General E(2) - Equivariant Steerable CNNs
Appendix

A Local gauge equivariance of E(2)-steerable CNNs
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Figure 3: Different viewpoints on transformations of signals on R?
Top Left: In our work we considered active rotations of the sig-
nal while keeping the coordinate frames fixed. Bottom Left: The
equivalent, passive interpretation views the transformation as a
global rotation of reference frames (a global gauge transformation).
Right: Local gauge transformations rotate reference frames inde-
pendently from each other. E(2)-steerable CNNs are equivariant
w.r.t. both global and local gauge transformations.

The E(2)-equivariant steerable CNNs considered in this work were derived in the classical framework

of steerable CNNs on Euclidean spaces R (or more general homogeneous spaces) [} 12, 13| 14].
This formulation considers active transformations of signals, in our case translations, rotations and
reflections of images. Specifically, an active transformation by a group element tg € (]RZ, +)xG
moves signal values from x to g~ (z — t); see Eq. (T) and Figure top left. The proven equivariance
properties of the proposed E(2)-equivariant steerable CNNs guarantee the specified transformation
behavior of the feature spaces under such active transformations. However, our derivations so far
don’t prove any equivariance guarantees for local, independent rotations or reflections of small
patches in an image.

The appropriate framework for analyzing local transformations is given by Gauge Equivariant
Steerable CNNs [5]. In contrast to active transformations, Gauge Equivariant CNNs consider
passive gauge transformations; see Figure [3] right. Adapted to our specific setting, each feature
vector f(x) is being expressed relative to a local reference frame (or gauge) (e1(x), ez(x)) at

x € R, A gauge transformation formalizes a change of local reference frames by the action of
position dependent elements g(z) of the gauge group (or structure group), in our case rotations and
reflections in G < O(2). Since gauge transformations act independently on each position, they model
independent transformation of local patches in an image. As derived in [5], the demand for local
gauge equivariance results in the same kernel constraint as in Eq. (2). This implies that our models
are automatically locally gauge equivarian

More generally, the kernel constraint (2) applies to arbitrary 2-dimensional Riemannian manifolds
M with structure groups G < O(2). The presented solutions of the kernel space constraint therefore
describe spherical CNNs [[14} 15 [15 16, [17, [18] or convolutional networks on triangulated meshes
(19} 20} 21} 22] for different choices of structure groups and group representations.

* Conversely, the equivariance under local gauge transformations g(z) € O(2) implies the equivariance under
active isometries. In the case of the Euclidean space R? these isometries are given by the Euclidean group E(2).



B Overview over subgroups of E(2) and O(2)

The subgroups of E(2) = (R?, +) x O(2) considered in this work are of the form (R?, 4) x G with
G < O(2). An overview over all possible choices is given in the following table.

order |G| G <0(2) (R%,+)x G
orthogonal - 0(2) E(2) = (R% +) x O(2)
special orthogonal - SO(2) SE(2) = (R2,+) x SO(2)
cyclic N Cy (R?,+) x Cy
reflection 2 ({£1},%) 2 Dy (R%,+) x ({£1}, %)
dihedral 2N Dy = Cy x({%1},%) (R?,+) x Dy

Table 6: Overview over the different groups covered in our framework.

C Implementation details

E(2)-steerable CNNs rely on convolutions with O(2)-steerable kernels. Our implementation therefore
involves 1) computing a basis of steerable kernels, 2) the expansion of a steerable kernel in terms of
this basis with learned expansion coefficients and 3) running the actual convolution routine. Since the
kernel basis depends only on the chosen representations it is precomputed before training.

Given an input and output representation pi, and poy of G < O(2), we first precompute a ba-
sis {k1,...kq} of G-steerable kernels satisfying Eq. (2). In order to solve the kernel constraint
we compute the types and multiplicities of irreps in the input and output representations using
character theory [23]. The change of basis can be obtained by solving the linear system of
equations p(g) = Q' [, ¥i(9)]Q Vg € G. For each pair 1), 1; of irreps occurring in pey and
pin We retrieve the analytical solutions {x7’,... k7 ,} listed in Appendix Together with the

change of basis matrices @i, and Q oy, they fully determine the angular parts of the basis {k1, ..., kq}
of G-steerable kernels via Eq. (@). Since the kernel space constraint affects only the angular behavior
of the kernels we are free to choose any radial profile. Following [[7] and [2], we choose Gaussian
radial profiles exp (52 (r - R)?) of width o, centered at radii R = 1,.. ., [s/2].

In practice, we consider digitized signals on a pixel gri 72 Correspondingly, we sample the
analytically found kernel basis {k1, ..., kq} on a square grid of size s x s to obtain their numerical
representation of shape (d, cou, Cin, S, $). In this process it is important to prevent aliasing effects.
Specifically, each basis kernel corresponds to one particular angular harmonic; see Table[I] When
being sampled with a too low rate, a basis kernel can appear as a lower harmonic and might therefore
introduce non-equivariant kernels to the sampled basis. For this reason, preventing aliasing is
necessary to guarantee (approximate) equivariance. In order to ensure a faithful discretization, note
that each Gaussian radial profile defines a ring whose circumference, and thus angular sampling
rate, is proportional to its radius. It is therefore appropriate to bandlimit the kernel basis by a cutoff
frequency which is chosen in proportion to the rings’ radii. Since the basis kernels are harmonics of
specific angular frequencies this is easily implemented by discarding high frequency solutions.

In typical applications the feature spaces are defined to be composed of multiple independent
feature fields. Since the corresponding representations are block diagonal, this implies that the actual
constraint (Z)) decomposes into multiple simpler constraintsE] which we leverage in our implementation
to improve its computational efficiency. Assuming the output and input representations of a layer to
be given by pour = P  Pout,y and pi, = P s Pin,s respectively, the constraint on the full kernel space

is equivalent to constraints on its blocks k?® which map between the independent fields transforming

3 Note that this prevents equivariance from being exact for groups which are not symmetries of the grid.
Specifically, for Z?2 only subgroups of Dy are exact symmetries which motivated their use in [6] 10} [T]].
® The same decomposition was used in a different context in Section
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under piy, 5 and poy;,- Our implementation therefore computes a sampled basis {k?‘s, el sz s } of
k7% for each pair ( Pin,5, Pout,~) Of input and output representations individually.

At runtime, the convolution kernels are expanded by contracting the sampled kernel bases with learned
weights. Specifically, each basis {k?‘s, el kgf s |, realized by a tensor of shape (d°, cou,: Cin,s5 , ),
is expanded into the corresponding block k£ of the kernel by contracting it with a tensor of learned
parameters of shape (d??). This process is sped up further by batching together multiple occurrences
of the same pair of representations and thus block bases.

The resulting kernels are then used in a standard convolution routine. In practice we find that the
time spent on the actual convolution of reasonably sized images outweighs the cost of the kernel
expansion. In evaluation mode the parameters are not updated such that the kernel needs to be
expanded only once and can then be reused. E(2)-steerable CNNs thus have no computational
overhead over conventional CNNs at test time.

Our implementation is provided as a PyTorch extension which is available at https://github. com/
QUVA-Lab/e2cnn. The library provides equivariant versions of many neural network operations,
including G-steerable convolutions, nonlinearities, mappings to produce invariant features, spatial
pooling, batch normalization and dropout. Feature fields are represented by geometric tensors, which
are wrapping a torch.Tensor object and augment it, among other things, with their transformation
law under the action of a symmetry group. This allows for a dynamic type-checking which prevents
the user from applying operations to geometric tensors whose transformation law does not match
the transformation law expected by the operation. The user interface hides most complications on
group theory and solutions of the kernel space constraint and requires the user only to specify the
transformation laws of feature spaces. For instance, a Cg-equivariant convolution operation, mapping
a RGB image, identified as three scalar fields, to ten regular feature fields, would be instantiated by:

| r2_act = Rot2dOnR2(N=8)

\feat,type,in = FieldType(r2_act, 3x[r2_act.trivial_repr])
| feat_type_out = FieldType(r2_act, 10*[r2_act.regular_repr])
\conv,op = R2Conv(feat_type_in, feat_type_ out, kernel_size=5)

AW =

Everything the user has to do is to specify that the group Cg acts on R? by rotating it (line 1)

and to define the types pi, = @?:1 1 and poy = @321 pgg of the input and output feature fields

(lines 2 and 3), which are subsequently passed to the constructor of the steerable convolution (line 4).

D Further analysis of experimental results
D.1 Model benchmarking on transformed MNIST datasets

In this section we analyze the benchmarking results of the 57 models in Table[/|in depth. All models
in these experiments are derived from the base architecture described in Table[I3]in Appendix [K] The
actual width of each model is adapted such that the number of parameters is approximately preserved.
Note that this results in different numbers of channels, depending on the parameter efficiency of the
corresponding models. All models apply some form of invariant mapping to scalar fields followed by
spatial pooling after the last convolutional layer such that the predictions are guaranteed to be invariant
under the equivariance group of the model. The number of invariant features passed to the fully
connected classifier is approximately kept constant by adapting the width of the last convolutional
layer to the invariant mapping used. The statistics of each experiment are averaged over (at least) 6
samples. In the remainder of this subsection we will guide through the results presented in Table[7]
For more information on the training setup, see Appendix

Regular steerable CNNs: Due to their popularity we first cover steerable CNNs whose features
transform under regular representations of Cy and Dy for varying orders N. Note that these models
correspond to group convolutional CNNs [6l [7]. For the dihedral models we choose a vertical
reflection axis. We use ELUs [34] as pointwise nonlinearities and perform group pooling (see
Section as invariant map after the final convolution. Overall, regular steerable CNNs perform
very well. The reason for this is that feature vectors, transforming under regular representations, can
encode any function on the group.

15


https://github.com/QUVA-Lab/e2cnn
https://github.com/QUVA-Lab/e2cnn

Figure [2] summarizes the results for all regular steerable CNNs on all variants of MNIST (rows 2-10
and 19-27 in Table . For MNIST O(2) and MNIST rot the prediction accuracies improve with N
but start to saturate at approximately 8 to 12 rotations. On MNIST O(2) the Dy models perform
consistently better than the Cn models of the same order N. This is the case since the dihedral
models are guaranteed to generalize over reflections which are present in the dataset. All equivariant
models outperform the non-equivariant CNN baseline.

On MNIST rot, the accuracy of the Cy-equivariant models improve significantly in comparison to
their results on MNIST O(2) since the intra-class variability is reduced. In contrast, the test errors of
the Dy -equivariant models is the same on both datasets. The reason for this result is the reflection
invariance of the Dy models which implies that they can’t distinguish between reflected digits. For
N =1 the dihedral model is purely reflection- but not rotation invariant and therefore performs even
worse than the CNN baseline. This issue is resolved by restricting the dihedral models after the
penultimate convolution to Cy < Dy, such that the group pooling after the final convolution results
in only Cp-invariant features. This model, denoted in the figure by Dy |5Cy, achieves a slightly better
accuracy than the pure Cy-equivariant model since it can leverage local reflectional symmetries.

For MNIST 12k the non-restricted Dy models perform again worse than the Cy models since they
are insensitive to the chirality of the digits. In order to explain the non-monotonic trend of the curves
of the Cy and Dy models, notice that some of the digits are approximately related by symmetry
transformationg®| If these transformations happen to be part of the equivariance group w.r.t. which
the model is invariant the predictions are more likely to be confused. This is mostly the case for N
being a multiple of 2 or 4 or for large orders N, which include almost all orientations. Once again,
the restricted models, here Dy|s{e} and Cy|5{e}, show the best results since they exploit local
symmetries but preserve information on the global orientation. Since the restricted dihedral model
generalizes over local reflections, its performance is consistently better than that of the restricted
cyclic model.

Quotient representations: As an alternative to regular representations we experiment with some
mixtures of quotient representations of Cy (rows 11-15). These models differ from the regular models
by enforcing more symmetries in the feature fields and thus kernels. The individual feature fields are
lower dimensional; however, by fixing the number of parameters, the models use more different fields
which in this specific case leads to approximately the same number of channels and therefore compute
and memory requirements. We do not observe any significant difference in performance between
regular and quotient representations. Appendix [F] gives more intuition on our specific choices of
quotient representations and which symmetries they enforce. Note that the space of possible quotient
representations and their multiplicities is very large and still needs to be investigated more thoroughly.

Group pooling and vector field nonlinearities: For C;4 we implement a group pooling network
(row 16) and a vector field network (row 17). These models map regular feature fields, produced by
each convolutional layer, to scalar fields and vector fields, respectively; see Section[2.6] These pooling
operations compress the features in the regular fields, which can lead to lower memory and compute
requirements. However, since we fix the number of parameters, the resulting models are ultimately
much wider than the corresponding regular steerable CNNs. Since the pooling operations lead to a
loss of information, both models perform worse than their purely regular counterpart on MNIST O(2)
and MNIST rot. Surprisingly, the group pooling network, whose features are orientation unaware,
performs better than the vector field network. On MNIST 12k the group pooling network closes up
with the regular steerable CNN while the vector field network achieves an even better result. We
further experiment with a model which applies vector field nonlinearities to only half of the regular
fields and preserves the other half (row 18). This model is on par with the regular model on both
transformed MNIST versions but achieves the overall best result on MNIST 12k. Similar to the case
of Cj¢, the group pooling network for D¢ (row 28) performs worse than the corresponding regular
model, this time also on MNIST 12k.

7 The group restricted models are not listed in Table but in Table

8E.g. 6and 9 (6 and 9) or 2 and 3 (2 and 5) are related by a rotations by 7 and might therefore be confused
by all models Cay, and Doy, for k € N. Similarly, - and 3 (4 and 7) are related by a reflection and a rotation by
/2 and might be confused by all models D.y.
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group representation nonlinearity invariant map  citation MNISTO(2) MNISTrot MNIST 12k

1 {e}  (conventional CNN) ELU - - 5.53+020 2.87x009 0.91x0.06
> Oy [719] 5.19+0.08 2.48+013 0.82+0.01
Cs [7109] 3.29+0.07 1.32+002 0.87+0.04

+ C3 = 2.87+0.04 1.19+006 0.80+0.03
s Cy 16/1If71191110] 2.40+0.05 1.02+0.03 0.99+0.03
o Cg  regular Preg ELU G-pooling [8] 2.08+0.03 0.89+003 0.84+0.02
Cg [719] 1.96+0.04 0.84+0.02 0.89+0.03

s Cyo 7] 1.95+0.07 0.80+0.03 0.89+0.03
» Cig [7119] 1.93+0.04 0.82+0.02 0.95+0.04
10 Cog 7] 1.95+0.05 0.83+0.05 0.94+0.06
o Cy 5preg@2p§$({f'2€92wo M 2.43+005 1.03+005 1.01+0.03
n Cs 5 Preg B 20k D20t 240 ; 2.0340.05 0844005 0.9140.02
5 Ci2  quotient Sp,-egEBQ,o;:;/% ®2p§l}§‘/c463w0 - 2.04+004 0.81+002 0.95+0.02
14 Cig 5010 ®2quet 2 B2 quel 4 B43bo : 2.004001 0.86+004 0.9840.04
15 Cao 5p,eg@2p§j;/c2@2,7555/“@51&0 - 2.01+0.05 0.83+0.03 0.96+0.04
16 regular/scalar 1) SLVA Preg ﬂ o ELU, G-pooling [6:138] 2.02+0.02 0.90+0.03 0.93+0.04
17 Cyg  regular/vector Lo, Preg vector pol U1 vector field [13!39] 2.12+0.02 1.07+0.03 0.78+0.03
18 mixed vector  preg b1 EOA 2preg % Preg®tP1  ELU, vector field - 1.87+0.03 0.83+0.02 0.63+0.02
19 Dy - 3.40+0.07 3.44+010 0.98+0.03
0 Do - 2.42+007 2.39+004 1.05+0.03
1 Ds - 2.17+0.06  2.15+005 0.9440.02
2 Dy [6/111140] 1.88+0.04 1.87+0.04 1.69+0.03
2 Dg regular Preg ELU G-pooling (8] 1.77+0.06 1.77+0.04 1.00+0.03
2 Dg = 1.68+0.06 1.73+0.03 1.64+0.02
Do - 1.66 +0.05 1.65+0.05 1.67+0.01

6 Dig - 1.62+0.04 1.65+0.02 1.6840.04
7 Dag - 1.64+0.06 1.62+0.05 1.6940.03
s Dig regular/scalar g o Preg i 0,0 ELU, G-pooling - 1.92+0.03 1.88+0.07 1.74+0.04
29 irreps < 1 @}:U i - 2.98+0.04 1.38+0.090 1.29+0.05
) irreps < 3 @, i - 3.02+0.18  1.38+0.09 1.27+0.03
31 irreps < 5 GB?:U i - 3.24+005 1.44+010 1.36+0.04
> irreps < 7 @{ZO ¥ ELU. norm-ReLU com2triv - 3.30+011 1.51+010 1.40+0.07
Ceirreps <1 @P;_o ¥F [12] 3.39+010 1.47+006 1.42+0.04

34 C-irreps < 3 @?:o »E [12] 3.48+016 1.51+005 1.53+0.07
Ceitreps <5 >, ¥¢ - 3.59+008 1.59+005 1.55+0.06

6 S0(2) C-irreps < 7 @3:0 [ - 3.64+012 1.61+0.06 1.62+0.03
7 ELU, squash - 3.10 +0.09 1.41+0.04 1.46+0.05
38 ELU, norm-ReLU - 3.23 £0.08 1.38+0.08 1.33+0.03
39 ELU, shared norm-ReLU norm - 2.88+0.11 1.15+0.06 1.1840.03
10 irreps < 3 @3 " shared norm-ReLU - 3.61+009 1.57+0.05 1.88+0.05
" - =071 ELU, gate N - 2.37+006 1.09+003 1.10+0.02
2 ELU, shared gate - 2.33+0.06 1.11+0.03 1.12+0.04
43 ELU, gate Horm - 2.23+009 1.04+0.04 1.05+0.06
4 ELU, shared gate - 2.20+0.06 1.01+0.03 1.03+0.03
45 irreps = 0 0,0 ELU - - 5.46+046 5.21+020 3.98+0.04
16 irreps < 1 Yo,0 D Y10 D 21,1 - 3.31+0.17 3.37+0.18 3.05+0.09
s %rreps <3 0.0 ® Y10 ®Z:1 214 —_ 0(2)-comv2uriy 3.42+003 3.41+010 3.86+0.00
a8 irreps < 5 0,0 B V1,0 D 2t 3.59+013 3.78+031 4.17+0.15
2 irreps < 7 0.0 B 10Dy 2014 - 3.84+025 3.90+018 4.5740.27
50 Ind-irreps <1 Ind wSO(z) @ Ind w§0(2) - 2.72+0.05 2.70+0.11 2.39+0.07
51 0(2 Ind-irreps < 3 Ind 50 @?_, Ind 79 2.66+0.07 2.65+0.12 2.25+0.06
o Ind—irregs <5 Ind ZEO(Z) g"’: Ind Z;so(?) BAASpIEIR NIRRT SRR ; 2714011  2.844010 2.39+0.00
53 Ind-irreps <7 Ind /;/150(2) @::1 Ind w;so(z) - 2.80+012  2.85+006 2.25+0.08
54 . O(2)-conv2triv - 2.39+0.05 2.38+0.07 2.28+0.07
55 irreps < 3 Vo0 & Y10 69?:1 Wi ELU. gate no(rrr)l - 2214009 2.24+006 2.15+0.03
56 . Ind-conv2triv - 2.13+0.04  2.09+0.05 2.05+0.05
5 Ind-irreps <3 Ind wa)O(Z) @?:1 Ind 1/’;:50(2) ELU, Ind gate Ind-norm - 1.96+0.06 1.95+005 1.85+0.07

Table 7: Extensive comparison of G-steerable CNNs for different choices of groups G, representations, nonlinearities and final G-invariant
maps on three transformed MNIST datasets. Multiplicities of representations are reported in relative terms; the actual multiplicities are
integer multiples with a depth dependent factor. All models apply a G-invariant map after the convolutions to guarantee an invariant
prediction. Citations give credit to the works which proposed the corresponding model design. For reference see Sections @ @ EandE



SO(2) irrep models: The feature fields of all SO(2)-equivariant models which we consider are
defined to transform under irreducible representations; see Appendix [E|and[[.2] Note that this covers

scalar fields and vector fields which transform under ’(/J(S) 9 and 1/}?0(2), respectively. Overall these
models are not competitive compared to the regular steerable CNNs. This result is particularly impor-
tant for SE(3) = (R®,4) x SO(3)-equivariant CNNs whose feature fields are often transforming
under the irreps of SO(3) [35] 2L 36} 151 37].

The models in rows 29-32 are inspired by Harmonic Networks [[12] and consist of irrep fields with the
same multiplicity up to a certain threshold. All models apply ELUs on scalar fields and norm-ReL.Us
(see Section [2.6) on higher order fields. The projection to invariant features is done via a convolution
to scalar features (conv2triv) in the last convolutional layer. We find that irrep fields up to order 1
and 3 perform equally well while higher thresholds yield worse results. The original implementation
of Harmonic Networks considered complex irreps of SO(2) which results in a lower dimensional
steerable kernel basis as discussed in Appendix [[.5] We reimplemented these models and found that
their reduced kernel space leads to consistently worse results (rows 33-36).

For the model containing irreps up to order 3 we implemented some alternative variants. For instance,
the model in row 38 does not convolve to trivial features in the last layer but computes these by taking
the norms of all non-scalar fields. This does not lead to significantly different results. Appendix [[]
discusses all variations in detail.

By far the best results are achieved by the models in rows 41-44, which replace the norm-ReLUs
with gated nonlinearities, see Section@ This observation is in line with the results presented in [2],
where gated nonlinearities were proposed.

O(2) models: As for SO(2), we are investigating O(2)-equivariant models whose features trans-
form under irreps up to a certain order and apply norm-ReL.Us (rows 46-49). In this case we choose
twice the multiplicity of 2-dimensional fields than scalar fields, which reflects the multiplicity of irreps
contained in the regular representation of O(2). Invariant predictions are computed by convolving in
equal proportion to fields which transform under trivial irreps ¢8 (()2) and sign-flip irreps w%z) (see
Appendix , followed by taking the absolute value of the latter (O(2)-conv2triv). We again find
that higher irrep thresholds yield worse results, this time already starting from order 1. In particular,
these models perform worse than their SO(2)-equivariant counterparts even on MNIST O(2). This
suggests that the kernel constraint for this particular choice of representations is too restrictive.

If only scalar fields, corresponding to the trivial irrep 1/)8 (()2), are chosen, the kernel constraint becomes
k(gx) = k(z) Vg € O(2) and therefore allows for isotropic kernels only. This limits the expressivity
of the model so severely that it performs even worse than a conventional CNN on MNIST rot and
MNIST 12k while being on par for MNIST O(2), see row 45. Note that isotropic kernels correspond
to vanilla graph convolutional networks (cf. the results and discussion in [3]]).

In order to improve the performance of O(2)-steerable CNNs, we propose to use representations

Indg)éz(é) 20(2), which are induced from the irreps of SO(2) (see Appendix @for more details on

induction). By the definition of induction, this leads to pairs of fields which transform according

to 1/}20(2) under rotations but permute under reflections. The multiplicity of the irreps of O(2)
contained in this induced representation coincides with the multiplicities chosen in the pure O(2)
irrep models. However, the change of basis, relating both representations, does not commute with the
nonlinearities, such that the networks behave differently. We apply Ind norm-ReLU nonlinearities to
the induced O(2) models which compute the norm of each of the permuting subfields individually
but share the norm-ReLLU parameters (the bias) to guarantee equivariance. In order to project to final,

invariant features, we first apply a convolution producing Ind(s)(()%) wSO@) fields (Ind-conv2triv).

Since these transform like the regular representation of ({1}, x) = O(2)/SO(2), we can simply
apply G-pooling over the two reflections. The results, given in rows 50-53, show that these models
perform significantly better than the O(2) irreps models and outperform the SO(2) irrep models on
MNIST O(2). More specific details on all induced O(2) model operations are given in Appendix [L]

We again build models which apply gated nonlinearities. As for SO(2), this leads to a greatly
improved performance of the pure irrep models, see rows 54-55. In addition we adapt the gated
nonlinearity to the induced irrep models (rows 56-57). Here we apply an independent gate to each of
the two permuting sub-fields (Ind gate). In order to be equivariant, the gates need to permute under
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reflections as well, which is easily achieved by deriving them from Indgc()z(;) § ©®) fields instead

of scalar fields. The gated induced irrep model achieves the best results among all O(2)-steerable
networks, however, it is still not competitive compared to the Dy models with large N.

D.2 On the convergence of Steerable CNNs

102

101 4

validation error (%)
validation loss

10°4

0 1000 2000 3000 4000 0 1000 2000 3000 4000
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Figure 4: Validation errors and losses during the training of a conventional CNN and Cy-equivariant
models on MNIST rot. Networks with higher levels of equivariance converge significantly faster.

As shown in Figure[d] steerable CNNs converge significantly faster than non-equivariant CNNs. This
faster convergence rate is explained by the fact that equivariant models generalize over transformed
samples by design. Mathematically, G-steerable CNNs classify equivalence classes of images defined
by the equivalence relation f ~ f' < Jtg € (R*,+) x G st. f(z) = f(g7 (z —t)). Instead,
MLPs learn to classify each image individually and conventional CNNs classify equivalence classes

defined by translations, i.e. above equivalence classes for G = {e}. For more details see Section 2
of [7].

D.3 STL-10 data ablation study

Figure 5| reports the results of a data ablation study 60
which investigates the performance of the Dg D4 D1
models for smaller training set sizes. We use the 50
same models and training procedure as in the main
experiment on the full STL-10 dataset. For every
single run, we generate new datasets by mixing the
original training, validation and test set and sample
reduced datasets such that all classes are balanced.
The results are averaged over 4 runs on each of the
considered training set sizes of 250, 500, 1000, 2000
or 4000. The validation and test sets contain 1000 and

X . . 10+
8000 images, which are resampled in each run as well. 250 500 1000 2000 2000
The results validate that the gains from incorporating training set size
equivariance are consistent over all training sets. Figure 5: Data ablation study on STL-10.
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E A short primer on group representation theory

Linear group representations model abstract algebraic group elements via their action on some vector
space, that is, by representing them as linear transformations (matrices) on that space. Representation
theory forms the backbone of Steerable CNNs since it describes the transformation law of their
feature spaces. It is furthermore widely used to describe fields and their transformation behavior in
physics.

Formally, a linear representation p of a group G on a vector space (representation space) R” is a
group homomorphism from G to the general linear group GL(R™) (the group of invertible n x n
matrices), i.e. it is a map

p: G — GL(R"™) suchthat p(g192) = p(g1)p(g2) V91,92 €G.
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The requirement to be a homomorphism, i.e. to satisfy p(g192) = p(g1)p(g2), ensures the compati-
bility of the matrix multiplication p(g;)p(g2) with the group composition g1 g which is necessary for
a well defined group action. Note that group representations do not need to model the group faithfully
(which would be the case for an isomorphism instead of a homomorphism).

A simple example is the trivial representation p : G — GL(R) which maps any group element to the
identity, i.e. Vg € G p(g) = 1. The 2-dimensional rotation matrices () = (s?r? ((z)) 723; ((Z%]

are an example of a representation of SO(2) (whose elements are identified by a rotation angle 6).

Equivalent representations Two representations p and p’ on R"™ are called equivalent iff they
are related by a change of basis Q € GL(R"), i.e. p'(g) = Qp(9)Q~*! for each g € G. Equiv-
alent representations behave similarly since their composition is basis independent as seen by

P'(91)0' (92) = Qp(91)Q ' Qp(g2)Q~" = Qp(g1)p(92)Q~".

Direct sums Two representations can be combined by taking their direct sum. Given representations
p1: G — GL(R™) and py : G — GL(R™), their direct sum p; @ po : G — GL(R™ ™) is defined as

(p1 @ p2)(9) = [m(()g) ,02(29)} ’

i.e. as the direct sum of the corresponding matrices. Its action is therefore given by the independent
actions of p; and p, on the orthogonal subspaces R™ and R” in R" ™. The direct sum admits an
obvious generalization to an arbitrary number of representations p;:

@i pi(g) = p1(g) ®p2(9) @ ...

Irreducible representations The action of a representation might leave a subspace of the represen-
tation space invariant. If this is the case there exists a change of basis to an equivalent representation
which is decomposed into the direct sum of two independent representations on the invariant subspace
and its orthogonal complement. A representation is called irreducible if no non-trivial invariant
subspace exists.

Any representation p : G — R" of a compact group G can therefore be decomposed as

o) =Q [P, vilo] Q!

where [ is an index set specifying the irreducible representations 1; contained in p and () is a change
of basis. In proofs it is therefore often sufficient to consider irreducible representations which we use
in Section 2.4 to solve the kernel constraint.

Regular and quotient representations A commonly used representation in equivariant deep
learning is the regular representation. The regular representation of a finite group G acts on a vector
space RI€! by permuting its axes. Specifically, associating each axis e, of R/l to an element g € G,
the representation of an element § € G is a permutation matrix which maps e, to e;,. For instance,

the regular representation of the group C, with elements {pZ|p = 0,..., 3} is instantiated by:
s 3
¢ 0 z ™ i
1 0 0 0 0 0 01 0 010 01 00
Ci () 01 00 1 0 0 0 0 0 01 00 10
Pres 0010 o100 1000 |0001
00 01 0 010 01 0 0 1 0 0 0

A vector v = ) vgeq in RI! can be interpreted as a scalar function v : G — R, g — vg on G.
Since p(h)v = g Vg€hg = > 5 Un—15€g the regular representation corresponds to a left translation
[p(h)v](g9) = vp-14 of such functions.
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Very similarly, the quotient representation pgf,{f of G w.r.t. a subgroup H acts on RIGI/IH] by

permuting its axes. Labeling the axes by the cosets g H in the quotient space G/H, it can be defined
via its action p(i()tH (9)egrr = eggm. An intuitive explanation of quotient representations is given in
Appendix [

Regular and trivial representations are two specific cases of quotient representations obtained by

choosing H = {e} or H = G, respectively. Vectors in the representation space RIC/1H can be
viewed as scalar functions on the quotient space G/ H. The action of the quotient representations on
v then corresponds to a left translation of these functions on G/ H.

Restricted representations Any representation p : G — GL(R"™) can be uniquely restricted to a
representation of a subgroup H of G by restricting its domain of definition:

Res(p) : H — GL(R"), h— p|H(h)

Induced Representations Instead of restricting a representation from a group G to a subgroup
H < @, itis also possible to induce a representation of H to a representation of G. In order to keep
the presentation accessible we will first only consider the case of finite groups G and H.

Let p : H — GL(R") be any representation of a subgroup H of G. The induced representation

Indg(p) is then defined on the representation space R™CI/IH] which can be seen as one copy of
R™ for each of the |G|/|H| cosets gH in the quotient set G/H. For the definition of the induced

representation it is customary to view this space as the tensor product RICI/IH @ R™ and to write
vectors in this space a

1G]
w:}j%H®%HeRWM, (6)
gH

where e, 7 is a basis vector of R‘GVlH‘, associated to the coset gH, and wg g is some vector in the
representation space R™ of p. Intuitively, Ind$ (p) acts on R™¢I/1H| by §) permuting the |G|/|H|
subspaces associated to the cosets g H and 7i) acting on each of these subspaces via p.

To formalize this intuition, note that any element g € G can be identified by the coset gH to
which it belongs and an element h(g) € H which specifies its position within this coset. Hereby
h : G — H expresses g relative to an arbitrary representativﬂ R(gH) € G of gH and is defined as
h(g) := R(gH)'g from which it immediately follows that g is decomposed relative to R as

g =R(gH)h(g). (7

The action of an element § € G onacoset gH € G/H is naturally given by ggH € G/H. This action

defines the aforementioned permutation of the n-dimensional subspaces in RPICGI/IH] by sending e, 5
in Eq. (6) to 54 . Each of the n-dimensional, translated subspaces ggH, is in addition transformed
by the action of p(h(¢R(gH))). This H-component h(GR(9H)) = R(ggH) 'gR(gH) of the
g action within the cosets accounts for the relative choice of representatives R(ggH) and R(gH ).
Overall, the action of Ind% (p(§)) is given by

[Indg p](g) N e ©wgr =Y eger @ p(WFR(GH))) wyrr ®)
gH gH

°The vector can equivalently be expressed as w = @ o1 WoH, however, we want to make the tensor product
basis explicit.
10 Formally, a representative for each coset is chosen by a map R : G/H — G such that it projects back to

the same coset, i.e. R(gH)H = gH. This map is therefore a section of the principal bundle G = G /H with
fibers isomorphic to H and the projection given by 7(g) := gH.
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which can be visualized as:

Wyl }QH
Indf p(g) - | =

p(h(gR(gH)))wgn }égH = GR(gH)H

Both quotient representations and regular representations can be viewed as being induced from
trivial representations of a subgroup. Specifically, let p{e} : {e} = GL(R) = {(4+1)} be the

triv
trivial representation of the the trivial subgroup. Then Ind?e} pt{rf} G — GL(R‘Gl) is the regular

representation which permutes the cosets g{e} of G/{e} = G which are in one to one relation to the
group elements themself. For pfl : H — GL(R) = {(+1)} being the trivial representation of an

arbitrary subgroup H of G, the induced representation Ind%, pf : G — GL(R!CV/H1y permutes the
cosets gH of H and thus coincides with the quotient representation pg,é[H.

Note that a vector in R/“//I#! @ R™ is in one-to-one correspondence to a function f : G/H — R".
The induced representation can therefore equivalently be defined as acting on the space of such
functions ag']

Ind3 p(9) - F(gH) = p(h(GR(G~ " gH)) S (G gH) . ©)
This definition generalizes to non-finite groups where the quotient space G/ H is not necessarily
finite anymore.

For the special case of semidirect product groups G = N x H it is possible to choose representatives
of the cosets gH such that the elements h(§R (g’ H)) = h(g) become independent of the cosets [3].
This simplifies the action of the induced representation to

[nd% p() - f1(gH) = p(h(9)) f(5~"gH) (10)
which corresponds to Eq. (T)) for the group G = E(2) = (R?, +) x O(2), subgroup H = O(2) and
quotient space G/H = E(2)/ O(2) = R?.

F An intuition for quotient representation fields

The quotient representations of Cy in rows 11-15 of Table[7|and in Tableare all of the form pglz\é{ Cu

with Cp; < Cy. By the definition of quotient representations, given in Section this implies
Cn/C2

quot _ -fields encode features

features which are invariant under the action of Cj;. For instance, p,
like lines, which are invariant under rotations by 7. Similarly, pgﬁf 4 features are invariant under
rotations by 7r/2, and therefore describe features like a cross. The N/M channels of a pCN [CM _field

quot
respond to different orientations of these patterns, e.g. to 4+ and x for the two channels of pgﬁ,/lc“

A few more examples are given by the 16/2 = 8 channels of pgfo‘i/ 2 which respond to the patterns

— =, 7, /,1,\, N and ~,

respectively, or the 16/4 = 4 channels of pgjulo‘i/ 4 which respond to

“+, X, X and 4.

In principle, each of these pattemﬁ could be encoded by a regular feature field of Cy. A regular field
of type pg’gV comprises N instead of N/M channels, which detect arbitrary patterns in NV orientations,
for instance,

X, X, 4, X, &+, X and +

' The rhs. of Eq. (§) corresponds to [Ind$§ p(§) - f1(GgH) = p(h(GR(gH)))f(gH).
120r more generally, any possible pattern.
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for N = 8. In the case of Cy,-symmetric patterns, e.g. crosses for M = 4, this becomes

X, +,X,+,X,+,Xand + .

As evident from this example, the repetition after N/M orientations (here 8/4 = 2), introduces a

redundancy in the responses of the regular feature fields. A quotient representation pqﬂ){ M addresses

this redundancy by a-priori assuming the Cj; symmetry to be present and storing only the N/M
non-redundant responses. If symmetric patterns are important for the learning task, a quotient
representation can therefore save computational, memory and parameter cost.

In our experiments we mostly used quotients by Cy and C, since we assumed the corresponding
symmetric patterns ( | and +) to be most frequent in MNIST. As hypothesized, our model, which

Ci6/Cy

uses the representations 5pyeg ® 2pqUI 10/C2 g 2pquot @ 41pg of Cyg, improves slightly upon a purely
regular model with the same number of parameters see Table 3] By m1x1ng regular, quotient and
tr1v1a]E] representations, our model keeps a certain level of expressiveness in its feature fields but
incorporates a-priori known symmetries and compresses the model.

We want to emphasize that quotient representations are expected to severely harm the model perfor-
mance if the assumed symmetry does not actually exist in the data or is unimportant for the inference.
Since the space of possible quotient representations and their multiplicities is very large, it might be
necessary to apply some form of neural architecture search to find beneficial combinations. As a
default choice we recommend the user to work with regular representations.

Further, note that the intuition given above is specific for the case of quotient representations pg';/g
where N < G is a normal subgroup (which is always the case for Cy). Since normal subgroups
imply gN = Ng Vg € G by definition, the action of the quotient representation by any element

n € N is given by pgl/g(n)eg]v = engN = enNg = €Ng = €gn, that it, it describes N-invariant

feature fields. The quotient representations pgj/f for general, potentially non-normal subgroups

H < @G also imply certain symmetries in the feature fields but are not necessarily H-invariant.

. . . Dn/CN ;. : . . . .
For instance, the quotient representation pqu’zt/ " is invariant under rotations since Cy is a normal

subgroup of Dy = Cy ({41}, %), while the quotient representation pDN/ {19
since ({£1}, %) is not a normal subgroup of Dy . In the latter case one has instead

is not invariant

Er({£1},%) for s = +1
Er—1g({+1},%) = Er—1({£1},x) for s =—1

Pt I (9)er (1)) = €sr(zry ) = {

forall s € ({£1}, %) and representatives r € Cy. The feature fields are therefore not invariant under
the action of ({£1}, *) but become reversed.

G Equivariance of E(2) - steerable CNNs

G.1 Equivariance of E(2) - steerable convolutions

Assume two feature fields fi, : R? — R of type pin and fou : R? — R of type pout to be given.
Under actions of the Euclidean group these fields transform as

fnl@) = (WG o | (90)fn) (@) = pinlg) fin (7 (@ = 1)
foul@) = ([dE D" pou] (9 fou) @) = pou(g)fou (7 (@ = 1)) -

Here we show that the G-steerability (2) of convolution kernels is sufficient to guarantee the equivari-
ance of the mapping. We therefore define the convolution (or correlation) operation of a feature field
with a G-steerable kernel k : R? — R > a5 usual by

fout(x) (k*fm / k fm 96+y)

.. . G/G . .
BTrivial representations 9° 2 pqu& can themself be seen as an extreme case of quotient representations

which are invariant to the full group G.
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The convolution with a transformed input field then gives

/}R2 dy k(y) ([Ind§2’+)NG pin] (gt) fin) (z+y)

/W dy k(y)pin(9) fin (97 Hz +y — 1))

/RQ Ay pou(9) k(9™ Y)Pin(9) ™" pin(9) fin (97 (z +y — 1))

— poals) [ A7 k@) (g7 2 1)+ 9)
RZ

= pou(9) fou (97" (z — 1))

= ([IndeQ}Jr))quoul:I (gt)fout) (l‘),

i.e. it satisfies the desired equivariance condition
2 2
k * ([Ind(c]f R pin:| (gt)fm) = {Indg{ G pout:| (gt) (k * fin) .

We used the kernel steerability (2) in the second step to identify k() with pou(9)k (g™ 2)pin(g71). In

Oy

the third step we substituted = g~y which does not affect the integral measure since ‘det (873 =

|det(g)| = 1 for an orthogonal transformation g € G.
A proof showing the G-steerability of the kernel to not only be sufficient but necessary is given in [2].

G.2 Equivariance of spatially localized nonlinearities
We consider nonlinearities of the form
o R = R f(z)— o(f(2)),

which act spatially localized on feature vectors f(x) € R%. These localized nonlinearities are used
to define nonlinearities & acting on entire feature fields f : R? — R by mapping each feature
vector individually, that is,

o: fra(f) suchthat &(f)(z):=oc(f(z)).
In order for & to be equivariant under the action of induced representations it is sufficient to require
o0 pin(9) = poulg)oo  VgeG
since then
o ([mal™ D7 pu] (90)f) (@) = (pul9) (g7 (@ 1))
= pou(9)o (f(g~ " (z —1)))
= pout(g)5(f) (gil ((L’ - t))
= [mal 7 o) () ().

G.2.1 Equivariance of individual subspace nonlinearities w.r.t. direct sum representations

The feature spaces of steerable CNNs comprise multiple feature fields f; : R? — R which are

concatenated into one big feature field f : R? — R ni defined by f := @, fi. By definition f(x)
transforms under pi, = €D, pin,; if each f;(z) transforms under pin ;. If o; : R — R“"7 is an
equivariant nonlinearity satisfying o; o pin i(9) = poui(g) © o; for all g € G, then

(@z Ui) © (@Z pinﬂ'(g)) = (@Z pout,i(g)) o (@Z Ji) Vg € G,
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i.e. the concatenation of feature fields respects the equivariance of the individual nonlinearities. Here
we defined @, o; : R iy R Coi g acting individually on the corresponding f;(z) in f(z),
that is, (€D, 1) (6D, fi(x)) = ) (o © proj,) (f()).

To proof this statement consider without loss of generality the case of two feature fields f; and
f2 with corresponding representations p; and p, and equivariant nonlinearities o1 and o5. Then it
follows for all g € G that

(01 @ 02) ((p1in © p2,in)(9)) (f1 @ f)
= 01(p1(9) fr) ® 02 (p2(9) f2)

p1(9) o1(f1) @ p2(9) o2(f2)
= ((m,om D Pz,out)(g)) (01 53] 02) (fl D fz) .

The general case follows by induction.

G.2.2 Equivariance of norm nonlinearities w.r.t. unitary representations

We define unitary representations to preserve the norm of feature vectors, i.e. |,01<o 9)f (x)| =

|f(x)| ¥g € G. Norm nonlinearities are functions of the type ouom (f(2)) = 1(|f(2)]) L TR f(x

where 17 : R>o — R is some nonlinearity acting on norm of a feature vector. Since norm nonhn—
earities preserve the orientation of feature vectors they are equivariant under the action of unitary
representations:

Unorm(piso(g)f(‘r)) =N (‘plso(g)f(x”) m

—77(|f( )|) ‘f(:c)|

= piso(g)o—norm (f(ZE)) '

G.2.3 Equivariance of pointwise nonlinearities w.r.t. regular and quotient representations

Quotient representations act on feature vectors by permuting their entries according to the group

composition as defined by pglé[H (9)egu = ezgm. The permutation of vector entries commutes
with pointwise nonlinearities o : R — R which are being applied to each entry of a feature vector
individually:

Opt (pcﬁléfl (g) f(l‘)) = Opt pquot Z ng egH

gHGG/H

=op | Y fon(@)egen

gHeG/H

= Z Upt(ng(z))eégH

gHeG/H

=Pt (@) Y- oulfon(@) egn
gHeG/H
= ngé{{(ﬁ)apt(f(z)) '

Any pointwise nonlinearity is therefore equivariant under the action of quotient representations.

The same holds true for regular representations preg = pg,‘/)t{ °} which are a special case of quotient

representations for the choice H = {e}

G.2.4 Equivariance of vector field nonlinearities w.r.t. regular and standard representations

Vector field nonhnearities map an N-dimensional feature field which is transforming under the regular
representation pr of Cy to a vector field. As the elements of Cy correspond to rotations by angles
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N-1 . . . L . 5
0, € {pzﬁ7T p—o W€ canwrite the action of the cyclic group in this specific case as pg’gV (B)eg :=e; 4o

and the feature vector as f(z) = >, fo(x)eq. In this convention vector field nonlinearities are
60eCn

defined as

Ovec(f(2)) = max (f(x)) (cos(argmaxf(x))> .

sin(arg max f(x))

The maximum operation max : RY 5 R thereby returns the maximal field value which is invariant
under transformations of the regular input field. Observe that

argmax (p% (0) /() ) = axgmax <p§§g<é> ) fo(x)ea>

0eCn

arg max ( Z f@(m)e§+9>

6eCn

0 + arg max (f(z))

such that

e arg max £ (x))
e (05 (0)f () (f(x)) ( >>)

arg max f(x

)) —sin(9)> <cos(arg max f@;)))

cos(f)/ \sin(arg max f(z))

transforms under the standard representation p(é) = (Cf)s((z; B smi@)) of Cy. This proofs that
sin cos

the resulting feature field indeed transforms like a vector field.

The original paper [13] used a different convention arg max : RY — {0,..., N - 1}, return-
ing the integer index of the maximal vector entry. This leads to a corresponding rotation angle
0 = 27 argmax(f(x)) € Cy in terms of which the vector field nonlinearity reads oyec (f(z)) =

max (7)) (56

G.2.5 Equivariance of nonlinearities w.r.t. induced representations

Consider a group H < G with two representations pi, : H — GL(R") and poy : H — GL(R®™).
Suppose we are given an equivariant non-linearity o : R — R with respect to the actions
of pin and pou, that is, pow(h) 00 = o o pin(h) Vh € H. Then an induced non-linearity &,
equivariant w.r.t. the induced representations Indg pPin and Indg Pout Of G, can be defined as applying
o independently to each of the |G : H]| different ¢;,-dimensional subspaces of the representation
space which are being permuted by the action of Indg Pin, see Appendix @ The permutation of the
subspaces commutes with the individual action of the nonlinearity ¢ on the subspaces, while the
non-linearity o itself commutes with the transformation within the subspaces through p by assumption.
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Expressing the feature vector as f(z) = ZgH egr @ fgr(x) this is seen by:

&(Indg pin(9) f(z)) =5 d$ pin() Z egr @ fon ()
gHeG/H

I
Q

Z nd$ pin(9) (egr @ fom())
gHEG/H

I
Q

N7 eger @ pin(n(Gr(gH)) fyr ()
gHEeG/H

— Z eggH @ U(pin(h(gr@H))ng(x))

gHeG/H

= Z eggH ®p0ut(h(§r(gH))U(ng(x))
gHeG/H

Indf] puut(g) Z egH &Ko (ng (1'))
gHeG/H

H Visualizations of the irrep kernel constraint

The irrep kernel constraint

_ , -1 2
wga) = |B,., w0 v@) [P, v;'(9)] veeG rer
decomposes into independent constraints
K9 (gz) = vilg) k7 (x) ¥ (9)  VgeG, xeR® where i€ Iow, j € Iin,

on invariant subspaces corresponding to blocks x% of x. This is the case since the direct sums of
irreps on the right hand side are block diagonal:

K1 (ga) | K193(gx)| . Vir(9) k()| K1)\ ((g)
K2 (gr)| K(ga)| .. | = Yislg)| || mH @) | s ¥5,(9)
K(gx) Dicr,, Yil9) k() D,er, ¥l (g)
A basis {Kjij, S nzj } for the space of G-steerable kernels satisfying the independent constraints (3]

on % contributes to a part of the full basis

ko ha} o= UiE[out Ujelm {Q‘;‘} R Quns -+ Qo EZ]‘Q“‘}' (an
of G-steerable kernels satisfying the original constraint (2)). Here we defined a zero-padded block
0] 010
o= 0]x7] 0
0] 010

I Solutions of the kernel constraints for irreducible representations

In this section we are deriving analytical solutions of the kernel constraints
K (gx) = vilg) k() 5 (g) Vg EG, x ER? (12)
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for irreducible representations v; of O(2) and its subgroups. The linearity of the constraint implies
that the solution space of G-steerable kernels forms a linear subspace of the unrestricted kernel space

kelL? (R2)C"mxci" of square integrable functions k : R? — Ru* ¢,

Section[[.T)introduces the conventions, notation and basic properties used in the derivations. Since
our numerical implementation is on the real field we are considering real-valued irreps. It is in general
possible to derive all solutions considering complex valued irreps of G < O(2). While this approach
would simplify some steps it comes with an overhead of relating the final results back to the real field
which leads to further complications, see Appendix [[.5] An overview over the real-valued irreps of
G < 0(2) and their properties is given in Section

We present the analytical solutions of the irrep kernel constraints for all possible pairs of irreps in
Section[[.3] Specifically, the solutions for SO(2) are given in Table[8| while the solutions for O(2),
({£1},*), Cy and Dy are given in Table E], Table|10] Table|11|and Table|12|respectively.

Our derivation of the irrep kernel bases is motivated by the observation that the irreps of O(2) and
subgroups are harmonics, that is, they are associated to one particular angular frequency. This
suggests that the kernel constraint (I2) decouples into simpler constraints on individual Fourier
modes. In the derivations, presented in Section [[.4] we are therefore defining the kernels in polar
coordinates x = z(r, ¢) and expand them in terms of an orthogonal, angular, Fourier-like basis.
A projection on this orthogonal basis then yields constraints on the expansion coefficients. Only
specific coefficients are allowed to be non-zero; these coefficients parameterize the complete space
of G-steerable kernels satisfying the irrep constraint (I2). The completeness of the solution follows
from the completeness of the orthogonal basis.

We start with deriving the bases for the simplest cases SO(2) and ({1}, *) in sections[L.4.1]and [L.4.2]
The G-steerable kernel basis for O(2) forms a subspace of the kernel basis for SO(2) such that it can
be easily derived from this solution by adding the additional constraint coming from the reflectional
symmetries in ({£1},*) = O(2)/SO(2). This additional constraint is imposed in Section
Since Cy is a subgroup of discrete rotations in SO(2) their derivation is mostly similar. However,
the discreteness of rotation angles leads to IV systems of linear congruences modulo N in the final
step. This system of equations is solved in Section[[.4.4] Similar to how we derived the kernel basis
for O(2) from SO(2), we derive the basis for Dy from Cy by adding reflectional constraints from

({£1}, %) =2 Dy / Cy in Section[L.4.5]

L1 Conventions, notation and basic properties

Throughout this section we denote rotations in SO(2) and Cy by 79 with § € [0,27) and 6 €
p%};\:ol respectively. Since O(2) = SO(2) x ({£1}, *) can be seen as a semidirect product of
rotations and reflections we decompose orthogonal group elements into a unique product g = rgs €

O(2) where s € ({£1}, %) is areflection and rp € SO(2). Similarly, we write g = ryps € Dy for the
dihedral group Dy 2 Cy x({£1}, ), in this case with 7y € Cy.

The action of a rotation 74 on R? in polar coordinates z(r, ¢) is given by rg.z(r, ¢) = z(r,79.¢)) =
x(r,p+0). Anelement g = 79s of O(2) or Dy acts on R? as g.x(r, ¢) = z(r,rps.¢) = x(r, s¢+0)
where the symbol s denotes both group elements in ({£1}, %) and numbers in {+1}.

We denote a 2 x 2 orthonormal matrix with positive determinant, i.e. rotation matrix for an angle 6,
by:

00 = [l o)

We define the orthonormal matrix with negative determinant corresponding to a reflection with respect
to the horizontal axis as:

==

and a general orthonormal matrix with negative determinant, i.e. reflection with respect to the axis

20, as:
) @] = o e
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Hence, we can express any orthonormal matrix in the form:
cos(f) -sin(6)| (1 O _
{sin (0) cos(0)| (0 s| Y (B)E(s)
10

where £(s) = {O S} and s € ({1}, %).

Moreover, these properties will be useful later:

Y(0)E(s) = &(s)(s0) (13)
E(s)" = &(s)T =¢€(9) (14)
()~ = (O)" =¢(-0) (15)

Y(01)1(02) = (01 4 02) = ¥(02)(61) (16)
w(w@(-1) = u |50 mE] o an
tr((0)) = tr {Zﬁf ((zg “sin EZ))} — 2.co8(0) (18)

wy cos(a) + wesin(a) = wq cos(f) + wasin(fB) Ywr, we € R
& dteZst a = B+ 2w (19)

L2 Irreducible representations of G<O(2)

Special Orthogonal group SO(2): SO(2) irreps would decompose into complex irreps of U(1)
on the complex field but since we are implementing the theory with real-valued variables we will not
consider these. Except for the trivial representation ), all the other irreps are 2-dimensional rotation
matrices with frequencies k € NT.

60 (rg) = 1

- 000 = k) o lkg)| v, keNt

Orthogonal group O(2): O(2) has two 1-dimensional irreps: the trivial representation 1) o and a
representation 11 o which assigns %1 to reflections. The other representations are rotation matrices
precomposed by a reflection.

- wgéz)(rgs) =1

- wg((f)(rgs) =3

- P = o G| 6 Y] = e, ren

Cyclic groups Cn: The irreps of Cy are identical to the irreps of SO(2) up to frequency | N/2].
Due to the discreteness of rotation angles, higher frequencies would be aliased.

- Y5 (rg) =1
O (1) = [ () -gg;g’,ggﬂ — ko), ke {l... M)

If N is even, there is an additional 1-dimensional irrep corresponding to frequency L%J = %:
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@[JN/2(r9)—cos(Z;/ 0) € {+1}since§ € {pZF} )

Dihedral groups Dy:  Similarly, Dy consists of irreps of O(2) up to frequency | N/2].

— Yo (res) =1
- w?fg (rgs) = s

- UPE0e) = [Sn) o] [0 o] = VG, ke (L [552)

If N is even, there are two 1-dimensional irreps:

%N/z( ) = cos (%0) e {£1} smceae{p% N- 1

— YD /2 (ros) = s cos (56) € {£1} since d € {p2Z}

Reflection group ({£1},*) = D; = Cy: The reflection group ({1}, *) is isomorphic to Dy
and Cs. For this reason, it has the same irreps of these two groups:

R OES!
- () = s
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.3 Analytical solutions of the irrep kernel constraints

Special Orthogonal Group SO(2)

wm 1/}" 1/)0 ’lﬂn, n e NJF
Yo 1] [cos(ng) sin(ng)], [ - sin(ng) cos(ng)]
cos(mo) cos(m—n)p) -sin((m—n)¢) | |-sin((m—n)¢) -cos(m—n)¢)
Yo [ sm(md))} {sin((mn)(b) cos ((mn)gb)}{ cos(m—n)¢) Sln((mn)qﬁ)}’
meN* -sin(meo) cos ((ern)(bg Siné(ern)(ﬁ) -sin((m+n)@) cos(m+n)e)
cos(ma) sin((m+mn)¢) -cos((m+n)¢) || cos((m+n)p) sin(m+n)¢)

Table 8: Bases for the angular parts of SO(2)-steerable kernels satisfying the irrep constraint () for different
pairs of input field irreps v, and output field irreps ¢r,. The different types of irreps are explained in

Orthogonal Group O(2)

Go—Yim Y00 Y10 Y1, € NT

Y00 [1] 2 [ - sin(ng) cos(ng)]

Y10 2 [1] [cos(ng)  sin(ng)]

Yt ms ~sin(mg)] | [ cos(me)| | [cos(em-m)¢) -sin(n-n)¢)| [cos(@m+m)¢) sin(m+n))
meNT [<wam¢j {shmm¢J {ﬂn&n7ww cw&wm¢J{ﬁn&n+m¢>am@n+m¢>

Table 9: Bases for the angular parts of O(2)-steerable kernels satisfying the irrep constraint (3) for different
pairs of input field irreps 1);,,, and output field irreps ¢; .. The different types of irreps are explained in

Reflection group ({£1}, *)

P Yo 1
o | [eos(ue—m)] | [sin(uto-5)]
o [sin (u(6 = 8))]

[cos (u(o - 8))]

Table 10: Bases for the angular parts of ({£1}, x)-steerable kernels satisfying the irrep constraint (3) for
different pairs of input field irreps 1, and output field irreps 1); for ¢, j € {0, 1}. The different types of irreps
are explained in @ The group is assumed to act by reflecting over an axis defined by the angle 8. Note that the
bases shown here are a special case of the bases shown in Table since ({£1}, %) = D;.
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Cyclic groups Cy

Um Un Yo Y2 (if N even) tp withn e Nt and1 <n < N/2
s [cos(tN )], [COS (%Nqﬁ) ], [-sin((n+tN)p) cos((n+tN)g)],
0 [sin(iNg)] [ sin (% N¢) } [ cos((n+tN)g) sin((n+tN)g)]
cos (LN cos(t -sin ((n+ 2N cos ((n+ N ,
o even | | (21 2] [cos(in) [-sin( ) > ((n+52N) 0) |
[ n(%Nqb)} [ 51n(tN¢)] [ s((n i 5111( i N) )}
-sin((m + tN)®) -sin E(m + HLN) ¢) cos(m—n + tN)¢; -sin m n+tN)g)| | -sin(n—n+ tN)¢) —cos(m n + tN)g)
wm{w cos((m+tN)o)|’ cos (m + %N) d)) sm(m n+tN)¢ cos (m—n+ tN)d) ’ cos((m n—+ t]\])gb) -sin((m—n + tN)qS) ’
m e
1<m< N/2 cos((m +tN)¢) cos ((m + 2 N) (i); cos(m+n+tN)p) sin(n+n+tN)g)| | -sin(m-+n -+ tN)¢) —cos(m+n+t]\f)¢)
sin((m +tN)g) sin ((m + IN) ¢ sin((m+n + tN)g) -cos(m —l—n—l—t]\])gb) | cos(m+n+tN)g) -sin(m+n + tN))

Table 11: Bases for the angular parts of Cy-steerable kernels for different pairs of input and output fields irreps 1, and ¥y,,. The full basis is found
by instantiating these solutions for each t € Z or ¢ € N. The different types of irreps are explained in Appendix

Dihedral groups Dy

Yim Vi 0.0 Y10 Yox/2 Gf N even) W1 /2 G N even) 1, withn € Nt and 1 < n < N/2
Yoo [cos(iN6)] [sin(iNg)] [cos (E1N0) | [sin (252N0) | [ sin((n +tN)$) cos((n +tN)9)]
Yro [sin(iN Q)] [cos(iNG)] [sin (51N0) | [cos (51N0) | [cos ((n+tN) @) sin((n+1N) )]
Yoz (Veven) | [cos (E5LNo) || [sin(Hno) | [cos(EN®)] [sin(iNg)] [ -sin ((n+ 52N) @) cos((n+52N) ) |
G Weven) | [sin (BLNe) || [cos (252N0) | [sin(iNg)] [cos(EN )] [ cos((n+52N) @) sin((n+5LN)6) |

wlmu
m e Nt
1<m < N/2

|

~sin((m + tN)¢)}
cos((m +tN)o)

[cos((m + tN)(b)}
sin((m + tN)o)

:
&

cos(fm—n + tN)¢)
sin((m—n + tN)g)

(
cos(fm—+n + tN)¢>;
sin((m+n + tN)¢

28

-sin
COS

sin
—COS

—_— A/\

m n +tN)g)
(m— n—l—t]\])gb) ’

(m+n+tN)¢)
(m-+n+tN)g)

Table 12: Bases for the angular parts of Dy -steerable kernels for different pairs of input and output fields irreps v); ,, and ; .. The full basis is
found by instantiating these solutions for each ¢t € Z or t € N. The different types of irreps are explained in Appendix The solutions here shown
are for a group action where the reflection is defined around the horizontal axis (3 = 0). For different axes 3 # 0 substitute ¢ with ¢ — 3.



1.4 Derivations of the kernel constraints

Here we solve the kernel constraints for the irreducible representations of G < O(2). Since the
irreps of G are either 1- or 2-dimensional, we distinguish between mappings between 2-dimensional
irreps, mappings from 2- to 1-dimensional and 1- to 2-dimensional irreps and mappings between
1-dimensional irreps. We are first exclusively considering positive radial parts > 0 in the following
sections. The constraint at the origin » = 0 requires some additional considerations which we

postpone to Section [[.4.6]

1.4.1 Derivation for SO(2)

2-dimensional irreps:

We first consider the case of 2-dimensional irreps both in the input and in output, that is, pour = 1/)78710(2)

_180(2) S0(2) () _ |08 (k0) -sin (k0)
and pin = n ", where ¢, (0) = [sin (kB)  cos (k0)
form k% : R? — R?*2, To reduce clutter we will from now on suppress the indices ij corresponding
to the input and output irreps in the input and output fields.

. This means that the kernel has the

We expand each entry of the kernel « in terms of an (angular) Fourier seriesE]

. i oo (1) 'cos%uci)) 8 + Boou(r) _Sm%ws) 8
+ Ay u(r) :COS?M 9 8: + Biou(r) :Sin?uqﬁ) 8:
+ A () :8 COS?WS): + Biiu(r) :8 sin(o,u(b):

and, for convenience, perform a change of basis to a different, non-sparse, orthogonal basis

no= Lot [0 RG] o [0E1E 1Y)
Fustn) [0 o] oo [T H et
] ot and| EEENCT RN Rva i ]
resnatt) [0 -SR] et [0 H e H]

The last four matrices are equal to the first four, except for their opposite frequency. Moreover, the
second matrices of each row are equal to the first matrices, with a phase shift of 5 added. Therefore,
we can as well write:

Z 3 wo)% [COS(M¢+’7) Sin(wﬂ)} +w1)77ﬂ(r)[008(u¢+7) sin(usbﬂ)}

< . sin (ug+vy)  cos (no+v) sin (ug+y) - cos (no+v)
p=-00~v€{0,%

Notice that the first matrix evaluates to 1 (¢ + v)§(1) = 1(u¢ + +) while the second evaluates to
Y(pd +v)E(—1). Hence, for s € {£1} we can compactly write:

=D 3D D DRI

u=—00~ve{0,5} se{£1}

P(pe +7)E(s)

14 For brevity, we suppress that frequency 0 is associated to only half the number of basis elements which
does not affect the validity of the derivation.
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As already shown in Section[2.5] we can w.1.0.g. consider the kernels as being defined only on the
angular component ¢ € [0,27) = S* by solving only for a specific radial component . As a result,
we consider the basis

{bol@) = vtuo+0e) | wezre 0.2} se ) e

of the unrestricted kernel space which we will constrain in the following by demanding

k(o +0) = P3°3) (rg) k(@)Y P (rg) ™! Ve, 0 € [0,27), Q1)

where we dropped the unrestricted radial part.

We solve for a basis of the subspace satisfying this constraint by projecting both sides on the basis
elements defined above. The inner product on L? (S 1) s hereby defined as

(ky ko) = o / A (k1 (6), k(@) = — / dé tr (k(6) ha(6)) |

where (-, -) p denotes the Frobenius inner product between 2 matrices.

First consider the projection of the /hs of the kernel constraint on a generic basis element
by s (@) = W(1W ¢ +~")E(s"). Defining the operator Ry by (Rgr) (¢) := k(¢ + ), the projection
gives:

s Row) = 1= [ 0 1 (b0 .0(0)7 (Ror) (9)
7/d¢ tI‘ u s’ (¢>Tﬁ(¢+9))

By expanding the kernel in the linear combination of the basis we further obtain

:ﬁf dd’“("we (ZZwaw (6+0) +7)&(s >>>

which, observing that the trace, sums and integral commute, results in:

- % ; ; Z Wopy p b1 ( / d by (6)7 (1 + 0) + ) g(s)>
= ﬁ Z Z Z T ( / dé (V('d++)EE) T W (1 +0) +7) g(s)>
Z Z Z Ws,y,p b (/ dp E(s") (' +~") T (u( + 0) +7) f(s))

Using the properties in Eq. [T4) and (T3) then yields:

e S St ([ a0 0n ) o+ 6) 4 ) €05
! )3 DR (66200 (55 a6 610 = 199 wiu)9)

In the integral, each cell of the matrix ¢)((p — u')®) contains either a sine or cosine. As a result, if
w— ' # 0, all these integrals evaluate to 0. Otherwise, the cosines on the diagonal evaluate to 1,
while the sines integrate to 0. The whole integral evaluates to ¢, .- id2x 2, such that

- % Z Zws,v,w tr (§(s ) (v =) (u'0)¢(s)),

which, using the property in Eq. (I3) leads to
1
= 5 D0 D Wy tr (A (=7 O)E( ).
vy s
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Recall the propetries of the trace in Eq. (I7), (I8). If s’ * s = —1,1.e. s’ # s, the matrix has a trace
of 0:

1
- 5 Z Z vaWvﬂlésl,sz COS(S’(’Y — ,-Y/ + ,U//G))
8l s
Since cos(—a) = cos(a) and s’ € {+1}:

1
= 5 Z Zws»%u"ss/,SQ COS(’y — 'y/ + M/e)
ol s

= Z Wt 1y, c08((y — ) + 1'0)
¥

Next consider the projection of the rhs of Eq. ZI):
(b s ¢7SnO(2)(r9)K’(')wrSLO(2) (7”0)_1>
1 _
= 1 [ 46 15 (b (DT 0RO ()50 () )

- % de tr (b#','v’,s’(d))T?/J(m@)/{(QS)ﬂ;(,ng))

An expansion of the kernel in the linear combination of the basis yields:

=g [ (bww%@%(m@) (Z Z D syt () z<s>> ¢<no>>
- i Z Z Z Wy, 0T (/ de by 1 5 ()T b (mO)Y (ug + ) g(s)¢(_n9)>
= S S wetn [ 0 606~ om0} a6+ ) 510

! )3 DI (6006 - y00m0) (51 [ a6 01 0) rut-00)

Again, the integral evaluates to 6, ,,» idaxa:

- % Z Z Z Wy, i Opu,pur 1 (§(8 )0 (y — 7" )P (mO)E(s)1h(—nb))

5SS e (€N — o YmOE )b ()

1
5 S0 e (U (y =7+ 1m0 — nsO)E(s' * 5))
¥ s
For the same reason as before, the trace is not zero if and only if s’ = s:
1
=3 Z Z Wy, 0sr 52 cos(s (v — v + mb — nsh))
vy S

Since cos(—a) = cos(a) and s’ € {£1}:

= Z Wer g COS(Y — '+ mb — ns'6)
.

= Wy cos((y = 7') + (m — ns')6)
-

Finally, we require the two projections to be equal for all rotations in SO(2), that is,

Z Wty 08((y =) + 1'0) = Z Wy c08((v =) + (m —ns")0) VO € [0,2m),
v v
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or, explicitly, with v € {0, 7 } and cos(a 4 §) = —sin(a):
Wy 0, cos(p'0 — ") — W,z sin(p'0 =)
= wer 0, cos((m —ns")0 —7') — we = sin((m —ns")0 —+') VO €[0,2n)
Using the property in Eq. (T9) then implies that for each 6 in [0, 27) there exists a ¢ € Z such that:
& wWo—~" = (m—ns)o—+ +2tr
& (W —(m—ns"))0 = 2tm (22)

Since the constraint needs to hold for any 6 € [0, 27) this results in the condition p/ = m — sn’ on
the frequencies occurring in the SO(2)-steerable kernel basis. Both 7y and s are left unrestricted such
that we end up with the four-dimensional basis

e, = {bu,%s(¢)=¢(u¢+v)§(8) u:<m-sn>,ve{o,g},se{ﬂ}} 23)

for the angular parts of equivariant kernels for m,n > 0. This basis is explicitly written out in the
lower right cell of Table|[8]

1-dimensional irreps:

For the case of 1-dimensional irreps in both the input and output, i.e. poy = pin = SO(Q) the kernel

has the form x* : R? — R'*!. As a scalar function in L2(R?), it can be expressed by the Fourier
decomposition of its angular part:

K(r, ¢) —woo+z D wun(r)cos(us +7)

r=1~e{0,%

As before, we can w.l.o.g. drop the dependency on the radial part as it is not restricted by the
constraint. We are therefore considering the basis

LEN, v € {{O} ifp=0 } (24)

{b;4,7(¢) = COS(/.L¢ + 7) {()7 7r/2} otherwise

of angular kernels in L?(S1)1*!. The kernel constraint in Eq. (3) then requires

k(o +0) = in(z)(Te)K(¢)wio(2) (rg)™*  V0,¢ € 0,27)
< klo+0) = k(o) V0, ¢ € [0, 27),

i.e. the kernel has to be invariant to rotations.

Again, we find the space of all solutions by projecting both sides on the basis deﬁned above. Here the
projection of two kernels is defined through the standard inner product (k1 , k2) = f dok1(d)ka()

on L2(S1h).
We first consider the projection of the lhs:

(b Ror) = - / 06 by 1(8) (Rok) (0)
- — / d by o (S)R(6 + )

As before we expand the kernel in the linear combination of the basis:

1
= e [ b (6) cos(uo + i+ 7)
2204

1
= e [ o cos(u'6 ) cos(ud + b+ )

Y
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With cos(a) cos(8) = 3 (cos(a — 8) + cos(a + 3)) this results in:
1 1 , ,
= ;wwg /d¢ §(COS(M ¢+ — pd— pb —7)
+ cos(p' ¢+ + pp + pd + 7))
1,1
= wwg(g / dgcos((1' — g+ (v —7) — ub)

Y

+ % /dqﬁ cos((u' + )¢ + (v +7) + nb))
= Z wuﬂ% (O cos((Y' =) = p) + - cos((v" + ) + b))

1Y
Since p, ¢/ > 0and p = —p/ imply p = p’ = 0 this simplifies further to

1
= 5 3w (cos( =) = 10) + g cos( + 7).
2

A projection of the rhs yields:
1
<bu’,'y’7 K) = % /d¢ b (®)k ()

1
= Y wnyr [ d0buras(@)cos(uo )
224
= wmv% / dg cos(i'd ++") cos(pue + )
Y
- % > w4 (cos(v =) + S 0 cos((v + 7))
Y

The projections are required to coincide for all rotations:

<b.U/”Y’7 R@'k‘./> = <bu’,'y’a K’> V@ S [O, 271')

> wpry (cos((7 =) = 10) + S, 0 cos((V 7)) = D wyr 4 (c0s(y =) +6,r 0 cos((v/ +7)))
v ¥

Vo € [0, 2m)

‘We consider two cases:

e /=0 In this case, the basis in Eq.(24) is restricted to the single case v' = 0 (as v’ = F and ¢/ = 0
together lead to a null basis element). Then:

> wo,y (cos(—) +cos(y)) = D wo,y (cos(—7) + cos(7))

Asy € {0, %} and cos(£%) = 0:

& wo,0 (cos(0) + cos(0)) = wp,o (cos(0) + cos(0))

& Wo,0 = Wo,0
which is always true.

e />0 Here:
> wycos((f =) = 10) = D wry cos(y' =) ¥0 € [0,2n)
v B!

& wprpcos(y - ') +wpy zsin(y - p@'0) = wyocos(y') +wy z sin(y') VO € [0,2m)
& 0 = 2w Vo € [0, 2m),

where Eq. (T9) was used in the last step. From the last equation one can see that x/ must be
zero. Since this contradicts the assumption that ' > 0, no solution exists.
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This results in a one dimensional basis of isotropic (rotation invariant) kernels

Kio2,. = {boo(9) =1} 25)

for m = n = 0, i.e. trivial representations. The basis is presented in the upper left cell of Table[§]

1 and 2-dimensional irreps:
Finally, consider the case of a 1-dimensional irrep in the input and a 2-dimensional irrep in the

output, that is, poy = w,sno(Q) and pi, = LZJS O®@ The corresponding kernel £/ : R? — R2*! can be

expanded in the following generalized Fourier series on L? (R2)2X L

Z Ao u(r [coS ¢)} + Bo(r) [Sin(oud))]

FAalr) [COS?W)} + Bualr) [Sin&@]

As before, we perform a change of basis to produce a non-sparse basis

o
_ cos(up + )
=3 Sw [l ).
u=—00~y€{0,%}

Dropping the radial parts as usual, this corresponds to the complete basis :

_ |cos(ud +7) { E}

{bu,'y(d’) = |:Sin(M¢+’Y) peZ,yeq0, 9 (26)

2X 1‘

of angular kernels on L?(S!)

The constraint in Eq. (3] requires the kernel space to satisfy

k(o +0) = V30D (rg)r(d)yy P (re) "t V8,6 € [0,27)
& wo+0) = vSO0@(rg)k(¢) V0, € [0,27).

We again pI'O]eCt both sides of this equatlon on the basis elements defined above where the projection
on L?(51)?*1 is defined by (k1, ko) = 5= [ do k()" ka(9)).

Consider first the projection of the lhs
(b vrs Rok) = o— /d¢ by (9)" (Ror) (6)
— 5 [ 46 by (@ R(6 4 0),

which, after expanding the kernel in terms of the basis reads:
_ 1 7 |cos(u(¢ +0) +7)
- ; o / 49 by (9) [Sin(u(qﬁ +6) +7)
B 1 , , .y | cos((d + 0) +7)
= ;w#w% /d¢ [cos(p'¢+7")  sin('é+7')] sin(pu(e + 0) + )
1
=X Way g /dfb cos((p' — )+ (v =) — ub).
Y
As before, the integral is non-zero only if the frequency is 0, i.e. iff x’ — p = 0 and thus:

= wcos((y =) — p'0)

~
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For the rhs we obtain:
(b s Y0P (r)(-))
_ 1 do b T
= 5 [ 46 b () onra)n(0)
1 o+
=S tnge [ @0 (@7 bntr0) o) )]

Y

1 . ’ /
- ;w#ﬁ%/dq& [cos(p/'d 4+ ") sin(w'¢ + )] Ym(re) [Z?ﬁgﬁiig;]

1
= wag/d(b cos(W'¢ +' — g — v —mb)

Y

1
= Zwuﬁﬂ/dﬁb cos((p' — p)p ++" —~ —mb).
By

The integral is non-zero only if the frequency is 0, i.e. p/ — p = 0:

= wycos(y =7y — mb)
»

Requiring the projections to be equal implies

(bur v, Rok) = (bur v, Wm (1) K(+)) Vo € [0, 2m)
& Zw”'ﬁ cos(y —~y —u'6) = Z Wy cos(y —y —mb) vl € [0,27)
v B!
& wprcosy —p'0) +wy = sin@y’ —p'0) = wyr o cos(y' —=mb) + wy = sin(y' —mb)
Vo € [0, 2)
& v ==~ —ml+2n V6 € [0, 2)
& WO =mb+ 2tm vl € [0,27),

where we made use of Eq. (I9) once again. It follows that ' = m, resulting in the two-dimensional
basis

K2y, = {tma®) = [2nm2 23] |1 {0.3}} @

of equivariant kernels for m > 0 and n = 0. This basis is explicitly given in the lower left cell of
Table Bl

2 and 1-dimensional irreps:

The case for 2-dimensional input and 1-dimensional output representations, i.e. pj, = wso@) and
Pout = wﬁ‘ 0(2), is identical to the previous one up to a transpose. The final two-dimensional basis for

m = 0 and n > 0 is therefore given by

Kt = {bnm(¢)=[cos(n¢+7) sin(ng +7)] ’76 {o,g}} 8)

as shown in the upper right cell of Table[§]
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1.4.2 Derivation for the reflection group

The action of the reflection group ({#1}, *) on R? depends on a choice of reflection axis, which we
specify by an angle 3. More precisely, the element s € ({£1}, %) acts on x = (r, ¢) € R? as

x(r, @) ifs=1

sx(r,¢) = x(r,s.¢) = x(r,280s,_1+ s¢) = {x(r 2B — ) ifs=-1.

The kernel constraint for the reflection group is therefore being made explicit by

k(r, 5.0) = pou(s)k(r, @)pin(s) " Vs € ({£1},%),¢ € [0,27)
& K(r,0s 128+ 5¢0) = pou(s)k(r, ¢)pin(s) ™" Vs € ({x1},%),¢ € [0,2m)
< K(r, 05,2128 + 5¢) = pou(s)k(T, P)pin(s) Vs € ({£1},%),0 € [0,27),
where we used the identity s~ = s. For s = +1 the constraint is trivially true. We will thus in the
following consider the case s = —1, that is,
K’(Tv 26 - ¢) = Pout(_l)“(ra ¢)pln(_1) v¢ € [Oa 27T) .
In order to simplify this constraint further we define a transformed kernel x'(r, ¢) := &(r,¢ + )

which is oriented relative to the reflection axis. The transformed kernel is then required to satisfy
K(rB=¢) = pou(=1)K (r,¢ — B)pn(=1) V¢ € [0,27),

which, with the change of variables ¢’ = ¢ — 3, reduces to the constraint for equivariance under
reflections around the x-axis, i.e. the case for 5 =0

K,/(’I“, _(bl) = pout(_l)"'@/(rv ¢/)pin(_1) V(b/ € [0’ 27T) .

As a consequence we can retrieve kernels equivariant under reflections around the §-axis through
K(r, @) = K (r,¢—B).

We will therefore without loss of generality consider the case 5 = 0 only in the following.

1-dimensional irreps:

The reflection group ({£1}, *) has only two irreps, namely the trivial representation 1/1((){i1}’*) (s)=1
and the sign-flip representation wﬁ{il}’*) (s) = s. Therefore only the 1-dimensional case with a
kernel of form « : R? — R'*! exists. Note that we can write the irreps out as ;/;;{il}’*) (s) = s, in

particular @[J;{ﬂ}’*)(—l) = (-1)7.

Consider the output and input irreps poy = ¢§{i1}’*) and p;, = w§{i1}’*) (with i, 5 € {0,1}) and
the usual 1-dimensional Fourier basis for scalar functions in L%(S!) as before:

MEN,WE{{O} itp=0 } (29)

{bu,v(@ = cos(u¢ +7) {0,7/2} otherwise

Defining the reflection operator S by its action (S k) (¢) := x(—¢), we require the projections of
both sides of the kernel constraint on the same basis element to be equal as usual. Specifically, for a
particular basis b,/ -:

(B s 8 1) = By, LD (1) ) (1))
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The [hs implies
(b v, S k) = Zwuv2 /d¢ by (9)bpu (— )

=2 Wi 5o / de cos('¢ + ") cos(—pd + )
By

= s [ 46 5 (ol + 10+ (3 = ) +cosl(s — o+ (0 + 7))

sy
1
=D ww g (€0s(y +7) + 8 cos(y’ =)
-
while the rhs leads to
(b s O (=D (1))
]. +1},* +1},%
=Y s [ 46 b (@0 Db (0 ()
Y

- oy [ 46 cos(i6-+7/) (1) cos(ud + 1) (1
= (- WM% / dg cos(u'¢+7') cos(ue + )
2204
" 1
= (=) Y w5 (cos(y =) + G0 cos(y’ +7))
Y

Now, we require both sides to be equal, that is,
1 it 1
D Wy (cos(y ) + 80 cos(y = 7)) = (1) D w5 (cos(r' =) + 80 cos(y' + 7))
y y

and again consider two cases for p':

e/ = 0 The basis in Eq. @) is restricted to the single case 4’ = 0. Hence:
L 1
Z wo.5 (cos(y) + cos(—)) = (~1)* Z w05 (cos(—7) + cos(7)
As~v € {0, 5} and cos(£%) = 0:

& wo’oE (cos(0) + cos(0)) = (—l)i“woﬁoé (cos(—0) + cos(0))

2
= wo,0 = (—1)i+jw0,0

Which is always true when ¢ = j, while it enforces wg o = 0 when ¢ # j.
e/ > 0 In this case we get:

1 L 1
E W g cos(y' +7) = (1)1 E W g cos(y' —7)
>

& (1= (=) )w g cos(v) = (1 + (— 1)i+j)w/t 3 sin(y')

If i+ j = 0 mod 2, the equation becomes sin(y’) = 0 and, so, v’ = 0. Otherwise, it

becomes cos(y’) = 0, which means 7' = 7. Shortly, 7' = (i +j mod 2)7.

As a result, only half of the basis for 8 = 0 is preserved:

*),8= . . ™
Kl = {bw(aﬁ) =cos(pp +7) | pEN, y=(i+j mod2)5, p>0Vy= 0}
(30)
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The solution for a general reflection axis  is therefore given by

e . . Y
’C«(p{fi = {bu,w(aﬁ):COS(u(fb— B)+)|peN,y=(i+j mod 2)5,p>0Vy= 0}

€Y
which is visualized in Table|10|for the different cases of irreps for 4, j € {0,1}.

1.4.3 Derivation for O(2)

The orthogonal group O(2) is the semi-direct product between the rotation group SO(2) and the
reflection group ({£1}, %), i.e. O(2) = SO(2) x ({£1}, *). This justifies a decomposition of the
constraint on O(2)-equivariant kernels as the union of the constraints for rotations and reflections.
Consequently, the space of O(2)-equivariant kernels is the intersection between the spaces of SO(2)-
and reflection-equivariant kernels.

Proof

Sufficiency:

Assume a rotation- and reflection-equivariant kernel, i.e. a kernel which for all r € RS‘ and
¢ € [0, 27) satisfies

-1
A(rro0) = (Resgth) pou )(ro) k(r,6) (Resgity o) (ro) — ¥rg € SO(2)

= pout(TO) H(Tv ¢) P;l(r9)
and

k(r, s9)

(BesQ2), .y pon ) 5(r.0) (ResO 2 ) (8) Vs € ({1},
= pou(s) £(r,0) piy' (5).
Then, for any g = rps € O(2), the kernel constraint becomes:
k(r, 90) = poulg) £(r,0) piy" (9)
& #(r,re50) = pou(res) k(r, ®) pi,’ (ros)
& #(r,r950) = pou(re)pou(s) £(r,0) pi (s)piy " (1) -
Applying reflection-equivariance this equation simplifies to
& w(r,res0) = poulre) £(r, s6) piy (r6)
which, applying rotation-equivariance yields
< RK(r,resd) = k(r,Tesd) .
Hence any kernel satisfying both SO(2) and reflection constraints is also O(2) equivariant.
Necessity:

Trivially, O(2) equivariance implies equivariance under SO(2) and reflections. Specifically, for
any r € Ry and ¢ € [0, 27), the equation

K(r,90) = poul9) K(r,0) piy*(9) Vg=rgs€0O(2)

implies
K(r,red) = pou(re) k(1 ®) piy" (o)

-1
= (ResSS0,) pou )ro) 1. 0) (Res§lily ) (r0) V70 €S0(2)
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and
K(r,s¢) = pou(s) K(r,0) piy ' (5)
—1
(Res?{(j)l}ﬂ pout)(s) k(r, ®) (Res?{(j)l}w pm> (s) Vse ({£l},x%).

This observation allows us to derive the kernel space for O(2) by intersecting the previously derived
kernel space of SO(2) with the kernel space of the reflection group:

pomepm = {“| (7, 9.0) = pour(9)K(r, @) pin(g )_1 Vgce 0(2)}
= {” | K(1,79.0) = pou(re)r(r, ¢)pin(7'0)71 Vrg € 80(2)}
N {60, 5.0)= pouls)r(r,¢)pm(s)™" Vs e ({£1},%)}
As O(2) contains all rotations, it does also contain all reflection axes. Without loss of generality, we
define s € O(2) as the reflection along the z-axis. A reflection along any other axis 3 is associated

with the group element 935 € O(2), i.e. the combination of a reflection with a rotation of 23. As a
result, we consider the basis for reflection equivariant kernels derived for 8 = 0 in Eq. (30).

Therefore, to derive a basis associated to a pair of input and output representations py, and poy, We
restrict the representations to SO(2) and the reflection group, compute the two bases using the results
found in Appendix[[.4.T]and in Appendix [[.4.2] and, finally, take their intersection.

2-dimensional irreps:

The restriction of any 2-dimensional irrep 9y ,; 0@ of 0O(2) to the reflection group decomposes into the
direct sum of the two 1-dimensional irreps of the reflection group, i.e. into the diagonal matrix

({£1},%)
o(2 +1} % +1},% P s 0 10
Res({(ﬂ:)l} Y1n(s) = (1/1((){ B g Y )>(S) = l 0 0 (®) ¢§{i1},*)(8)] = [O 5}‘
It follows that the restricted kernel space constraint decomposes into independent constraints on

each entry of the original kernel. Specifically, for output and input representations poy = 1077(5) and

Pin = ¢Sf), the constraint becomes

. wé{il}’*)@) ‘ ' 400 ‘ ;01 . wé{:l:l},*)(s)—l ‘
K(s.x) = ‘w£{i1},*)(s) 410 ‘ 11 ‘wg{il},*)(s)—l

o)
Res({(i)l} Y Pout () K(x) Res({i)l}7*) pin(8)

We can therefore solve for a basis for each entry individually following Appendix to obtain the
complete basis

[0 (6) = {cosgﬂb) 8] ’M EN } U iy (6) = [8 sin%/ub)} ’M eN*1 U
{00z (6) = [sin?uqﬁ) 8] ’ueW} u {b}y (9) = [8 COS?W)} ‘MEN b

Through the same change of basis applied in the first paragraph of Appendix [[4.1] we get the
following equivalent basis for the same space:

(ot = [mie) e B}

= {bus(¢) = w(ﬂ¢)f(3)}uez,se{il} : 2

On the other hand, 2-dimensional O(2) representations restrict to the SO(2) irreps of the correspond-
ing frequency, i.e.

ReSS(()()2) Pin = ReSSO(z) %n (rg) = Y30 (r)
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and

(@] o
Resgy o = Resgo U0, (o) = ¥ (ro).

S0(2)

In Appendix a basis for SO(2)-equivariant kernels with respect to a 1, input field and

1/)78710(2) output field was derived starting from the basis in Eq. (20). Notice that the basis of reflection-
equivariant kernels in Eq. (32)) contains exactly half of the elements in Eq. (20), indexed by v = 0. A
basis for O(2)-equivariant kernels can be found by repeating the derivations in Appendix for
SO(2)-equivariant kernels using only the subset in Eq. (32) of reflection-equivariant kernels. The
resulting two-dimensional O(2)-equivariant basis, which includes the SO(2)-equivariance conditions
(= m — sn) and the reflection-equivariance conditions (y = 0), is given by

u:m—sn,se{il}} , (33)

KD = {bu,o,sw) — (ud)E(s)

where i = j = 1 and m,n > 0. See the bottom right cell in Table 9}

1-dimensional irreps:

O(2) has two 1-dimensional irreps ¢8 (()2) and 1/)8 (()2)(see Appendix . Both are trivial under
rotations and each of them corresponds to one of the two reflection group's irreps, i.e.

O +1},%* i
Res( D), ) 0087 (5) = i) (5)= s

and

O(2 O(2 SO(2
ReSS(()()z) %,0( V(re) = 03P (rg) =1

Considering output and input representations poy = d)? 0(2) and py, = w% ), it follows that:

0(2) _5..0Q)0) _ ({1}
Res (1) .y Pin = Res((iy o Y0 =¥

0(2) 0 0@ _ (1))
Res {11y 0 Pou = Resiy ) Yio ' = Vs
O(2 O(2 O(2 SO(2
ResOZ), po = ResOZ) 4O = 430

s0(2) Pin o) Y50

0(2) ,0(2) SO(2
Ressé(g) Pout = Rebsé(z) Yio 2 _ o )

In order to solve the O(2) kernel constraint consider again the reflectional constraint and the SO(2)
constraint. Bases for reflection-equivariant kernels with above representations were derived in
Appendixm and are shown in Eq. @ These bases form a subset of the Fourier basis in Eq. (24)
which is being indexed by v = (i +j mod 2)7. On the other hand, the full Fourier basis was
restricted by the SO(2) constraint to satlsfy w= 0 and therefore v = 0, see Eq. (23). Intersecting
both constraints therefore implies i = j, resulting in the O(2)-equivariant basis

wi,m<_'¢'j,n - else

KO(2) . {{5070(3) = 1} if 1 = j, (34)

for m,n = 0 which is shown in the top left cell in Table 9}

1 and 2-dimensional irreps:
Now we consider the 2-dimensional output representation poy = wgg) and the 1-dimensional input

representation p;, = 1/)?(52)_
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Following the same strategy as before we find the reflectional constraints for these representations to
be given by

P (s) )
H(Sw) - ( : 7/1§{i1}’*)(5) ' K10 . (1/)1(’{i1}7 )(3)71 ) ,

N—— 0O(2)
Res02), . pu(s)
Res(y1) ) Pou(s) (z) (T

and therefore to decompose into two independent constraints on the entries £°° and x'°. Solving for
a basis for each entry and taking their union as before we gelE|

{ie) = ) }MEN 0 {0 = g 53) }N

which, through a change of basis, can be rewritten as
cos(up +j%)
b,z = | .2 . 35
{ maz((ﬁ) {Sln(ud)—ka)} }uez (35)
(2)

We intersect this basis with the basis of SO(2) equivariant kernels with respect to a RengQ 9) Pin =

1/)5 °®) input field and Ressog()z) Pout = wrsno@) output field as derived in Appendix [[.4.1] Both

constraints, that is, v = j % for the reflection group and y« = m for SO(2) (see Eq. (26)), define the
one-dimensional basis for O(2)-equivariant kernels forn = 0, m > 0andi = 1 as

K% s = {teos@ = [ T | w=m}, )

see the bottom left cell in Table

2 and 1-dimensional irreps:
0(2)

As already argued in the case for SO(2), the basis for 2-dimensional input representations py, = 1

and 1-dimensional output representations poy = 1/}? (52) is identical to the previous basis up to a

transpose, i.e. it is given by

)y = {bu,ig(@ = [cos(ug +i%F) sin(ue +i%)] ‘ u—n}, (37)

where j = 1,n > 0 and m = 0. This case is visualized in the top right cell of Table 9]

1.4.4 Derivation for Cy

The derivations for Cy coincide mostly with the derivations done for SO(2) with the difference
that the projected constraints need to hold for discrete angles 6 € {p%r lp=0,...,N — 1} only.
Furthermore, Cy has one additional 1-dimensional irrep of frequency N/2 if (and only if) N is even.

2-dimensional irreps:
During the derivation of the solutions for SO(2)’s 2-dimensional irreps in Appendix[[.4.1} we assumed

SNotice that for 1 = 0 some of the elements of the set are zero and are therefore not part of the basis. We
omit this detail to reduce clutter.
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continuous angles only in the very last step. The constraint in Eq. (22) therefore holds for Cy as well.
Specifically, it demands that for each 6 € {p%7T |p=0,...,N — 1} there exists a t € Z such that:

(W' — (m—mns"))0 =2tn
&= (i — (m — 7”L8/))192N7T =27
& (W' = (m —ns'))p=tN

The last result corresponds to a system of N linear congruence equations modulo /N which require N
to divide (' — (m — ns’))p for each non-negative integer p smaller than N. Note that solutions of
the constraint for p = 1 already satisfy the constraints for p € 2,..., N — 1 such that it is sufficient
to consider

(1 = (m—ns')1 = tN
& p =m—ns +tN.

The resulting basis

Ko = {bums(@ = $(ugp+7E(s) | p=m-sn+tN,ye{0,2}s € {ﬂ}}tez (38)

for m,n > 0 thus coincides mostly with the basis [23|for SO(2) but contains solutions for aliased
frequencies, defined by adding ¢N. The bottom right cell in Table [TT] gives the explicit form of this
basis.

1-dimensional irreps:

The same trick could be applied to solve the remaining three cases. However, since Cy has an
additional one dimensional irrep of frequency N/2 for even N it is convenient to rederive all
cases. We therefore consider poy, = ¥S¥ and pi, = %SV, where m,n € {0, N/2}. Note that
WON (0), 45V (6) € {£1} for 6 € {p%F [p=10,...,N —1}.

We use the same Fourier basis

LEN, v€ {{O} ifp=0 } (39)

{bmv(‘ﬁ) = cos(ug + ) {0,7/2} otherwise

and the same projection operators as used for SO(2).

Since the lhs of the kernel constraint does not depend on the representations considered its projection
(by 7, Rok) is the same found for SO(2):

1
{bur 7, Ror) = 5 D Wy (cos((Y =) = 1'0) + 89 cos(v + 7))
Y
For the rhs we find
(O 1y ¢S¢N (ro)k 1/’SN (Te)_1>

o L GO

which by expanding the kernel in the linear combination of the basis and writing the respresentations
out yields:

= e [ 6y (6) cos(mO)b () cos(rt)
oy

= Z w””% / do cos(u'¢ +~") cos(mb) cos(ué + ) cos(nd) !

Y
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Since cos(nf) € {£1} the inverses can be dropped and terms can be collected via trigonometric
identities:

- Z wHﬁ% / d¢ cos(p'd +7') cos(m@) cos(ug + ) cos(nd)
Y

1
= Z Wy, ~ cos(mo) cos(n@)% /dqzﬁ cos(p'p + ") cos(ug + )

Y

= D e os((m n)&)% a¢ (COS((“/‘ w)¢+7'=7) +cos((' + ) + '+ 7))

By

1
= 0y cOS((Em £ )8) 5 (B €050 =) + B 0 0501 +7))
MY

1
= 5> e cos(m £ m)6) (cos(y' = 7) + b cos(y +7))
Wiy

We require the projections to be equal for each 6 = p%’r withp € {0,...,N — 1}:

by Rom) = (burs 05 () 6 (r0) ™)

S Y wuy (cos((y =) = w0) + G0 cos(y + 7)) =
Y

= Z Wy cos((£m £ n)o) ( cos(y" =) + 0,0 cos(y' + ’Y))

My
Again, we consider two cases for p’:

e 1/ =0 : The basis in Eq.(39) is restricted to the single case 7’ = 0.
Zwo,n,(cos(—'y)—l—cos(v)) = cos((Em=*n)0) Zwoﬁ (cos(—v)—i—cos('y))
B! B!

& wp,02 cos(0) + wo,z 0 = cos((+m £ n)0) (wo,02 cos(0) + wo, = 0)
= wo,0 = cos((Em £ n)B)wo,o
If cos((£m £ n)f) # 1, the coefficient wy ¢ is forced to 0. Conversely:
cos((xm+n)f) =1
& HEZst (xm £ n)f = 2tr

Using § = p37:

2
& FeZ st (+m £ n)pﬁ7T = 2tw
& HET st (m+n)p=tN

oeu' >0 :

> wrycos(y =y = p/0) = cos((Em £ n)0) > wyr 4 cos(y = 7)
vy il
& w0 co8(y — p'0) +wy z sin(y — ') =
cos((£m £ n)0) (wy 0 cos(y') + wy, z sin(v'))
Since (£m £ n)f € {-7,0, 7} we have cos((£m + n)f) = +1, therefore:

& wyrocos(y - p'0) +wy = sin(y - p'0) =
= w0 cos(y + (£m £ n)f) + wy = sin(y' + (£m £ n)f)
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Using the property in Eq. (T9):
& e st Y =0 =7+ (+m+tn)f+ 2x
& MJeZ st W0 = (m+n)d+ 2tr

Using § = p37:

2 2
& el st ,u’pﬁ7T = (+m =+ n)pﬁ7T + 2t
& FEeT st Wp=(£mEn)p+tN
& FteZ st (tmEtn+u)p=tN

In both cases 1/ = 0 and 1/ > 0 we thus find the constraints
Vpe{0,1,...,.N—1} It eZst (Emtn+puy)p=tN.

It is again sufficient to consider the constraint for p = 1 which results in solutions with frequencies
p =EtmEzn+tN. As (+m=tn) € {0,£%,£N}, all valid solutions are captured by 1/ = (m+n
mod N) + tN, resulting in the basis

Vs
K = {b;w(@S) =cos(up+7) ‘u (m+n mod N)+tN,v€ {0, > } M%O\/WO}

teN

(40)
for n,m € {0, 5 }. See the top left cells in Table

1 and 2-dimensional irreps Next consider a 1-dimensional irrep pi, = SV with n € {0, %} in

the input and a 2-dimensional irrep pou = ¥SN in the output. We derive the solutions by projecting
the kernel constraint on the basis introduced in Eq. (26).

For the lhs the projection coincides with the result found for SO(2) as before:

(bw v, Rok) = Z Wy, cos((y' =) — p'0)
¥

An expansion and projection of rhs gives:
(Bt i (ro) K (Y™ (19) 1)
1 _
= 5 [ 46 b (O (O ()

1
I LTS it 3
= S e fa8leos(ulo 1) sinGa+ ) ) St T )
e
=S (5 [ @6 costlors 7' = o=y = m8) ) (o).
sy

The integral is non-zero only if the frequency is 0, i.e. iff 4/ = p:

= Z Wy cos(y =y — mO)YSN (rg)

Y

= Z Wy cos(y’ — vy — mb) cos(£nb)
S
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Since £nf = pr for some p € N one has sin(+nf) = 0 which allows to add the following zero
summand and simplify:

= Z Wy (cos(y' — v — mB) cos(£nfd) — sin(y’ — v — mb) sin(+nh))
S

= Z Wy cos(y' =y — (m £ n)o)
5

Requiring the projections to be equal then yields:

(bw v, Rok) = <bu’w/7¢SnN (7"«9)"(')7/ng (7’9)71> Vo € {piz;}

27
& ;wu,ﬂ cos(y — v —p'0) = ZY: wy cos(y —y—(m=*n)f) Ve {pN}
& wpocos(Y - ') twyz sin(y - p'0) = wpg cos(y' - (mEn)0) 4w,z sin(y' - (m+n))
2
Vo € {pz\?;}
Using the property in Eq. (I9), this requires that for each 6 there exists a ¢ € Z such that:
/! I !/ 27T
= v —p0=7" —(mEn)d+2n VHE{pN}
, 2m
& wo=(m=En)d+ 2tr Vo e Py

Since § = p2Z withp € {0,..., N — 1} we find that

2 2
< Wp (min)pﬁwwm Vp € {0,...,N-1}
< w'p=(m=En)p+tN vpe{0,...,N-1}
& W= (m+xn)+tN
< p'—(m=En)=tN,

which implies that N needs to divide ' — (m =+ n). It follows that the condition holds also for any
other p. This gives the basis

KN, = {bw(qs): [gfjgﬁgizg] ‘ = (m+n)+tN, v € {o,g}}tez 1)

form > 0 and n € {0, & }; see the bottom left cells in Table

2 and 1-dimensional irreps:

The basis for 2-dimensional input and 1-dimensional output representations, i.e. p, = ¢S~ and
Pout = VSN withn > 0 and m € {0, %}, is identical to the previous one up to a transpose:

,ng:zn(_wn — {bu,v<¢) =[cos(up + ) sin(ud + )] ‘ p=(E£m+n)+tN, v € {0, g}}tez

N . . (42)
forn > 0and m € {0, 4 }. See the top right cells in Table
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1.4.5 Derivation for Dy

A solution for Dy can easily be derived by repeating the process done for O(2) in Appendix but
starting from the bases derived for Cy in Appendix instead of those for SO(2).

In contrast to the case of O(2)-equivariant kernels, the choice of reflection axis § is not irrelevant
since Dy does not act transitively on axes. More precisely, the action of Dy defines equivalence
classes =3 < 3J0<n< N : B3=0+ n%’r of axes which can be labeled by representatives

f3 € [0, 2%). For the same argument considered in Appendix we can without loss of generality
consider reflections along the axis § = 0 in our derivations and retrieve kernels ', equivariant to
reflections along a general axis 3, as k' (r, ¢) = k(r, ¢ — f3).

2-dimensional irreps:

For 2-dimensional input and output representations pi, = 1/)]131;’1 and poy = 1/)113%, the final basis is

K2 vy = {000(0) =000 | 5= = sn 1.5 € 21 @3)
teZ

where ¢ = j = 1 and m,n > 0. These solutions are written out explicitly in the bottom right of
Table [12]

1-dimensional irreps:

Dy has 1-dimensional representations pi, = ?ﬁ and poyt = 1/)371 for m,n € {0, %} In these cases
we find the bases

' )

ICB:MH&M = {b,m(gb) =cos(up+ )| = (m+n mod N)+¢N, (44)

y=(0G+j mon)g,u#OVWZO}
teN

J

which are shown in the top left cells of Table[T2]

1 and 2-dimensional irreps:
For 1-dimensional input and 2-dimensional output representations, that is, p;, = JDZ and poye = w?f,vn
withi =1, m > 0and n € {0, %}, the kernel basis is given by:

N _ _ o+ . .
S {wa) [Zfﬁ& J))] ‘ p=(mxn)+tN, 7]2}tez (45)

See the bottom left of Table

2 and 1-dimensional irreps:

Similarly, for 2-dimensional input and 1-dimensional output representations pj, = w{)ﬁ and poy =
wg% with j =1,n > 0and m € {0, %}, we find:

’ngmeww - {bu,v(@ = [cos(ug +7) sin(ud +7)]| p= (Fm+n) +tN, v = ig}tez

Table[T2] shows these solutions in its top right cells.
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1.4.6 Kernel constraints at the origin

Our derivations rely on the fact that the kernel constraints restrict only the angular parts of the
unconstrained kernel space L2(R2)C°"‘XC‘“ which suggests an independent solution for each radius
r € RTU{0}. Particular attention is required for kernels defined at the origin, i.e. when r = 0.
The reason for this is that we are using polar coordinates (7, ¢) which are ambiguous at the origin
where the angle is not defined. In order to stay consistent with the solutions for » > 0 we still define
the kernel at the origin as an element of L?(S1)%u* ¢ However, since the coordinates (0, ¢) map
to the same point for all ¢ € [0, 27), we need to demand the kernels to be angularly constant, that
is, k(¢) = x(0). This additional constraint restricts the angular Fourier bases used in the previous
derivations to zero frequencies only. Apart from this, the kernel constraints are the same for » = 0
and r > 0 which implies that the G-steerable kernel bases at = 0 are given by restricting the bases

derived in[[.4.1}[[.4.2} [[4.3] [.4.4)and [[4.3]to the elements indexed by frequencies p = 0.

I.5 Complex valued representations and Harmonic Networks

Instead of considering real (irreducible) representations we could have derived all results using
complex representations, acting on complex feature maps. For the case of O(2) and Dy this would
essentially not affect the derivations since their complex and real irreps are equivalent, that is, they
coincide up to a change of basis. Conversely, all complex irreps of SO(2) and Cy are 1-dimensional
which simplifies the derivations in complex space. However, the solution spaces of complex G-
steerable kernels need to be translated back to a real valued implementation. This translation has
some not immediately obvious pitfalls which can lead to an underparameterized implementation in
real space. In particular, Harmonic Networks [12] were derived with a complete solution in complex
space; however, their real valued implementation is using a G-steerable kernel space of half the
dimensionality as ours. We will in the following explain why this is the case.

In the complex field, the irreps of SO(2) are given by - () = e'*? € C with frequencies k € Z.
Notice that these complex irreps are indexed by positive and negative frequencies while their real
counterparts, defined in Appendix[[.2] only involve non-negative frequencies. As in [12] we consider
complex feature fields f© : R* — C which are transforming according to complex irreps of SO(2).
A complex input field fC : R* — C of type 4< is mapped to a complex output field fS, : R* — C
of type 9 via the cross-correlation

fon =k~ fi . 47)

with a complex filter k€ : R* — C. The (angular part of the) complete space of equivariant kernels

between f< and fS, was in [[12] proven to be parameterized by

KE(9) = weltmTe,

where w € C is a complex weight which scales and phase-shifts the complex exponential. We want
to point out that an equivalent parametrization is given in terms of the real and imaginary parts wR®
and w'™ of the weight w, i.e.

kc((b) = wReei(m_”ﬁb_|_,L'w1mei(m—n)¢

— wRegim—n)e + wMei((m=n)p+m/2) (48)

The real valued implementation of Harmonic Networks models the complex feature fields f© of type
¥ () by splitting them in two real valued channels f® := (fRe, fim)T which contain their real and

imaginary part. The action of the complex irrep z[;%(@) is modeled accordingly by a rotation matrix of
the same, potentially negativ frequency. A real valued implementation of the cross-correlation (47))
is built using a real kernel k : R? — R?*? as specified by
(fl%ne _ kRe _k,Im . if]%e
Im kI m kRe Im| -

out in

'®This establishes an isomorphism between 15 () and 7/)]5@\ (0) depending on the sign of k.
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The complex steerable kernel (48)) is then given by

_ Re|cos((m-n)p) -sin((m-n)o) m | -sin((m-n)¢) -cos((m-n)ep)
k(¢) =w sin ((m-n)¢) cos((m - n)qﬁ)} tw { cos ((m -n)¢) -sin((m - n)(b)]

— ke ¥ ((m — n)o) T+ " ((m —n)p+ g) (49)

While this implementation models the complex Harmonic Networks faithfully in real space, it does
not utilize the complete SO(2)-steerable kernel space when the real feature fields are interpreted
as fields transforming under the real irreps ¢ as done in our work. More specifically, the kernel
space used in is only 2-dimensional while our basis for the same case is 4-dimensional. The
additional solutions with frequency m + n are missing.

The lower dimensionality of the complex solution space can be understood by analyzing the relation-
ship between SO(2)’s real and complex irreps. On the complex field, the real irreps become reducible
and decomposes into two 1-dimensional complex irreps with opposite frequencies:

w}?w):\}i[_ﬂ Ei] [eigg e_‘ike}é[i ﬂ

Indeed, SO(2) has only half as many real irreps as complex ones since positive and negative
frequencies are conjugated to each other, i.e. they are equivalent up to a change of basis: 7 (0) =
E(—=1)®,(0)€(—1). It follows that a real valued implementation of a complex ¢ fields as a 2-
dimensional w}f fields implicitly adds a complex /€ i field. The intertwiners between two real fields

of type 1% and ¥ therefore do not only include the single complex intertwiner between complex
fields of type /< and 1< , but four complex intertwiners between fields of type 1%, and %%,,. The

m?

real parts of these intertwiners correspond to our four dimensional solution space.
In conclusion, [12] indeed found the complete solution on the complex field. However, by imple-

menting the network on the real field, negative frequencies are implicitly added to the feature fields
which allows for our larger basis (23)) of steerable kernels to be used without adding an overhead.

J Alternative approaches to compute kernel bases and their complexities

The main challenge of building steerable CNN:ss is to find the space of solutions of the kernel space
constraint in Eq. 2] Several recent works tackle this problem for the very specific case of features
which transform under irreducible representations of SE(3) = (R®,+) x SO(3). The strategy
followed in [35. 136} [15} 37] is based on well known analytical solutions and does not generalize to
arbitrary representations. In contrast, [2l] present a numerical algorithm to solve the kernel space
constraint. While this algorithm was only applied to solve the constraints for irreps, it generalizes to
arbitrary representations. However, the computational complexity of the algorithm scales unfavorably
in comparison to the approach proposed in this work. We will in the following review the kernel
space solution algorithm of [2] for general representations and discuss its complexity in comparison
to our approach.

The algorithm proposed in [2] is considering the same kernel space constraint
k(9x) = poul(9)k(z)py ' (9) Vg€ G
as in this work. By vectorizing the kernel the constraint can be brought in the form
CNT
vee(k) (92) = (pou ® (pia')") (9) vee(h) (x)
= (pout ® pin) (g) Vec(k) ('T) )

where the second step assumes the input representation to be unitary, that is, to satisfy pigl = pl.
A Clebsch-Gordan decomposition, i.e. a decomposition of the tensor product representation into a
direct sum of irreps ; of G, then yield

vee(k) (92) = Q@ (6D, , ¥ ) (9) Q vec(k) ()

"For the irreps of SO(3) it is well known that 7 = {|j —{|,...,7 +{} and |J| = 2min(,1) + 1.

JeJg
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Through a change of variables n(z) := @ vec(k)(x) this simplifies to

n(gx) = (@ s wJ) (g)n(x)

which, in turn, decomposes into |7 | independent constraints

ns(gz) = vs(g)ns(x) .

Each of these constraints can be solved independently to find a basis for each 7;. The kernel
basis is then found by inverting the change of basis and the vectorization, i.e. by computing

k(z) = unvec(Q~'n(z)).

For the case that pi, = ¢; and pou = ¥ are Wigner D-matrices, i.e. irreps of SO(3), the change of
basis @ is given by the Clebsch-Gordan coefficients of SO(3). These well known solutions were
used in [35} 136,15 137] to build the basis of steerable kernels. Conversely, the authors of [2] solve for
the change of basis () numerically. Given arbitrary unitary representations pj, and p, the numerical
algorithm solves for the change of basis in

Q™ (@ wJ(g>) Q Vg e G

JeJ

(Pin ® pout) (9)

<~ 0= Q(pin®pout)(g) - (@ 1/’](9)) Q VQEG-

JeJ

This linear constraint on (), which is a specific instance of the Sylvester equation, can be solved by
vectorizing @, i.e.

1@ (@ pa)(9) = (B, vs)@@1]vec@ =0 vgeq.

where I is the identity matrix on RY™(Pn@pan) — Rdim(pn) dim(poan) 4pd vee(Q) e R (pn)* dim(pou)
In principle there is one Sylvester equation for each group element g € (G, however, it
is sufficient to consider the gemerators of G only, since the solutions found for the gener-
ators will automatically hold for all group elements. One can therefore stack the matrices

[I ® (pin @ pour) (9) — (@Jej 7,/1J) (9)® I} for the generators of G into a bigger matrix and solve

for @ as the null space of this stacked matrix. The linearly independent solutions ) in the null space
correspond to the Clebsch-Gordan coefficients for J € J.

This approach does not rely on the analytical Clebsch-Gordan coefficients, which are only known for
specific groups and representations, and therefore works for any choice of representations. However,
applying it naively to large representations can be extremely expensive. Specifically, computing
the null space to solve the (stacked) Sylvester equation for G generators of G via a SVD, as done
in [2]], scales as O( dim(p;,)® dim(pout)ﬁg). This is the case since the matrix which is multiplying
vec(Q) is of shape dim(piy)? dim(pou)?G % dim(pin)? dim(pou)?. Moreover, the change of basis
matrix @ itself has shape dim(pi,) dim(pou) X dim(pin) dim(poy) which implies that the change
of variable from 7 to k has complexity O( dim(pin)? dim(pou)?). In [2] the authors only use
irreducible representations which are relatively small such that the bad complexity of the algorithm is
negligible.

In comparison, the algorithm proposed in this work is based on an individual decomposition of the
representations py, and poy into irreps and leverages the analytically derived kernel space solutions
between the irreps of G < O(2). The independent decomposition of the input and output represen-
tations leads to a complexity of only O(( dim(pin)® + dim(pin)%)G). We further apply the input
and output changes of basis Q;, and Q. independently to the irreps kernel solutions % which
leads to a complexity of (9( dim(pin) dim(pou)? + dim(pou) dim(pm)z). The improved complexity
of our implementation makes working with large representations as used in this work, for instance
dim(pz°) = 40, possible.

"®No inversion from @ to Q™! is necessary if the Sylvester equation is solved directly for Q.
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K Additional information on the training setup

layer output fields
conv block 7 x 7 (pad 1) 16
conv block 5 x 5 (pad 2) 24
max pooling 2 x 2 24
conv block 5 x 5 (pad 2) 32
conv block 5 x 5 (pad 2) 32
max pooling 2 x 2 32
conv block 5 x 5 (pad 2) 48
conv block 5 x 5 64
invariant projection 64
global average pooling 64
fully connected 64
fully connected + softmax 10

Table 13: Basic model architecture from which
all models for the MNIST benchmarks in Tables[7]
and 2] are being derived. Each convolution block
includes a convolution layer, batch-normalization
and a nonlinearity. The first fully connected layer
is followed by batch-normalization and ELU. The
width of each layer is expressed as the number of
fields of a regular C1¢ model with approximately

layer output fields
conv block 9 x 9 24
conv block 7 x 7 (pad 3) 32
max pooling 2 X 2 32
conv block 7 x 7 (pad 3) 36
conv block 7 x 7 (pad 3) 36
max pooling 2 x 2 36
conv block 7 x 7 (pad 3) 64
conv block 5 x 5 96
invariant projection 96
global average pooling 96
fully connected 96
fully connected 96
fully connected + softmax 10

Table 14: Model architecture for the final MNIST-
rot experiments (replicated from [[7]). Each fully
connected layer follows a dropout layer with p =
0.3; the first two fully connected layers are fol-
lowed by batch normalization and ELU. The width
of each layer is expressed in terms of regular fea-
ture fields of a C16 model.

the same number of parameters.

K.1 Benchmarking on transformed MNIST datasets

Each model reported in Section[3.1]and Appendix is derived from the architecture reported in
Table[I3] The width of each model’s layers is thereby scaled such that the total number of parameters
is matched and the relative width of layers coincides with that reported in TabldI3] Training is
performed with a batch size of 64 samples, using the Adam optimizer. The learning rate is initialized
to 1073 and decayed exponentially by a factor of 0.8 per epoch, starting after a burn in phase of 10
epochs. We train each model for 30 epochs and test the model which performed best on the validation
set. A weight decay of 10~7 is being used for all convolutional layers and the first fully connected
layer. In all experiments, we build steerable bases with Gaussian radial profiles of width o = 0.6 for
all except the outermost ring where we use 0 = 0.4. We apply a strong bandlimiting policy which
permits frequencies up to 0, 2, 2 for radii 0, 1,2 in a 5 x 5 kernel and up to 0, 2, 3, 2 for radii 0, 1, 2, 3
ina 7 x 7 kernel. The strong cutoff in the rings of maximal radius is motivated by our empirical
observation that these rings introduce a relatively high equivariance error for higher frequencies.
This is the case since the outermost ring ranges out of the sampled kernel support. During training,
data augmentation with continuous rotations and reflections is performed (if these are present in
the dataset) to not disadvantage non-equivariant models. In the models using group restriction,
the restriction operation is applied after the convolution layers but before batch normalization and
non-linearities.

K.2 Competitive runs on MNIST rot

In Table|3| we report the performances of some of our best models. Our experiments are based on the
best performing, Cyg-equivariant model of [7] which defined the state of the art on rotated MNIST
at the time of writing. We replicate their model architecture, summarized in Table though our
models have a different frequency bandlimit and width o for the Gaussian radial profiles as discussed
in the previous subsection. As before, the table reports the width of each layer in terms of number of
fields in the C1¢g regular model.

As commonly done, we train our final models on the 10000 + 2000 training and validation samples.
Training is performed for 40 epochs with an initial learning rate 0.015, which is being decayed by a
factor of 0.8, starting after 15 epochs. As before, we use the Adam optimizer with a batch size of
64, this time using L1 and L2 regularization with a weight of 10~7. The fully connected layers are
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additionally regularized using dropout with a probability of p = 0.3. We are again using train time
augmentation.

K.3 CIFAR experiments

The equivariant models used in the experiments on CIFAR-10 and CIFAR-100 are adapted from the
original WideResNet models by replacing conventional with G-steerable convolutions and scaling
the number of feature fields such that the total number of parameters is preserved. For blocks which
are equivariant under Dg or Cg we use 5 x 5 kernels instead of 3 x 3 kernels to allow for higher
frequencies. All models use regular feature fields in all but the final convolution layer, which maps
to a scalar field (conv2triv) to produce invariant predictions. We use a frequency cut-off of 3 times
the ring’s radius, e.g. 0, 3,6 for rings of radii 0, 1,2. These higher bandlimits in comparison to
the MNIST experiments are motivated by the fact that the corresponding bases introduce small
discretization errors, which is no problem for the classification of natural images. In the contrary, this
leads to the models having a strong bias towards being equivariant, but might allow them to break
equivariance if necessary. The widths of the bases’ rings is chosen to be ¢ = 0.45 in all rings.

The training process is the same as used for WideResNets: we train for 200 epochs with a batch size
of 128. We optimize the model with SGD, using an initial learning rate of 0.1, momentum 0.9 and
a weight decay of 5 - 10~%. The learning rate is decayed by a factor of 0.2 every 60 epochs. We
perform a standard data augmentation with random crops, horizontal flips and normalization. No
CutOut is done during the normal experiments but it is used in the AutoAugment policies.

K.4 STL-10 experiments

The models for our STL-10 experiments are adapted from [32]. However, according to an issue[T_g] in
the authors’ GitHub repository, the publication states some model parameters and the training setup
wrongly. Our adaptations are therefore based on the setting reported on GitHub. Specifically, we
use patches of 60 x 60 pixels for cutout and the stride of the first convolution layer in the first block
is 2 instead of 1. Moreover, we normalize input features using CIFAR-10 statistics. Though these
statistics are very close to the statistics of STL-10, they might, as the authors of [32] suggest, cause
non-negligible changes in performance because of the small training set size of STL-10.

As before, regular feature fields are used throughout the whole model except for the last convolution
layer which maps to trivial fields. In the small model, which does not preserve the number of
parameters but the number of channels, we still scale up the number of output channels of the very
first convolution layer (before the first residual block). As the first convolution layer originally
has 16 output channels and our model is initially equivariant to Dg (whose regular representation
spans 16 channels), the first convolution layer would only be able to learn 1 single independent filter
(repeated 16 times, rotated and reflected). Hence, we increase the number of output channels of the
first convolution layer by the square root of the group size (/16 = 4) leading to 4 - 16 = 64 channels,
i.e. 64/16 = 4 regular fields. We use a ring width of ¢ = 0.6 for the kernel basis except for the
outermost ring where we use ¢ = 0.4 and use a frequency cut-off factor of 3 for the rings’ radii, i.e.
cutoffs of 0, 3,6, ... .

We are again exactly replicating the training process as reported in the publication [32]. Only the
labeled subset of the training set is used, that is, the 100000 unlabeled training images are discarded.
Training is performed for 1000 epochs with a batch size of 128, using SGD with Nesterov momentum
of 0.9 and weight decay of 5 - 10~%. The learning rate is initialized to 0.1 and decayed by a factor of
5 at 300, 400, 600 and 800 epochs. During training, we perform data augmentation by zero-padding
with 12 pixels and randomly cropping patches of 96 x 96 pixels, mirroring them horizontally and
applying CutOut.

L. Additional information on the irrep models

SO(2) models We experiment with some variants (rows 37-44) of the Harmonic Network model in
row 30 of Table[7} varying in either the non-linearity or the invariant map applied. All of these models
are therefore to be analyzed relative to this baseline. First, we try to use squashing nonlinearities [41]]

“https://github.com/uoguelph-mlrg/Cutout/issues/2
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(row 37) instead of norm-ReL.Us on each non-trivial irrep. This variant performs consistently worse
than the original model. In the baseline variant, we generate invariant features via a convolution to
scalar fields in the last layer (conv2triv). This, however, reduces the utilization of high frequency
irrep fields in the penultimate layer. The reason for this is that the kernel space for mappings from
high frequency- to scalar fields consists of kernels of a high angular frequency, which will be cut off
by our bandlimiting. To overcome this problem, we propose to instead compute the norms of all
non-trivial fields to produce invariant features. This enables us to use all irreps in the output of the last
convolutional layer. However, we find that combining invariant norm mappings with norm-ReLUs
does not improve on the baseline model, see row 38. In row 39 we consider a variant which applies
norm-ReLUs on the direct sum of multiple non-trivial irrep fields, each with multiplicity 1, together
(shared norm-ReLU), while the scalar fields are still being acted on by ELUs. This is legitimate
since the direct sum of unitary representations is itself unitary. After the last convolutional layer,
the invariant projection preserves the trivial fields but computes the norm of each composed field.
This model significantly outperforms all previous variants on all datasets. The model in row 40
additionally merges the scalar fields to such combined fields instead of treating them independently.
This architecture performs significantly worse than the previous variants.

We further explore four different variations which are applying gated nonlinearities (rows 41-44).
These models distinguish from each other by 1) their mapping to invariant features and 2) whether
the gate is being applied to each non-trivial field independently or being shared between multiple
non-trivial fields. We find that the second choice, i.e. sharing gates, does not significantly affect the
performances (row 41 vs. 42 and 43 vs. 44). However, mapping to invariant features by taking the
norm of all non-trivial fields performs consistently better than applying conv2triv. Overall, gated
nonlinearities perform significantly better than any other choice of nonlinearity on the tested SO(2)
irrep models.

O(2) models Here we will give more details on the O(2)-specific operations which we introduce to
improve the performance of the O(2)-equivariant models, reported in rows 45-57 of Table

e O(2)-comv2triv: As invariant map of the O(2) irrep models in rows 46-49 and 54 we are designing

a last convolution layer which is mapping to an output representation poy = 8 [()2) 52 wﬁf) ,
that is, to scalar fields fy o and sign-flip fields f; o in equal proportions. Since the latter
are not invariant under reflections, we are in addition taking their absolute value. The
resulting, invariant output features are then multiple fields fo 0 @ | f1,0/- The motivation for
not convolving to trivial representations of O(2) directly via conv2triv is that the steerable

kernel space for mappings between irreps of O(2) does not allow for mapping between 1/18 (()2)
and 1/)3(2) (see Table EI) which would lead to dead neurons.

The models in rows 50-53, 56 and 57 operate on Indso((f&) sz(Q)-ﬁelds whose representa-

tions are induced from the irreps of SO(2). Per definition, this representation acts on fea-
. S0O(2) .

ture vectors f in RIMWET) @ RIO)SO@) - which we treat in the following as functions

- ©)

f:0(2)/S0(2) — RImE°)  We further identify the coset s SO(2) in the quotient space
0(2)/SO(2) by its representative R (s SO(2)) := s € ({1}, *) in the reflection group. Eq.[9]de-
fines the action of the induced representation on a feature vector by

([Indgg(g) Y20 (75) f)(sSO(2)) =20 (h (7FER((75)1580(2)))) £((75) 15 S0(2))
— 2°® (1(7s)) f(3550(2))

- SO () £(3sS0(2))  for s = +1
1/)20(2) (771 f(8sS0(2)) for s =—1,
where we used Eq. [7]to compute

for s = +1

h(/ffs) = R(?ZS SO(2))717’;S = 8_1775 = {;—1 for s = —1.
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Intuitively, this action describes a permutation of the subfields (indexed by s) via the reflection s and a
rotation of the subfields by 7 and 71, respectively. Specifically, for k = 0, the induced representation
is for all 7 instantiated by

1

[ 0} for 5§ =41

[I d°® SO(Q)} (73) = 0 1 (50)

SO(2) 0 1
f s = _1
L } or 5 ,

that is, it coincides with the regular representation of the reflection group. Similarly, for £ > 0, it is
for all 7 given by the 4 x 4 matrices

[ SO ~
wbé“’)(r)Y 0
for s =41
SO(2 -
0 s (=)
0O(2) SO(2) . L i
[I dso(2) Vo }( 5) = - -
SO
0 |2P @
for s =—1 .
SO -
R T N I

We adapt the conv2triv and norm invariant maps, as well as the norm-ReL.U and the gated nonlineari-
d°®

ties to operate on In SO(Q)-ﬁelds as follows:

e Ind-comv2triv: Instead of applying O(2)-conv2triv to compute invariant features, we apply
convolutions to IndSO 2) wo ©()_fields which are invariant under rotations but behave like
regular ({£1}, *)- ﬁelds under reflections. These fields are subsequently mapped to a scalar
field via G-pooling, i.e. by taking the maximal response over the two subfields.

e Ind-norm: An alternative invariant map is defined by computing the norms of the subfields of
each final IndO(Q()) 50(2) field and applying G-pooling over the result.

* Ind norm-ReLU: It would be possible to apply a norm-ReLU to a Indgg(z) 1/) . ?) _field for k > 0

as a whole, that is, to compute the norm of both subfields together. Instead, we apply two
individual norm-ReLUs to the subfields. Since the fields permute under reflections, we need
to choose the bias parameter of the two norm-ReLUs to be equal.

e Ind gate: Similarly, we could apply a single gate to each Indso(()z(é) ¢,§O(2)-ﬁeld. However,

we apply an individual gate to each subfield. In this case it is necessary that the gates
0(2)
SO(2)

computing the gates from Indgg&) wOO(Q)-ﬁelds, which contain two permuting scalar fields.

permute together with the Ind @/}ko(z)-ﬁelds to ensure equivariance. This is achieved by

Empirically we find that IndSO ) models perform much better than pure irrep models, despite both of

them being equivalent up to a change of basis. In particular, the induced representations decompose
for some change of basis matrices 0y and )¢ into:

0(2) ,S0(2 0(2) @
Indsé(g) v0® = Qo { & oy 0 )} Qo
S0(2 0(2 _
In dso ) Peor) = Qso {7/’1,1»0 ® 1/J1,1(~c>)o} Qo

The difference between both bases is that the induced representations disentangle the action of
reflections into a permutation, while the direct sum of irreps is modeling reflections in each of its
sub-vectorfields independently as an inversion of the vector direction and rotation orientation. Note
the analogy to the better performance of regular representations in comparison to a direct sum of the
respective irreps.
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