = 0. We start evaluating the acceleration approach when there is
no noise. This is essentially evaluating the original Catalyst method [33] in a deterministic setup
in order to obtain a baseline comparison when δ = 0. The results are presented in Figures 2 and 3
for the logistic regression problem. As predicted by theory, acceleration is more important when
conditioning is low (bottom curves).

Stochastic acceleration with no noise, δ = 0.01 and δ = 0.1. Then, we perform a similar
experiments by adding noise and report the results in Figures 4, 5, 6, 7. In general, the stochastic
Catalyst approach seems to perform on par with the accelerated SVRG approach of [28] and even
better in one case.

Evaluating the square hinge loss. In Figure 8, we perform experiments using the square hinge
loss, where the methods perform similarly as for the logistic regression case, despite the fact that the
bounded noise assumption does not necessarily hold on the optimization domain for the square hinge
loss.

Evaluating ill-conditioned problems. Finally, we study in Figure 10 how the methods behave
when the problems are badly conditioned. There, acceleration seems to work on ckn-cifar, but fails
on gene and alpha, suggestions that acceleration is difficult to achieve when the condition number is
extremely low.
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Figure 2: Accelerating SVRG-like methods for ℓ2-logistic regression with µ = 1/(10n) (top) and
µ = 1/(100n) (bottom) for δ = 0. All plots are on a logarithmic scale for the objective function
value, and the x-axis denotes the number of epochs. The colored tubes around each curve denote a
standard deviations across 5 runs. They do not look symmetric because of the logarithmic scale.
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Figure 3: Same plots as in Figure 2 when comparing SVRG and SAGA, with no noise (δ = 0) with
µ = 1/(10n) (top) and µ = 1/(100n) (bottom) .
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Figure 4: Same plots as in Figure 2 for δ = 0.01 with µ = 1/(10n) (top) and µ = 1/(100n)
(bottom).
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Figure 5: Same plots as in Figure 3 for δ = 0.01 with µ = 1/(10n) (top) and µ = 1/(100n)
(bottom).
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Figure 6: Same plots as in Figure 2 for δ = 0.1 with µ = 1/(10n) (top) and µ = 1/(100n) (bottom).
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Figure 7: Same plots as in Figure 3 for δ = 0.1 with µ = 1/(10n) (top) and µ = 1/(100n) (bottom).
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Figure 8: Accelerating SVRG-like methods when using the squared hinge loss instead of the logistic
for δ = 0 (top) and δ = 0.1, both with µ = 1/(10n).
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Figure 9: Same plots as in Figure 8 for SVRG and SAGA, with δ = 0 (top) and δ = 0.1 for
µ = 1/(10n).
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Figure 10: Illustration of potential numerical instabilities problems when the problem is very ill-
conditioned. We use µ = 1/(1000n) with δ = 0 for the logistic loss (top) and squared hinge
(bottom).
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