
This appendix contains the proofs for various Lemmas and Theorems presented in the paper.

A Proofs of Lemmas and Theorems

A.1 Proof of Theorem 3.1

Proof. The proof follows from the fact that the points {Fai} lie on one side of the hyperplane passing
through the origin given by wTx = 0 if and only if

wTFai ≥ 0 ∀a ∈ A \ a1, i = 1, . . . , n

or
wTFai ≤ 0 ∀a ∈ A \ a1, i = 1, . . . , n

The proof in the ’if’ direction follows by taking the hyperplane defined by w = R and noticing that
wTFai = RTFai = FTaiR ≥ 0 so all the points {Fai} lie on one side of the hyperplane passing
through the origin given by RTx = 0

The proof in the ’only if’ direction is as follows. Consider a separating hyperplane w. Without loss
of generality,

wTFai ≥ 0

Now let R = w then FTaiR = RTFai = wTFai ≥ 0 so R = w generates the optimal policy
π = a1.

A.2 Proof of Theorem 5.1

Proof. Consider FTaiR̂ ≥ 0, using Hölder’s inequality we have

FTaiR̂ ≥ −‖Fai − F̂ai‖∞‖R̂‖1 + F̂TaiR̂ ≥ −ε‖R̂‖1 + 1 (A.1)

Now let R̃ = K
β R
∗ where K > 0 and R∗ is the reward satisfying the β-strict separability for the

problem. We have ‖R̃‖1 = K
β ‖R

∗‖1 = K
β as well as FTaiR̃ ≥ K. Now we have

F̂TaiR̃ ≥ −‖Fai − F̂ai‖∞‖R̃‖1 + FTaiR̃ ≥ −ε‖R̃‖1 +K = −Kε
β

+K = K

(
1− ε

β

)

We now construct R̃ to satisfy the constraints of the optimization problem 4.1 with F̂ai by choosing
K such that

F̂TaiR̃ ≥ K
(
1− ε

β

)
≥ 1 =⇒ K =

1

1− ε
β

Notice here since we have K > 0, then ε < β

Now since R̃ is a feasible solution to the optimization problem 4.1 with F̂ai for which R̂ is the
optimal solution, we have from the objective function

‖R̂‖1 ≤ ‖R̃‖1 =
K

β

Substituting this upper bound for ‖R̂‖1 in (A.1) we get,

FTaiR̂ ≥ −ε
K

β
+ 1 = 1− ε

β

(
1

1− ε
β

)
≥ 1− 1− c

2− c

(
1

1− 1−c
2−c

)
= 1− 1− c

2− c
(2− c) = c
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A.3 Proof of Theorem 5.2

Proof. The proof of this theorem is a consequence of Corollary 5.1 and Theorems 6.1 and 6.3. Note
that from Theorem 6.3, we want the concentration to hold with probability (1− δ) for all transition
probability matrices corresponding to the set of actions. This can be viewed as the concentration
inequality holding for a single nk × n matrix which gives us the result for m samples

m ≥ 4

αε2
log

4nk

δ

=⇒ P
[∥∥∥P̂a − Pa∥∥∥

∞
≤ ε1

]
< 1− δ

The result then follows from substituting this value of ε1 into the ε in Theorem 6.1 and the consequent
result into Corollary 5.1.

A.4 Proof of Lemma 6.1

Proof. Let C = AB, we have cij =
∑
k aikbkj

‖AB‖∞ =‖C‖∞ = sup
i,j
|cij |

From Holder’s inequality we get

‖AB‖∞ = sup
i,j

{∣∣∣∣∣∑
k

aikbkj

∣∣∣∣∣
}

≤ sup
i,j

{∣∣∣∣∣∑
k

aik

∣∣∣∣∣
}
sup
i,j
{|bik|}

≤ sup
i,j

{∑
k

|aik|

}
sup
i,j
{|bik|}

= |||A|||∞‖B‖∞

A.5 Proof of Lemma 6.2

Proof. First note that if P is a right stochastic matrix then P k is a right stochastic matrix for all
natural numbers k. Consider n× n right stochastic matrices A,B,C,D with at most d ∈ {1, . . . , n}
non-zero elements per row. Consider the expression ‖AC −BD‖∞ From Lemma 1, we get,

‖AC −BD‖∞ = ‖AC −AD +AD −BD‖∞
≤ ‖AC −AD‖∞ + ‖AD −BD‖∞
≤ |||A|||∞‖C −D‖∞ + |||A−B|||∞‖D‖∞

Notice that |||A−B|||∞ ≤ d‖A − B‖∞ since A and B have at most d ∈ {1, . . . , n} non-zero
elements per row, and |||A|||∞ = 1 and ‖D‖∞ ≤ 1, thus we have

‖AC −BD‖∞ ≤ ‖C −D‖∞ + d‖A−B‖∞

Now we will prove the lemma by induction k = 1. We have

‖P̂ − P‖∞ ≤ ε = ((1− 1)d+ 1)ε

Assume the statement for k − 1 is true. For k > 1 we have
‖P̂ (k−1) − P (k−1)‖∞ ≤ (((k − 1))− 1)d+ 1)ε

Consider the previous result with A = P̂ , B = P, C = P̂ (k−1), D = P (k−1). Substituting, we get

‖P̂ P̂ (k−1) − PP (k−1)‖∞ ≤ (((k − 1))− 1)d+ 1)ε+ nε

=⇒ ‖P̂ (k) − P (k)‖∞ ≤ ((k − 1)d+ 1)ε
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A.6 Proof of Theorem 6.1

Proof. Consider the expression from the theorem∥∥∥(P̂a1 − P̂a)(I − γP̂a1)−1 − (Pa1 − Pa)(I − γPa1)−1
∥∥∥
∞

=

∥∥∥∥(P̂a1 − P̂a) ∞∑
j=0

(
γP̂a1

)j
− (Pa1 − Pa)

∞∑
j=0

(γPa1)
j

∥∥∥∥
∞

=

∥∥∥∥(P̂a1 − P̂a) ∞∑
j=0

(
γP̂a1

)j
− P̂a

∞∑
j=0

(γPa1)
j
+ P̂a

∞∑
j=0

(γPa1)
j − (Pa1 − Pa)

∞∑
j=0

(γPa1)
j

∥∥∥∥
∞

=

∥∥∥∥ ∞∑
j=0

γj
(
P̂ j+1
a1 − P j+1

a1

)
− (P̂a)

∞∑
j=0

γj
(
P̂ ja1 − P

j
a1

)
− (P̂a − Pa)

∞∑
j=0

γj
(
P ja1
)∥∥∥∥
∞

≤
∞∑
j=0

γj
∥∥∥(P̂ j+1

a1 − P j+1
a1

)∥∥∥
∞

+

∞∑
j=0

γj
∥∥∥(P̂a)(P̂ ja1 − P ja1)∥∥∥∞ +

∞∑
j=0

γj
∥∥∥(P̂a − Pa) (P ja1)∥∥∥∞

From Lemma 6.1 and Lemma 6.2; and the fact that for a right stochastic matrix P , |||P |||∞ = 1 and
‖P‖∞≤ 1; we have

∞∑
j=0

γj
∥∥∥(P̂ j+1

a1 − P j+1
a1

)∥∥∥
∞

+

∞∑
j=0

γj
∥∥∥(P̂a)(P̂ ja1 − P ja1)∥∥∥∞ +

∞∑
j=0

γj
∥∥∥(P̂a − Pa) (P ja1)∥∥∥∞

≤
∞∑
j=0

γj
∥∥∥(P̂ j+1

a1 − P j+1
a1

)∥∥∥
∞
+

∞∑
j=0

γj
∣∣∣∣∣∣∣∣∣P̂a∣∣∣∣∣∣∣∣∣

∞

∥∥∥(P̂ ja1 − P ja1)∥∥∥∞+

∞∑
j=0

γj
∣∣∣∣∣∣∣∣∣P̂a − Pa∣∣∣∣∣∣∣∣∣

∞

∥∥(P ja1)∥∥∞
≤
∞∑
j=0

γj
∥∥∥(P̂ j+1

a1 − P j+1
a1

)∥∥∥
∞

+

∞∑
j=0

γj
∥∥∥(P̂ ja1 − P ja1)∥∥∥∞ +

∞∑
j=0

γjd
∥∥∥P̂a − Pa∥∥∥

∞

≤
∞∑
j=0

γj((j)d+ 1)ε+

∞∑
j=0

γj((j − 1)d+ 1)ε+

∞∑
j=0

γjdε

= ε

∞∑
j=0

γj ((jd+ 1) + ((j − 1)d+ 1) + d)

= 2dε

∞∑
j=0

jγj + 2ε

∞∑
j=0

γj

= 2ε

(
dγ

(1− γ)2
+

1

1− γ

)
= 2ε

(d− 1)γ + 1

(1− γ)2

A.7 Proof of Theorem 6.2

Proof. Here we invoke The Dvoretzky-Kiefer-Wolfowitz inequality A. Dvoretzky & Wolfowitz
(1956). Consider m samples of a random variable Yia with domain {1, . . . , n}, let y(1)ia , . . . , y

(m)
ia ∈

{1, . . . , n} correspond to the observed resulting state under an action a taken at a state i. Let
T̂ia(s) =

1
m

∑m
j=1 1

[
y
(j)
ia ≤ s

]
be an estimate of the CDF of Yia and let Tia(s) = P [Yia ≤ s] be

the actual CDF. From the Dvoretzky-Kiefer-Wolfowitz inequality we have
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P

(
sup

s∈{1,...,n}

∣∣∣T̂ia(s)− Tia(s)∣∣∣ > ε

)
≤ 2e−2mε

2

=⇒ P

(
sup

s∈{1,...,n}

∣∣∣T̂ia(s)− Tia(s)∣∣∣ ≤ ε) > 1− 2e−2mε
2

Now consider the PDF of Yia given by p̂ia(s) = T̂ia(s)− T̂ia(s− 1). Notice that

|p̂ia(s)− pia(s)| ≤
∣∣∣(T̂ia(s)− T̂ia(s− 1)

)
− (Tia(s)− Tia(s− 1))

∣∣∣
≤
∣∣∣T̂ia(s)− Tia(s)∣∣∣+ ∣∣∣T̂ia(s− 1)− Tia(s− 1)

∣∣∣
So if we have

sup
s∈{1,...,n}

∣∣∣T̂ia(s)− Tia(s)∣∣∣ ≤ ε
then

sup
s∈{1,...,n}

|p̂ia(s)− pia(s)| ≤ 2ε

=⇒ P

(
sup

s∈{1,...,n}
|p̂ia(s)− pia(s)| ≤ ε

)
> 1− 2e−mε

2/2

Here we can interpret p̂ia(·) and pia(·) as the i-th rows of the matrices P̂a and Pa respectively.
p̂(Yia), is the maximum likelihood estimator formed from m samples. From application of the union
bound over all rows of the matrix Pa, we have for ε > 0, and m samples,

P ((∀i ∈ 1, . . . , n) ‖p̂(Yia)− p(Yia)‖∞ < ε) > 1− 2ne−mε
2/2

=⇒ P
[∥∥∥P̂a − Pa∥∥∥

∞
≤ ε
]
≥ 1− δ, δ ∈ (0, 1)

if m ≥ 2
ε2 log

2n
δ

A.8 Proof of Theorem 6.3

Proof. Without loss of generality, let every state j = 1, . . . , n be reachable from state j = 1 by action
a1 after a step with probability at least α. Let Yja be a random variable domain {1, . . . , n}. Let Zj
be a Bernoulli random variable such that P (Zj = 1) ≥ α∀j. Let (z(1)j , y

(1)
j ), . . . , (z

(m)
j , y

(m)
j ) be m

pairs of independent samples of Zj and Yaj . Here Zj represents the state chain 1
a1−→ j → . . .

Consider the event A1 ≡ { 1
m

∑m
k=1 z

(k)
j ≥ α− ε∀j}. By the one-sided Hoeffding’s inequality and

taking the union bound over all states we have

P(A1) ≥ 1− ne−2ε
2m

We also have the conditional maximum likelihood probability estimator

p̂(Yj = s|Zj = 1) =
1∑m

k=1 z
(k)
j

m∑
l=1

1[(y
(l)
j = s) ∧ z(l)j ]

From Theorem 6.2 we have for event

A2 ≡ {‖p̂(Yja|Zj = 1)− p(Yja|Zj = 1)‖∞ ≤ β}

P(A2|A1) ≥ 1− 2ne−2β
2m(α−ε)/2
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By the law of total probability

P(A2) ≥ P(A2, A1) = P(A2|A1)P(A1)

=
(
1− ne−2ε

2m
)(

1− 2ne−2β
2m(α−ε)/2

)
≥ 1− ne−2ε

2m − 2ne−2β
2m(α−ε)/2

By solving δ
2 = ne−2ε

2m and δ
2 = 2ne−2β

2m(α−ε)/2 we can see that if m ≥
max

{
1

2ε2 log
2n
δ ,

2
(α−ε)β2 log

4n
δ

}
then P(A2) ≥ 1− δ Letting ε = α

2 and taking the union bound

over all actions a ∈ A we have if m ≥ 4
αβ2 log

4nk
δ then

P
[∥∥∥P̂a − Pa∥∥∥

∞
≤ β

]
≥ 1− δ, δ ∈ (0, 1)∀a ∈ A
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B Experiment setup and additional results

Experiments were performed in MATLAB using randomly generated transition probability matrices
for β-strictly separable MDPs with n states, k actions, γ.

We generate the rows of the transition probability matrices individually in one of two different ways.
In the first method each row Pa(i) = x ∈ [0, 1]n is generated as a uniformly sampled point from the
region C := {x ∈ Rn | x � 0, ‖x‖1 = 1}. In the second method, we wanted to simulate situations
where taking an action at a state would lead to a few states (say n1 states) with a large probability and
the remaining n− n1 states with a small probability. This is similar to a situation where the action
chosen is followed with a large probability and where state jumps to a random state with a small
probability. This is based on the idea of following the action with a large probability and randomly
"exploring" with a small probability. This is similar to transition rules used by Ng & Russel (2000) in
their experiment. Both of these methods were tested in generating the "true" transition probability
matrices. The results shown in Figure 5 of this supplement were obtained using transition probability
matrices generated by the first method. The results presented in Figure 3 in the main paper and in
Figure 6 of this supplement were obtained for transition probability matrices generated by the second
method. We also checked all generated transition probability matrices to ensure β-separability. The
maximum likelihood estimates P̂ai of these transition probability matrices were formed by sampling
trajectories under the true transition probability matrices with the action chosen uniformly at random
at each state. Several trajectories were formed, each with a random initial state to ensure that each
state was reachable in the simulations.

Recall that Fai = (Pa1(i)−Pa(i))(I−γPa1)−1 and F̂ai = (P̂a1(i)− P̂a(i))(I−γP̂a1)−1. Reward
functions R̂ were found by solving our L1-regularized SVM formulation, and the method of Ng &
Russel (2000), using the same set of estimated transition probabilities, i.e., F̂ai. The resulting reward
functions were then tested using the true transition probabilities for FTaiR̂ ≥ 0.

Additional results for 30 repetitions of n = 5 states, k = 5 actions, separability β = 0.0032,
with transition probabilities generated using the first method are shown in Figure 5. Results for 20
repetitions of n = 10 states, k = 10 actions, separability β = 0.0032, with transition probabilities
generated using the second method are shown in Figure 6.

Figure 5: Empirical probability of success versus number of samples for an inverse reinforcement
learning problem performed with n = 5 states and k = 5 actions using both our L1-regularized
support vector machine formulation and the linear programming formulation proposed in Ng &
Russel (2000). The samples were generated using the first method as described in this supplement.
The vertical blue line represents the sample complexity for our method
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Figure 6: Empirical probability of success versus number of samples for an inverse reinforcement
learning problem performed with n = 10 states and k = 10 actions using both our L1-regularized
support vector machine formulation and the linear programming formulation proposed in Ng &
Russel (2000). The samples were generated using the second method described in this supplement
(i.e., the same method used in the main paper). The vertical blue line represents the sample complexity
for our method
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