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7.1 The architecture of the Cogged Spatial-Temporal Module
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Figure 7: The architecture of the Cogged Spatial-Temporal Module. The number below each component indicates
its output dimension. c is the number of class. All fusion is performed by element-wise sum. When trained
without being followed by the Self Validation Module, before computing Lglobalclass, Lboxclass and Lattn,
Softmax is applied (the attention prediction is first flattened to be a 8732-d vector)
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Figure 8: Visualizations of (a) Our model, (b) Gaze-based model, (c) Cascade Model, and (d) I3D-backboned
SSD. Note that in our experiments of Gaze + Box model, we directly use ground truth bounding boxes for each
object instead of results from an object detector. The box regression head is omitted for simplicity.

7.2 Hand based model settings

We train two object-in-hand detectors (for the left hand and the right hand respectively), using the
ResNet-50 backbone, and one which-hand classifier with the I3D backbone to classify which hand
holds the object of interest when the left hand and the right hand hold different objects. During
testing, if only one object-in-hand detector predicts object in hand or both hands hold the same object,
we accept the prediction as the object of interest and it is combined with the ground truth bounding
box as the final output. Otherwise we apply the which-hand classifier to decide which object to take.
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We obtain testing accuracy of 86.28%, 88.61% and 90.80% for the object-in-left-hand detector, the
object-in-right-hand-detector and the object-in-which-hand classifier respectively.

To further strengthen the baseline, we directly use the ground truth of objects in hands and have 4
more settings: (1) Right handed model, which uses the ground truth object in hands labels, and when
two hands hold different objects, it always favours the right one; (2) Left handed model, which is
the same as (1) but always favours the left hand; (3) Model with object-in-hand ground truth and
which-hand classifier, which will apply the which-hand classifier to decide which object to take when
two hands hold different objects; (4) Either handed model, which uses the ground truth object-in-hand
labels, and when two hands hold different objects, the model always take the one resulting in higher
mAcc as the prediction. Note that (4) depicts the best performance which hand-based methods can
possibly achieve in theory as it uses all of the ground truth.
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Figure 9: More qualitative results of our model on the ATT dataset.
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