
A Appendix

A.1 Proof of Theorem 1
Before presenting the proof of Theorem 1, we first re-demonstrate the previous
lemmas here.

Lemma 1 (Differential privacy ⇒ uniform RO-stability) If a randomized
algorithm A is ε-differentially private, then the algorithm A satisfies (eε − 1)-
RO-stability.

Lemma 2 If an algorithm A is uniform RO-stable with rate εstable(m), then
|FU (A)| can be bounded: |FU (A)| ≤ εstable(m).

Then, we briefly introduce the proof of Theorem 1.

Theorem 1 (Generalization gap) If an algorithm A satisfies ε-differential
privacy, then the generalization gap can be bounded by a data-independent
constant.

Proof: Given a differentially private algorithm A with a privacy cost ε, then,
according to Lemma 1, we can derive that A is uniform RO-stability. Then the
generalization bound |FU (A)| satisfies the following inequality:

|FU (A)| ≤ εstable (1)

where εstable is the stability ratio (equals to eε − 1).

A.2 Proof of Theorem 2
The proof of Theorem 2 can be accomplished by combing the post-processing
property of the differentially private algorithm and the McDiarmid’s inequality.
Thus, we first introduce the post-processing property and the McDiarmid’s
inequality as follows:

Lemma 3 (Post-processing) Let A be a randomized algorithm that is ε-
differently private. Let f be an arbitrary randomized mapping. Then f ◦ A
is ε-differentially private.

Lemma 4 (McDiarmid’s inequality) Consider independent random vari-
ables X1, X2, · · · , Xn ∈ X and a mapping f : Xn → R. If, for all i ∈ 1, 2, · · · , n
and for all x1, x2, · · · , xn, x′i ∈ X , the function φ satisfies:

|φ(x1, · · · , xi−1, xi, xi+1, · · · , xn)− φ(x1, · · · , xi−1, x′i, xi+1, · · · , xn)| ≤ ci (2)

then:

P (|φ(X1, · · · , Xn)| − Eφ| ≥ t) ≤ 2 exp(−−2t
2∑
c2i

) (3)
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Theorem 2 (Uniform convergence): Suppose Ad satisfies ε-differential pri-
vacy and d(k)(x; θ

(k)
d ) be the output of Ad at the k-th iteration. Then, ∀k, the

generalization gap with respect to dk can be bounded by a universal constant
which is related to ε.

Proof: For a training algorithm A which satisfies ε-differentially private,
then the function build by the output of A is ε-differentially private in terms
of Lemma 3. As a result, the computation of U(θd, θ∗g) is differentially private.
Using Lemma 1, we can derive that U(θd, θ

∗
g) satisfies uniform RO-stability.

We further let φ = U , then based on the stability of U , we can meet the
requirement of Lemma 4. Based on Lemma 4, we can obtained that:

P (|U(θd, θ
∗
g)− Û(θd, θ

∗
g)| ≥ t) ≤ 2 exp(

−2t2

mε2
) (4)

where ε is the privacy cost and m denotes the number of samples used for
computing the empirical loss Û .

A.3 Hyper-parameter Setting
Here we list the details of the hyper-parameters of different experiments in Table
1.

Table 1: Details of hype-parameters of Adam optimizer.
Strategy Learning rate β1 β2

-JS divergence-
Original 0.0004 0.5 0.999

Weight clipping 0.0004 0.5 0.999
Spectral normalization 0.0004 0.0 0.999

Gradient penalty 0.0004 0.0 0.999
-Wassertain Distance-

W/o clipping 0.0002 0.5 0.999
Weight clipping 0.0002 0.5 0.999

Spectral normalization 0.0002 0.0 0.999
Gradient penalty 0.0002 0.0 0.999

A.4 Visualization
Here we show some generated images produced by GANs, which are trained
with different regularization techniques. As concluded in the paper, we can see
that spectral normalization achieves comparable quality of generated images in
contrast to the original GAN (even better on the LFW dataset).
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Table 2: Visualization of generated images of GAN models trained with the
JS-divergence. The first row is the results of the LFW dataset and the second
row is the IDC dataset.
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